
A Linear-Time Component-Labeling Algorithm
Using Contour Tracing Technique

Fu Chang, Chun-Jen Chen, and Chi-Jen Lu

Institute of Information Science, Academia Sinica

128 Academia Road, Section 2, Nankang, Taipei 115 Taiwan

E-mail: fchang@iis.sinica.edu.tw, dean@iis.sinica.edu.tw, cjlu@iis.sinica.edu.tw

Abstract

A new linear time algorithm is presented in this article that simultaneously la-

bels connected components (to be referred to merely as components in this paper)

and their contours in binary images. The main step of this algorithm is to use a con-

tour tracing technique to detect the external contour and possible internal contours of

each component, and also to identify and label the interior area of each component.

Labeling is done in a single pass over the image, while contour points are revisited

more than once, but no more than a constant number of times. Moreover, no re-

labeling is required throughout the entire process, as it is required by other algo-

rithms. Experimentation on various types of images (characters, halftone pictures,

photographs, newspaper, etc.) shows that our method outperforms methods that use

the equivalence technique. Our algorithm not only labels components but also ex-

tracts component contours and sequential orders of contour points, which can be use-

ful for many applications.

Keywords: component-labeling algorithm, contour tracing, linear-time algorithm

1. Introduction

Researchers often face the need to detect and classify objects in images. Technically, image

objects are formed out of components that in turn are made of connected pixels. It is thus most

equitable to first detect components from images. When objects have been successfully extracted

 1

from their backgrounds, they also need to be specifically identified. For the latter purpose, com-

ponent contour is often a useful resource for identifying objects. There are methods that identify

objects from either chain codes (Freeman [5]) or Fourier descriptors (Persoon and Fu [12]),

which are derived from object contours. There are also methods that match object contours

against certain stochastic models (He and Kundu [9]). These methods demonstrate that both

component and contour labeling is an effective method for detecting and identifying two-

dimensional objects.

In this article, we present a method that simultaneously labels contours and components in

binary images. This method is applicable in areas in which we must detect components and also

classify them by means of certain contour features. Document analysis and recognition (DAR),

in particular, is an area for which our method is beneficial. High-order objects, such as half-tone

pictures, characters, textlines, and text regions, need to be classified in order to effectively per-

form DAR (Chang [1]). Components are the basic ingredients of all high-order objects. Labeling

components is therefore a commonly used technique for extracting high-order objects. The ob-

jective of DAR is not simply to extract high-order objects, but to recognize individual characters

found within textual areas. There are many methods that employ certain contour features for

classifying characters (Chang [2]; Jain, Duin and Mao [10]; Trier, Jain and Taxt [16]).

Our method labels each component using a contour tracing technique. This method is based

on the principle that a component is fully determined by its contours, just as a polygon is fully

determined by its vertices. We scan an image the same way as it would be encountered by a

scanner, i.e., from top to bottom and from left to right per each line. When an external or internal

contour is encountered, we use a contour-tracing procedure (Haig and Attikiouzel [6]) to com-

plete the contour and assign a label, say L, to all pixels on the contour. When the contour is

 2

traced back to its starting point, we resume scanning at that point. Later on, when the contour

pixels labeled L are visited again, we assign the same label L to black pixels that lie next to them.

Our method has the following advantages. First, it requires only one pass over the image.

Contour points are visited more than once due to the aforementioned contour tracing procedure,

but no more than a constant number of times. Second, it does not require any re-labeling mecha-

nism. Once a labeling index is assigned to a pixel, its value is unchanged. Third, we obtain as

by-products all contours and sequential orders of contour pixels. Fourth, experimental results

show that our algorithm is faster than traditional component-labeling algorithms.

Our paper is organized as follows. A review of five traditional component-labeling algo-

rithms is given in the Section 2. The details of our method are described in Section 3. Analysis

and proof of our algorithm are provided in Section 4. The experimental results of our method as

compared with the five algorithms from Section 2 are discussed in Section 5. A brief conclusion

is given in Section 6.

2. Review of Traditional Component-Labeling Algorithms

In this section, we review five important methods for component labeling. One of them is

the first proposed method, and the other four use varied strategies in attempt to improve on the

first. They all attempt to re-label component pixels according to an equivalence relation induced

by 8-connectivity. The first method proposed by Rosenfeld and Pfaltz [13] performs two passes

over a binary image. Each point is encountered once in the first pass. At each black pixel P, a

further examination of its four neighboring points (left, upper left, top, and upper right) is con-

ducted. If none of these neighbors carries a label, P is assigned a new label. Otherwise, those

labels carried by neighbors of P are said to be equivalent. In this case, the label of P is replaced

by the minimal equivalent label. For this purpose, a pair of arrays is generated, one containing all

 3

current labels and the other the minimal equivalent labels of those current labels. In the second

pass, label replacements are made.

Haralick [8] designed a method to remove the extra storage required for the pair of arrays

proposed in the first method. Initially, each black pixel is given a unique label. The labeled im-

age is then processed iteratively in two directions. In the first pass, conducted from the top down,

each labeled point is reassigned the smallest label among its four neighboring points. The second

pass is similar to the first, except that it is conducted from the bottom up. The process goes on

iteratively until no more labels change. The memory storage of this method is small, but the

overall processing time varies according to the complexity of the image being processed.

The method proposed by Lumia, Shapiro, and Zuniga [11] compromises between the two

previous methods. In the first top-down pass, labels are assigned to black pixels as in the first

method. At the end of each scan line, however, the labels on this line are changed to their mini-

mal equivalent labels. The second pass begins from the bottom and works similarly as the top-

down pass. It can be proved that all components obtain a unique label after these two passes.

Fiorio and Gustedt [4] employ a special version of the union-find algorithm (Tarjan [15]) in

that it runs in linear time for the component-labeling problem (see also Dillencourt, Samet, and

Tamminen [3]). This method consists of two passes. In the first pass, each set of equivalent la-

bels is represented as a tree. In the second pass, a re-labeling procedure is performed. The opera-

tion used in the union-find technique serves to merge two trees into a single tree when a node in

one tree bears an 8-connectivity relationship to a node in the other tree.

The method proposed by Shima, Murakami, Koga, Yashiro, and Fujisawa [14] is particu-

larly suitable for compressed images in which a pre-processing procedure is required to trans-

form image elements into runs. A searching step and a propagation step are exercised iteratively

 4

on the run data. In the searching step, the image is encountered until an unlabeled run (referred

to as focal run) is found and is assigned a new label. In the propagation step, the label of each

focal run is propagated to contiguous runs above or below the scan line.

3. Our Method

In our method, we scan a binary image from top to bottom and from left to right per each

line. We first provide an overview of this method as follows. Conceptually, we can divide the

operations into four major steps that are illustrated in Figures 1a to 1d. In Figure 1a, when an

external contour point, say A, is encountered the first time, we make a complete trace of the con-

tour until we return to A. We assign a label to A and to all points of that contour.

In Figure 1b, when a labeled external contour point A' is encountered, we follow the scan

line to find all subsequent black pixels (if they exist) and assign them the same label as A'.

In Figure 1c, when an internal counter point, say B, is encountered the first time, we assign

B the same label as the external contour of the same component. We then trace the internal con-

tour containing B and also assign to all contour points the same label as B.

In Figure 1d, when a labeled internal contour point, say B’, is encountered, we follow the

scan line to find all subsequent black pixels (if they exist) and assign them the same label as B’.

 (a) (b) (c) (d)

Figure 1. The four major steps in tracing and labeling component points.

 5

In the above procedure, we only make a single pass over the image and assign to each com-

ponent point either a new label or the same label as the point preceding it on the scan line. The

details of this algorithm are given below.

For simplicity, we assume that the pixels in the uppermost row are all white (if they are not,

we add a dummy row of white pixels). For a given document image I, we associate with I an

accompanying image L, which stores the label information. Initially, all points of L are set to 0

(i.e., they are unlabeled). We then start to scan I to find a black pixel. Let C be the label index

for components. Initially, C is set to 1. The aforementioned four conceptual steps can be re-

duced to three logical steps. The first step deals with a newly encountered external point and

all points of that contour, the second step a newly encountered internal point and all points of

that contour, and the third step all black pixels not dealt in the first two steps.

Let P be the current point that is being dealt by our algorithm.

Step 1: If P is unlabeled and the pixel above it is a white pixel (Figure 2), P must be on an

external contour of a newly encountered component. So we assign label C to P, meanwhile exe-

cute Contour Tracing (a contour tracing procedure whose details will be given later) to find that

external contour, and assign label C to all the contour pixels. We then increase the value of C by

1.

Figure 2. P is the starting point of an external contour. 1: unlabeled black pixels.

 6

Step 2: If the pixel below P is an unmarked white pixel (the meaning of ‘unmarked’ will be

given in a moment), P must be on a newly encountered internal contour. There are two possibili-

ties. First, P is already labeled (Figure 3a). In this case, P is also an external contour pixel. Sec-

ond, P is unlabeled (Figure 3b). In this case, the preceding point N on the scan line (the left

neighbor of P) must be labeled. We then assign P the same label as N. In either case, we proceed

to execute Contour Tracing to find the internal contour containing P, and assign the same label

to all the contour pixels.

 (a) (b)
Figure 3. (a) P is the starting point of an internal contour. P also lies on an external

contour. (b) P is the starting point of an internal contour, but it is not on an external

contour. 1: unlabeled black pixels; Δ: labeled black pixels.

Step 3: If P is not a point dealt in Step 1 or Step 2 (i.e., P is not a contour point), then the

left neighbor N of P must be a labeled pixel (Figure 4). We assign P the same label as N.

 7

Figure 4. P is an unlabeled point and its left neighbor N is already labeled. 1: unla-

beled black pixels; Δ: labeled black pixels.

As is illustrated in Figure 5, in order to avoid executing Counter Tracing at the point Q, we

mark surrounding white pixels of a component with a negative integer. Thus, at the time the scan

line sweeps Q, the pixel below Q is no longer an unmarked white pixel. On the other hand, the

neighbor below a first encountered internal contour pixel P (Figure 5) is still unmarked since the

internal contour containing that pixel has not been traced yet.

Figure 5. Surrounding white pixels are marked with a native integer when a contour

has been traced. 1: unlabeled black pixels; Δ: labeled black pixels; -: marked white

pixels.

By marking surrounding white pixels, we also ensure that each internal contour is traced

only once. As illustrated in Figure 6, when the internal contour has been traced, the neighbor be-

 8

low R is no longer an unmarked pixel and we thus avoid tracing the internal contour once again

when R is encountered by the scan line (we need to trace the internal contour at a point only

when the white pixel below that point is unmarked).

Figure 6. Surrounding white pixels are marked with a negative integer when an in-

ternal contour has been traced. 1: unlabeled black pixels; Δ: labeled black pixels; -:

marked white pixels.

The operation of marking surrounding white pixels with a negative integer is included in the

procedure Tracer, which is called forth by the procedure Contour Tracing. Both procedures will

be described below.

3.1 Contour Tracing

The goal of the procedure Contour Tracing is to find an external or internal contour at a

given point, sat S. At point S, we first execute a procedure called Tracer. If Tracer identifies S as

an isolated point, we reach the end of Contour Tracing. Otherwise, Tracer will output the con-

tour point following S. Let this point be T. We then continue to execute Tracer to find the con-

tour point following T and so on, until the following two conditions hold: 1) Tracer outputs S,

and 2) the contour point following S is T. The procedure stops only when both conditions hold.

 9

As shown in Figure 7, when S is the starting point and T is the next contour point, the path traced

by Tracer is STUTSVWVS.

Figure 7. Tracing the contour of a stripe-shaped component.

3.2 Tracer

For a given contour point P, the goal of Tracer is to find among P’s eight neighboring

points for the contour point following P. The position of each neighboring point of P is assigned

an index as shown in Figure 8a. The search proceeds in a clockwise direction from the initial po-

sition that is determined in the following way.

 (a) (b)
Figure 8. (a) The neighboring points of P are indexed from 0 to 7. (b) If the previous

contour point lies at 3, the next search direction is set to be 5.

If P is the starting point of an external contour, the initial position is set to 7 (upper right)

since the point above P is known to be a white pixel and the next point in the clockwise direction

is at position 7. If, however, P is the starting point of an internal contour, the initial position is

set to 3 (lower left) since the point below P is also known to be a white pixel and the next point

in the clockwise direction is at position 3. On the other hand, if the previous contour point exists

 10

and lies at position 3 (lower left), for example, then the initial position is set to 5 since the pixel

at position 4 must have been visited already (Figure 8b). In general, when P is not the starting

point of a contour, irrespective of whether the contour is external or internal, its initial search

position is set to d + 2 (mod 8), where d is the position of the previous contour point.

Once the initial position is determined, we proceed in a clockwise direction to locate the

first black pixel. This pixel is the contour point following P. If no black pixel is found in the

whole circle, P is identified to be an isolated point.

Marking surrounding white pixels (with a negative integer) can be done as we search for the

following contour point. As illustrated in Figure 9, A is the current point and C is the following

contour point. When tracing from A to C, we mark the white pixel B with a negative integer.

Figure 9. When tracing an external or internal contour, we also mark the surround-

ing white points. 1: unlabeled black pixels; Δ: labeled black pixels; -: marked white

pixels.

4. Complexity and Efficacy

We first analyze the time complexity of our algorithm. The key lemma is as follows.

Lemma 1. Our algorithm visits each pixel a constant number of times.

 11

Proof. Since the image is encountered only once, all non-contour pixels are visited exactly

once. On the other hand, the number of times Contour Tracing visits a pixel is equal to the num-

ber of contours containing the pixel. A contour pixel can lie on at most four contours (Figure 10).

Thus, our algorithm scans each non-contour pixel only once and traces a contour pixel no more

than four times. ■

Figure 10. An example in which a contour pixel P lies on four contours.

Since each pixel, when visited, takes a constant amount of time for processing, Lemma 1

immediately implies the following.

Theorem 2. Our algorithm runs in linear time.

We proceed to prove the efficacy of our algorithm. The contour tracing procedure is a well-

known technique whose proof can be found in Haig, Attikiouzel and Alder [7]. The pixel on a

contour first encountered in the scanning process must be, due to the scanning direction, on the

leftmost point on the uppermost row of that contour. We refer to this point as the opening pixel

of the contour. Moreover, the opening pixel of the external contour of a component is also called

the opening pixel of that component. Note that our algorithm ensures that each component is first

encountered at its opening pixel and each contour is traced from its opening pixel.

 12

It is also clear that all black pixels are labeled with a certain index by our algorithm. To

prove the correctness of our algorithm, we need to show that all pixels of the same component

are assigned the same label and that all pixels of different components are assigned different la-

bels.

Lemma 3. All pixels in the same component are assigned the same label.

Proof. Suppose that the opening pixel of the component is labeled C. According to Step 1

of our algorithm, all pixels on that external contour are also labeled C. To prove that all the re-

maining pixels of the same component are assigned the same label, we apply induction in the

same order as they are encountered by the scan line. Suppose that the current pixel encountered

is P. We assume that any component pixel encountered before P is labeled C. We then have to

show that P is also labeled C. Assuming, without loss of generality, that P is not an external con-

tour point (we already know that external contour pixels are labeled C), we consider the follow-

ing three cases.

Case 1: P is not on any internal contour. In this case, P must be an interior point since P is

not an external contour point either. It follows that the left neighbor Q of P is a black pixel.

Since Q is encountered before P, Q is labeled C by our inductive hypothesis. So P is also labeled

C, according to Step 3 of our algorithm.

Case 2: P is on an internal contour Φ but P is not the opening pixel of Φ. Let Q be the open-

ing pixel of Φ. Q must be encountered before P, by the definition of an opening pixel. Q is la-

beled C by our inductive hypothesis. It follows that P is assigned the same label as Q, according

to step 2 of our algorithm. Thus, the label of P is C.

Case 3: P is the opening pixel of any internal contour containing P. In this case, the left

neighbor Q of P is a black pixel for the following reason: If Q is a white pixel, P must lie on

 13

some internal contour Ψ, and Ψ contains a pixel U that lies on a row above Q (Figure 11) and

also above P. This contradicts the fact that P is an opening pixel. We thus prove that Q is a black

pixel. Since Q is encountered before P, Q is labeled C by our inductive hypothesis. P is thus la-

beled C, according to step 2 of our algorithm.

In either case, P is labeled C, which completes our inductive step. ■

 (a) (b)
Figure 11. (a) If P lies on an internal contour Ψ and its left neighbor Q is a white

pixel, then Ψ contains a point U lying above Q. (b) Otherwise, the vertical line L that

passes Q does not intersect with Ψ above Q. This implies that Q lies outside the

component containing P, and that P is an external contour point.

Lemma 4. Pixels in different components are assigned different labels.

Proof. From the previous lemma, all pixels in a component are assigned the same label as

the opening pixel of the component. On the other hand, step 1 of our algorithm ensures that the

opening pixel of a component is assigned a new label. So, different components get different la-

bels. ■

The following theorem is a consequence of Lemma 3 and Lemma 4.

Theorem 5. Our algorithm produces a correct labeling for the components.

 14

5. Experimental Results

Our methods are compared with the five other component-labeling methods discussed in

Section 2. We use six types of test images: legacy documents, headlines, textual contents, half-

tone pictures, newspaper and photographs. The test environment is an Intel Pentium III 1GHz

personal computer with 384MB SDRAM. Each document type has four sets of images. Each set,

in turn, consists of four images whose sizes correspond to four paper sizes: A3, A4, A5, and A6.

We have to make certain test images by cutting relevant objects from various sources and

pasting them onto a blank canvas of a specified size. The reason we need to make a collage out

of small images is because we are not able to obtain a document that consists of only a single

type of specified objects (e.g., headlines). Some test images, however, can be directly segmented

from their sources (e.g., photographs, newspaper, and legacy documents) without being made

into collages. All six algorithms being compared are listed in Table 1. The comparison results

are listed in Table 2. The performances of all the algorithms are shown in Figures 12–17. In

these figures, the size of the test image is plotted along the horizontal axis, and the average proc-

essing time of each method is plotted along the vertical axis.

 15

Table 1. Six types of methods, including ours, that are being compared.

A Rosenfeld et al. [13]
B Haralick [8]
C Lumia et al. [11]
D Fiorio et al. [4]
E Shima et al. [14]
F Our method

Table 2. Performances of the six methods being compared.

Methods
Document type Image size #CC A B C D E F

 (M pixels) Average Processing time (sec)
Legacy documents 2.16 741 0.50 0.41 0.70 0.10 0.07 0.06
 4.33 1668 1.95 1.02 1.21 0.19 0.15 0.13
 8.69 3708 7.03 3.27 4.08 0.38 0.30 0.27
 17.39 6570 29.95 6.54 8.08 0.74 0.55 0.49
Headlines 2.16 439 0.70 0.79 0.76 0.12 0.10 0.07
 4.33 916 2.35 1.79 1.56 0.24 0.19 0.14
 8.69 1577 7.48 3.91 3.31 0.47 0.37 0.30
 17.39 3145 39.20 9.20 6.11 0.89 0.71 0.58
Textual Content 2.16 1808 1.78 1.02 0.76 0.12 0.12 0.08
 4.33 3509 6.45 2.50 1.53 0.23 0.24 0.15
 8.69 6825 25.29 6.30 3.10 0.47 0.45 0.31
 17.39 13157 370.71 15.31 7.37 0.92 0.92 0.66
Halftone pictures 2.16 14823 3.18 3.86 2.77 0.18 0.19 0.09
 4.33 28793 14.51 10.09 5.08 0.37 0.42 0.19
 8.69 52087 59.57 25.76 13.05 0.71 0.75 0.36
 17.39 131628 773.93 100.83 28.13 1.41 1.68 0.76
Newspaper 2.16 1408 1.65 1.08 0.83 0.12 0.11 0.07
 4.33 4828 6.61 3.51 4.20 0.24 0.24 0.15
 8.69 12024 25.99 7.94 5.05 0.51 0.52 0.32
 17.39 16680 287.31 17.24 21.10 0.98 0.93 0.67
Photographs 1.92 4196 2.18 4.49 2.02 0.16 0.15 0.09
 3.14 2018 1.72 2.88 2.54 0.23 0.18 0.11
 3.87 3206 3.22 3.13 5.78 0.26 0.20 0.13
 4.91 1416 2.41 2.75 2.96 0.35 0.25 0.15
#CC: Number of connected components

 16

 (a) (b)

Figure 12. Performances of the six methods for legacy documents.

 (a) (b)

Figure 13. Performances of the six methods for headlines.

 (a) (b)

Figure 14. Performances of the six methods for textual contents.

 17

 (a) (b)

Figure 15. Performances of the six methods for halftone pictures.

 (a) (b)

Figure 16. Performances of the six methods for newspaper.

 (a) (b)

Figure 17. Performances of the six methods for photographs.

 18

6. Conclusion

We have presented a new component-labeling algorithm that employs contour tracing tech-

nique. This method scans a binary image only once and traces each contour pixel no more than a

constant number of times. It is thus computationally effective in labeling connected components

and also finding all contours and sequential orders of contour pixels. In experiments on six types

of images of various sizes, we compare our method with five other algorithms. The results show

that our algorithm outperforms all of them in terms of computational speed.

7. References

[1] F. Chang, Retrieving Information from Document Images: Problems and Solutions, Interna-

tional Journal on Document Analysis and Recognition, Special Issues on Document Analysis

for Office Systems, 4(2001) 46-55.

[2] F. Chang, Y. C. Lu, and T. Pavlidis, Feature Analysis Using Line Sweep Thinning Algorithm,

IEEE Trans. Pattern Analysis and Machine Intelligence, 21(1999) 145-158.

[3] M. B. Dillencourt, H. Samet, and M. Tamminen, A General Approach to Connected-

Component Labeling for Arbitrary Image Representations, Journal of the Association for

Computing Machinery, 39(1992) 253-280.

[4] C. Fiorio and J. Gustedt, Two linear time Union-Find strategies for image processing, Theo-

retical Computer Science, 154(1996) 165-181.

[5] H. Freeman, Techniques for the Digital Computer Analysis of Chain-Encoded Arbitrary Plane

Curves, In: Proc. Nat. Electronics Conf., 1961, pp. 421-432.

[6] T. D. Haig and Y. Attikiouzel, An Improved Algorithm for Border Following of Binary Im-

ages, In: IEE European Conference on Circuit Theory and Design, 1989, 118-122.

[7] T. D. Haig, Y. Attikiouzel, and M. D. Alder, Border Following: New Definition Gives Im-

proved Borders, IEE Proceedings-I, 139(1992) 206-211.

[8] R. H. Haralick, Some neighborhood operations, In M. Onoe, K. Preston, and A. Rosenfeld,

 19

(Eds.) Real Time/Parallel Computing Image Analysis, 1981, Plenum Press, New York.

[9] Y. He and A. Kundu, 2-D shape classification using Hidden Markov Model, IEEE Trans. Pat-

tern Analysis and Machine Intelligence, 13(1991) 1172-1184.

[10] A. K. Jain, R. P. W. Duin, and J. Mao, Statistical Pattern Recognition: A Review, IEEE Trans.

Pattern Analysis and Machine Intelligence, 22(2000) 4-37.

[11] R. Lumia, L. Shapiro, and O. Zuniga, A New Connected Components Algorithm for Virtual

Memory Computers, Computer Vision, Graphics, and Image Processing, 22(1983) 287-300.

[12] E. Persoon and K. S. Fu, Shape Discriminations Using Fourier Descriptors, IEEE Trans.

Systems, Man, and Cybernetics, 7(1977) 170-179.

[13] A. Rosenfeld, and P. Pfaltz, Sequential Operations in Digital Picture Processing, Journal of

the Association for Computing Machinery, 12(1966) 471-494.

[14] Y. Shima, T. Murakami, M. Koga, H. Yashiro, and H. Fujisawa, A High Speed Algorithm for

Propagation-type Labeling based on Block Sorting of Runs in Binary Images, In: Proc. 10th

Int. Conf. Pattern Recognition, 1990, pp. 655-658.

[15] R. E. Tarjan, Efficiency of a Good But Not Linear Set Union Algorithm, Journal of the As-

sociation for Computing Machinery, 22(1975) 215-225.

[16] O. D. Trier, A. K. Jain and T. Taxt, Feature Extraction Methods for Character Recognition -

A Survey, Pattern Recognition, 29(1996) 641-662.

 20

