Theory of Computer Games: Concluding Remarks

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

- Introducing practical issues.
 - The open book.
 - The graph history interaction (GHI) problem.
 - Smart usage of resources.
 - ▶ time during searching
 - ▶ memory
 - ▶ coding efforts
 - ▶ debugging efforts
 - Opponent models
- How to combine what we have learned in class together to get a working game program.

The open book (1/2)

- During the open game, it is frequently the case
 - branching factor is huge;
 - it is difficult to write a good evaluating function;
 - the number of possible distinct positions up to a limited length is small as compared to the number of possible positions encountered during middle game search.
- Acquire game logs from
 - books;
 - games between masters;
 - games between computers;
 - ▶ Use offline computation to find out the value of a position for a given depth that cannot be computed online during a game due to resource constraints.

• • •

The open book (2/2)

- Assume you have collected r games.
 - ullet For each position in the r games, compute the following 3 values:
 - \triangleright win: the number of games reaching this position and then wins.
 - \triangleright loss: the number of games reaching this position and then loss.
 - \triangleright draw: the number of games reaching this position and then draw.
- When r is large and the games are trustful, then use the 3 values to compute a value and use this value as the value of this position.
- Comments:
 - Pure statistically
 - You program may not be able to take over when the open book is over.
 - It is difficult to acquire large amount of "trustful" game logs.
 - Automatically analysis of game logs written by human experts. [Chen et. al. 2006]

Graph history interaction problem

- The graph history interaction (GHI) problem:
 - In a game graph, a position can be visited by more than one paths.
 - The value of the position depends on the path visiting it.
- In the transposition table, you record the value of a position, but not the path leading to it.
 - Values computed from rules on repetition cannot be used later on.
 - It takes a huge amount of storage to store the path visiting it.

GHI problem – example

- $A \to B \to E \to I \to J \to H \to E$ is loss because of rules of repetition. • Memorized H is loss.
- $A \rightarrow B \rightarrow D$ is a loss.
- $A \to C \to F \to H$ is loss because H is recorded as loss.
- A is loss because both branches lead to loss.
- However, $A \to C \to F \to H \to E \to G$ is win.

Using resources

Time

- For human:
 - ▶ More time is spent in the beginning when the game just starts.
 - ▶ Stop searching a path further when you think the position is stable.
- Pondering:
 - ▶ Use the time when your opponent is thinking.
 - ▶ Guessing and then pondering.
- Memory
 - Using a large transposition table occupies a large space and thus slows down the program.
 - ▶ A large number of positions are not visited too often.
 - Using no transposition table makes you to search a position more than once.
- Other resources.

Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a negamax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluating functions f_1 and f_2 so that
 - for some positions p, $f_1(p)$ is better than $f_2(p)$
 - \triangleright "better" means closer to the real value f(p)
 - for some positions q, $f_2(q)$ is better than $f_1(q)$
- If you are using f_1 and you know your opponent is using f_2 , what can be done to take advantage of this information?
 - This is called OM (opponent model) search.
 - ightharpoonup In a MAX node, use f_1 .
 - ightharpoonup In a MIN node, use f_2

Opponent models – comments

Comments:

- Need to know your opponent model precisely.
- How to learn the opponent on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.

Putting everything together

- Game playing system
 - Use some sorts of open book.
 - Middle-game searching: usage of a search engine.
 - ▶ Main search algorithm
 - **▶** Enhancements
 - ▶ Evaluating function: knowledge
 - Use some sorts of endgame databases.

How to know you are successful

- Assume during a selfplay experiment, two copies of the same program are playing against each other.
 - Since two copies of the same program are playing against each other, the outcome of each game is an independent random trial and can be modeled as a trinomial random variable.
 - Assume for a copy playing first,

$$Pr(game_{first}) = \left\{ \begin{array}{ll} p & \text{if won the game} \\ q & \text{if draw the game} \\ 1-p-q & \text{if lose the game} \end{array} \right.$$

Hence for a copy playing second,

$$Pr(game_{last}) = \left\{ \begin{array}{ll} 1-p-q & \text{if won the game} \\ q & \text{if draw the game} \\ p & \text{if lose the game} \end{array} \right.$$

Outcome of selfplay games

- Assume 2n games, g_1, g_2, \ldots, g_{2n} are played.
 - In order to offset the initiative, namely first player's advantage, each copy plays first for n games.
 - We also assume each copy alternatives in playing first.
 - Let g_{2i-1} and g_{2i} be the *i*th pair of games.
- Let the outcome of the ith pair of games be a random variable X_i from the prospective of the copy who plays g_{2i-1} .
 - Assume we assign a score of x for a game won, a score of 0 for a game drawn and a score of -x for a game lost.
- The outcome of X_i and its occurrence probability is thus

$$Pr(X_i) = \begin{cases} p(1-p-q) & \text{if } X_i = 2x \\ pq + (1-p-q)q & \text{if } X_i = x \\ p^2 + (1-p-q)^2 + q^2 & \text{if } X_i = 0 \\ pq + (1-p-q)q & \text{if } X_i = -x \\ (1-p-q)p & \text{if } X_i = -2x \end{cases}$$

How good we are against the baseline?

- Properties of X_i .
 - The mean $E(X_i) = 0$.
 - The standard deviation of X_i is

$$\sqrt{E(X_i^2)} = x\sqrt{2pq + (2q + 8p)(1 - p - q)},$$

and it is a multi-nominally distributed random variable.

- When you have played n pairs of games, what is the probability of getting a score of s, s>0?
 - Let $X[n] = \sum_{i=1}^n X_i$.
 - ightharpoonup The mean of X[n], E(X[n]), is 0.
 - ▶ The standard deviation of X[n], σ_n , is $x\sqrt{n}\sqrt{2pq+(2q+8p)(1-p-q)}$,
 - If s>0, we can calculate the probability of $Pr(|X[n]| \leq s)$ using well known techniques from calculating multi-nominal distributions.

Practical setup

- Parameters that are usually used.
 - x = 1.
 - For Chinese chess, q is about 0.5, p=0.3 and 1-p-q is 0.2.
 - ▶ This means the first player has a better chance of winning.
 - The mean of X[n], E(X[n]), is 0.
 - The standard deviation of X[n], σ_n , is

$$x\sqrt{n}\sqrt{2pq + (2q + 8p)(1 - p - q)} = \sqrt{0.98n}.$$

Results

$Pr(X[n] \le s)$	s = 3	s = 4	s = 5	s = 6	s = 7	s = 8	s = 9
$n = 10, \sigma_{10} = 3.1$	0.737	0.850	0.922	0.963	0.984	0.994	0.998
$n=20, \sigma_{20}=4.4$	0.571	0.691	0.786	0.858	0.910	0.946	0.969
$n = 30, \sigma_{30} = 5.4$	0.481	0.593	0.690	0.770	0.834	0.883	0.921
$n = 40, \sigma_{40} = 6.3$	0.424	0.528	0.620	0.701	0.769	0.826	0.871
$n = 50, \sigma_{50} = 7.0$	0.383	0.480	0.568	0.647	0.716	0.775	0.825

$Pr(X[n] \le s)$	s = 10	s = 12	s = 14	s = 15	s = 18	s = 21	s = 24
$n = 10, \sigma_{10} = 3.1$	0.999	1.000	1.0000	1.000	1.000	1.000	1.000
$n=20, \sigma_{20}=4.4$	0.983	0.996	0.999	1.000	1.000	1.000	1.000
$n = 30, \sigma_{30} = 5.4$	0.948	0.979	0.993	0.996	0.999	1.000	1.000
$n = 40, \sigma_{40} = 6.3$	0.907	0.954	0.980	0.987	0.997	1.000	1.000
$n = 50, \sigma_{50} = 7.0$	0.867	0.926	0.962	0.973	0.992	0.998	1.000

Statistical behaviors

- Hence assume you have two programs that are playing against each other and have obtained a score of $s+1,\ s>0$, after trying n pairs of games.
 - Assume $Pr(|X[n]| \le s)$ is say 0.95.
 - ▶ Then this result is meaningful, that is a program is better than the other, because it only happens with a low probability of 0.05.
 - Assume $Pr(|X[n]| \le s)$ is say 0.05.
 - ▶ Then this result is not very meaningful, because it happens with a high probability of 0.95.
- In general, it is a very rare case, e.g., less than 5% of chance that it will happen, that your score is more than $2\sigma_n$.
 - For our setting, if you perform n pairs of games, and your net score is more than $2\sqrt{n}$, then it means something statistically.
- You can also decide your "definition" of "a rare case".

Concluding remarks

- Consider your purpose of studying a game:
 - It is good to solve a game completely.
 - You can only solve a game once!
 - It is better to acquire the knowledge about why the game wins, draws or loses.
 - ▶ You can learn lots of knowledge.
 - It is even better to discover knowledge in the game and then use it to make the world a better place.
 - > Fun!

References and further readings

- M. Buro. Toward opening book learning. International Computer Game Association (ICGA) Journal, 22(2):98– 102, 1999.
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- R. M. Hyatt. Using time wisely. International Computer $Game\ Association\ (ICGA)\ Journal,\ pages\ 4-9,\ 1984.$
- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing: mid-80's perspective, pages 278–280. ACM Press, 1985.
- B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Abstracting knowledge from annotated Chinese-chess game records. In H. Jaap van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, Lecture Notes in Computer Science 4630: Proceedings of the 5th International Conference on Com-

puters and Games, pages 100–111. Springer-Verlag, New York, NY, 2006.