Theory of Computer Games：Concluding Remarks

Tsan－sheng Hsu

徐讚昇

tshsu＠iis．sinica．edu．tw
http：／／www．iis．sinica．edu．tw／～tshsu

Abstract

- Introducing practical issues.
- The open book.
- The graph history interaction (GHI) problem.
- Smart usage of resources.
\triangleright time during searching
\triangleright memory
\triangleright coding efforts
\triangleright debugging efforts
- Opponent models
- How to combine what we have learned in class together to get a working game program.

The open book (1/2)

During the open game, it is frequently the case

- branching factor is huge;
- it is difficult to write a good evaluating function;
- the number of possible distinct positions up to a limited length is small as compared to the number of possible positions encountered during middle game search.
- Acquire game logs from
- books;
- games between masters;
- games between computers;
\triangleright Use offline computation to find out the value of a position for a given depth that cannot be computed online during a game due to resource constraints.

The open book (2/2)

- Assume you have collected r games.
- For each position in the r games, compute the following 3 values:
\triangleright win: the number of games reaching this position and then wins.
\triangleright loss: the number of games reaching this position and then loss.
$\triangleright d r a w$: the number of games reaching this position and then draw.
- When r is large and the games are trustful, then use the 3 values to compute a value and use this value as the value of this position.
- Comments:
- Pure statistically
- You program may not be able to take over when the open book is over.
- It is difficult to acquire large amount of "trustful" game logs.
- Automatically analysis of game logs written by human experts. [Chen et. al. 2006]

Graph history interaction problem

- The graph history interaction (GHI) problem:
- In a game graph, a position can be visited by more than one paths.
- The value of the position depends on the path visiting it.
- In the transposition table, you record the value of a position, but not the path leading to it.
- Values computed from rules on repetition cannot be used later on.
- It takes a huge amount of storage to store the path visiting it.

GHI problem - example

- $A \rightarrow B \rightarrow E \rightarrow I \rightarrow J \rightarrow H \rightarrow E$ is loss because of rules of repetition. \triangleright Memorized H is loss.
- $A \rightarrow B \rightarrow D$ is a loss.
- $A \rightarrow C \rightarrow F \rightarrow H$ is loss because H is recorded as loss.
- A is loss because both branches lead to loss.
- However, $A \rightarrow C \rightarrow F \rightarrow H \rightarrow E \rightarrow G$ is win.

Using resources

- Time
- For human:
\triangleright More time is spent in the beginning when the game just starts.
\triangleright Stop searching a path further when you think the position is stable.
- Pondering:
\triangleright Use the time when your opponent is thinking.
\triangleright Guessing and then pondering.
- Memory
- Using a large transposition table occupies a large space and thus slows down the program.
\triangleright A large number of positions are not visited too often.
- Using no transposition table makes you to search a position more than once.
- Other resources.

Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
- What is good to you is bad to the opponent and vice versa!
- Hence we can reduce a minimax search to a negamax search.
- This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluating functions f_{1} and f_{2} so that
- for some positions $p, f_{1}(p)$ is better than $f_{2}(p)$
\triangleright "better" means closer to the real value $f(p)$
- for some positions $q, f_{2}(q)$ is better than $f_{1}(q)$
- If you are using f_{1} and you know your opponent is using f_{2}, what can be done to take advantage of this information?
- This is called OM (opponent model) search.
\triangleright In a MAX node, use f_{1}.
\triangleright In a MIN node, use f_{2}

Opponent models - comments

- Comments:

- Need to know your opponent model precisely.
- How to learn the opponent on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.

Putting everything together

- Game playing system
- Use some sorts of open book.
- Middle-game searching: usage of a search engine.
\triangleright Main search algorithm
\triangleright Enhancements
\triangleright Evaluating function: knowledge
- Use some sorts of endgame databases.

How to know you are successful

- Assume during a selfplay experiment, two copies of the same program are playing against each other.
- Since two copies of the same program are playing against each other, the outcome of each game is an independent random trial and can be modeled as a trinomial random variable.
- Assume for a copy playing first,

$$
\operatorname{Pr}\left(\text { game }_{\text {first }}\right)= \begin{cases}p & \text { if won the game } \\ q & \text { if draw the game } \\ 1-p-q & \text { if lose the game }\end{cases}
$$

- Hence for a copy playing second,

$$
\operatorname{Pr}\left(\text { game }_{\text {last }}\right)= \begin{cases}1-p-q & \text { if won the game } \\ q & \text { if draw the game } \\ p & \text { if lose the game }\end{cases}
$$

Outcome of selfplay games

- Assume $2 n$ games, $g_{1}, g_{2}, \ldots, g_{2 n}$ are played.
- In order to offset the initiative, namely first player's advantage, each copy plays first for n games.
- We also assume each copy alternatives in playing first.
- Let $g_{2 i-1}$ and $g_{2 i}$ be the i th pair of games.
- Let the outcome of the i th pair of games be a random variable X_{i} from the prospective of the copy who plays $g_{2 i-1}$.
- Assume we assign a score of x for a game won, a score of 0 for a game drawn and a score of $-x$ for a game lost.
- The outcome of X_{i} and its occurrence probability is thus

$$
\operatorname{Pr}\left(X_{i}\right)= \begin{cases}p(1-p-q) & \text { if } X_{i}=2 x \\ p q+(1-p-q) q & \text { if } X_{i}=x \\ p^{2}+(1-p-q)^{2}+q^{2} & \text { if } X_{i}=0 \\ p q+(1-p-q) q & \text { if } X_{i}=-x \\ (1-p-q) p & \text { if } X_{i}=-2 x\end{cases}
$$

How good we are against the baseline?

- Properties of X_{i}.
- The mean $E\left(X_{i}\right)=0$.
- The standard deviation of X_{i} is

$$
\sqrt{E\left(X_{i}^{2}\right)}=x \sqrt{2 p q+(2 q+8 p)(1-p-q)}
$$

and it is a multi-nominally distributed random variable.

- When you have played n pairs of games, what is the probability of getting a score of $s, s>0$?
- Let $X[n]=\sum_{i=1}^{n} X_{i}$.
\triangleright The mean of $X[n], E(X[n])$, is 0 .
\triangleright The standard deviation of $X[n], \sigma_{n}$, is $x \sqrt{n} \sqrt{2 p q+(2 q+8 p)(1-p-q)}$,
- If $s>0$, we can calculate the probability of $\operatorname{Pr}(|X[n]| \leq s)$ using well known techniques from calculating multi-nominal distributions.

Practical setup

- Parameters that are usually used.
- $x=1$.
- For Chinese chess, q is about $0.5, p=0.3$ and $1-p-q$ is 0.2 .
\triangleright This means the first player has a better chance of winning.
- The mean of $X[n], E(X[n])$, is 0 .
- The standard deviation of $X[n], \sigma_{n}$, is

$$
x \sqrt{n} \sqrt{2 p q+(2 q+8 p)(1-p-q)}=\sqrt{0.98 n}
$$

Results

$\operatorname{Pr}(\|X[n]\| \leq s)$	$s=3$	$s=4$	$s=5$	$s=6$	$s=7$	$s=8$	$s=9$
$n=10, \sigma_{10}=3.1$	0.737	0.850	0.922	0.963	0.984	0.994	0.998
$n=20, \sigma_{20}=4.4$	0.571	0.691	0.786	0.858	0.910	0.946	0.969
$n=30, \sigma_{30}=5.4$	0.481	0.593	0.690	0.770	0.834	0.883	0.921
$n=40, \sigma_{40}=6.3$	0.424	0.528	0.620	0.701	0.769	0.826	0.871
$n=50, \sigma_{50}=7.0$	0.383	0.480	0.568	0.647	0.716	0.775	0.825

$\operatorname{Pr}(\|X[n]\| \leq s)$	$s=10$	$s=12$	$s=14$	$s=15$	$s=18$	$s=21$	$s=24$
$n=10, \sigma_{10}=3.1$	0.999	1.000	1.0000	1.000	1.000	1.000	1.000
$n=20, \sigma_{20}=4.4$	0.983	0.996	0.999	1.000	1.000	1.000	1.000
$n=30, \sigma_{30}=5.4$	0.948	0.979	0.993	0.996	0.999	1.000	1.000
$n=40, \sigma_{40}=6.3$	0.907	0.954	0.980	0.987	0.997	1.000	1.000
$n=50, \sigma_{50}=7.0$	0.867	0.926	0.962	0.973	0.992	0.998	1.000

Statistical behaviors

- Hence assume you have two programs that are playing against each other and have obtained a score of $s+1, s>0$, after trying n pairs of games.
- Assume $\operatorname{Pr}(|X[n]| \leq s)$ is say $\mathbf{0 . 9 5}$.
\triangleright Then this result is meaningful, that is a program is better than the other, because it only happens with a low probability of 0.05.
- Assume $\operatorname{Pr}(|X[n]| \leq s)$ is say 0.05 .
\triangleright Then this result is not very meaningful, because it happens with a high probability of 0.95 .
- In general, it is a very rare case, e.g., less than 5\% of chance that it will happen, that your score is more than $2 \sigma_{n}$.
- For our setting, if you perform n pairs of games, and your net score is more than $2 \sqrt{n}$, then it means something statistically.
- You can also decide your "definition" of "a rare case".

Concluding remarks

- Consider your purpose of studying a game:
- It is good to solve a game completely.
\triangleright You can only solve a game once!
- It is better to acquire the knowledge about why the game wins, draws or loses.
\triangleright You can learn lots of knowledge.
- It is even better to discover knowledge in the game and then use it to make the world a better place.
\triangleright Fun!

References and further readings

- M. Buro. Toward opening book learning. International Computer Game Association (ICGA) Journal, 22(2):98102, 1999.
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- R. M. Hyatt. Using time wisely. International Computer Game Association (ICGA) Journal, pages 4-9, 1984.
- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing : mid-80's perspective, pages 278-280. ACM Press, 1985.
- B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Abstracting knowledge from annotated Chinese-chess game records. In H. Jaap van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, Lecture Notes in Computer Science 4630: Proceedings of the 5th International Conference on Com-
puters and Games, pages 100-111. Springer-Verlag, New York, NY, 2006.

