
Disjoint Pattern Database Heuristics
by R.E. Korf and A. Felner

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Abstract

Introducing a new form of heuristic called pattern databases.
• Compute the cost of solving individual subgoals independently.
• If the subgoals are disjoint, then we can use the sum of costs of the

subgoals as a new and better admissible cost function.
. A way to get a new and better heuristic function by composing known

heuristic functions.

• Make use of the fact that computers can memorize lots of patterns.
• Solutions to pre-stored patterns can be pre-computed.
• Speed up factor of over 2000 compared to previous results in 1985.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 2

Definitions

n2 − 1 puzzle problem:
• The numbers 1 through n2 − 1 are arranged in a n by n square with

one empty cell.
. Let N = n2 − 1.

• Slide the tiles to a given goal position.

15 puzzle:
• May be invented in 1874 and was popular in 1880.
• It looks like one can rearrange an arbitrary state into a given goal

state.
• Publicized and published by Sam Loyd in January 1896.

. A prize of US$ 1000 was offered to solve one “impossible”, but seems
to be feasible case.

Generalizations:
• n·m− 1 puzzle.
• Puzzles of different shapes.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 3

15 puzzle

Rules:
• 15 tiles in a 4*4 square with numbers from 1 to 15.
• One empty cell.
• A tile can be slided horizontally or vertically into an empty cell.
• From an initial position, slide the tiles into a goal position.

Examples:

• Initial position:

10 8 12
3 7 6 2
1 14 4 11

15 13 9 5

• Goal position:

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 4

15 Puzzle — State Space

State space is divided into subsets of even and odd permutations
[Johnson & Story 1879].
• Treat a board into a permutation by appending the rows from left to

right and from top to bottom.
• f1 is number of inversions in a permutation π1π2 · · ·πN where an

inversion is a distinct pair πi > πj such that i < j.
. Let inv(i, j) = 1 if πi > πj and i < j; otherwise, it is 0.
. f1 =

∑
∀i,j inv(i, j).

• f2 is the row number of the empty cell.
• f = f1 + f2.
• Even parity: one whose f value is even.
• Odd parity: one whose f value is odd.
• Slide a tile never change the parity.

Note: the above statement may not be true for other values of
n and for other shapes.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 5

Proof: Sketch

Slide a tile horizontally does not change the parity.
Slide a tile vertically:
• Change the parity of f2, i.e., row number of the empty cell.
• Change the value of f1, i.e., the number of inversions by

. +3

. +1

. −1

. −3
• Example: when “a” is slided down

. only the relative order of “a”, “b” , “c” and “d” are changed

. analyze the 4 cases according to the rank of “a” in “a”, “b” , “c” and
“d”.

* * * *
* a b c
d * *
* * * *

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 6

Core of past algorithms

Using DEC 2060 a 1-MIPS machine: solves several random
instances of the 15 puzzle problem within 30 CPU minutes in
1985.
Using Iterative-deepening A∗.
Using the Manhattan distance heuristic as an estimation of the
remaining cost.
• Suppose a tile is currently at (i, j) and its goal is at (i′, j′), then

. the Manhattan distance for this tile is |i− i′|+ |j − j′|.
• The Manhattan distance between a board and a goal board is the sum

of the Manhattan distance of all the tiles.

Manhattan distance is a lower bound on the number of slides
needed to reach the goal position.
• It is admissible.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 7

Non-additive pattern databases

Intuition: do not measure the distance of one tile at a time.
• Pattern database: measure the collective distance of a pattern, i.e., a

group of tiles, at a time.

Complications.
• The tiles get in each other’s way.
• Sliding a tile to reach its goal destination may make the other tiles

that are already in their destinations to move away.
• A form of interaction is called linear conflict:

. To flip two adjacent tiles needs more than 2 moves.

. In addition, sliding tiles other than the two adjacent tiles to be flipped
is also needed in order to flip them.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 8

Fringe

A fringe is the arrangement of a subset of tiles, and may include
the empty cell, by treating tiles not selected don’t-care.
• Don’t-cared tiles are indistinguishable within themselves.
• The subset of tiles selected is called a pattern.

• Example:

* * 4
* 8 * 12
* 13 * 15
* * 14 *

• “*” means don’t-care.
• There are 16!/8! = 518, 918, 400 possible fringe arrangements which is

called the pattern size.

The goal fringe arrangement for the selected subset of tiles:
* * * 4
* * * 8
* * * 12

13 14 15

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 9

Solving a fringe arrangement

For each fringe arrangement, pre-compute the minimum number
of moves needed to make it into the goal fringe arrangement.
• This is called the fringe number for the given fringe arrangement.
• There are many possible ways to solve this problem since the pattern

size is small enough to fit into the main memory.
. Sample solution 1: Using the original Manhattan distance heuristic to

solve this smaller problem.
. Sample solution 2: BFS.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 10

Comments on pattern size

Pro’s.
• Pattern with a larger size is better in terms of having a larger fringe

number.
• A larger fringe number usually means better estimation, i.e., closer to

the goal fringe arrangement.

Con’s.
• Pattern with a larger size means consuming lots of memory to memorize

these arrangements.
• Pattern with a larger size also means consuming lots of time in

constructing these arrangements.
. Depends on your resource, pick the right pattern size.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 11

Usage of fringe numbers (1/2)

Divide and conquer.
• Reduce a 15-puzzle problem into a 8-puzzle one.
• Solution =

. First reach a goal fringe arrangement consisted of the first row and
column.

. Then solve the 8-puzzle problem without using the fringe tiles.

. Finally Combining these two partial solutions to form a solution for the
15-puzzle problem.

• May not be optimal.
* * * 4

13 * 3 *
* 9 5 *
* 2 * 1

⇒
1 2 3 4
5 * * *
9 * * *

13 * * *

Divide and conquer may not be working because often times
you cannot combine two sub-solutions to form the final optimal
solution easily.
• In solving the second half, you may affect tiles that have reached the

goal destinations in the first half.
• The two partial solutions may not be disjoint.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 12

Usage of fringe numbers (2/2)

New heuristic function h() for IDA∗: using the fringe number
as the new lower bound estimation.
• The fringe number is a lower bound on the remaining cost.

. It is admissible.

How to find better patterns for fringes?
• Large pattern require more space to store and more time to compute.
• Can we combine smaller patterns to form bigger patterns?

. They are not disjoint.

. May be overlapping physically.

. May be overlapping in solutions.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 13

More than one patterns

Can have many different patterns that may have some overlaps:
* * 3 *
* * 7 *
9 10 11 12
* * 15

1 2 3 4
5 * * *
9 * * *

13 * *
• Cannot use the divide and conquer approach anymore for some of the

patterns.

If you have many different pattern databases P1, P2, P3, . . .
• The heuristics or patterns may not be disjoint.

. Solving tiles in one pattern may help/hurt solving tiles in another pat-
tern even if they have no common cells.

• The heuristic function we can use is

h(P1, P2, P3, . . .) = max{h(P1), h(P2), h(P3), . . .}.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 14

Problems with multiple patterns (1/2)

If you have many different pattern databases P1, P2, P3, . . .
• It is better to have

. h(P1, P2, P3, . . .) = h(P1) + h(P2) + h(P3) + · · · ,
instead of

. h(P1, P2, P3, . . .) = max{h(P1), h(P2), h(P3), . . .}.
• A larger h() means a better performance for A∗.

Key problem: how to make sure h() is admissible?

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 15

Problems with multiple patterns (2/2)

Why not making the heuristics and the patterns disjoint?
• Though patterns are disjoint, their costs are not disjoint.

. Some moves are counted more than once.

• If the patterns are not disjoint, then we cannot add them together.
. Divide the board into several disjoint regions.

Q: Why we add the Manhattan distance of all titles together to
form a heuristic function?
• We add 15 1-cell patterns together to form a better heuristic function.
• What are the property of these patterns that can be added together?

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 16

Key observations (1/2)

Partition the board into disjoint regions.
• Using the tiles in a region of the goal arrangement as a pattern.

Examples:

•

A A A A
A A A A
B B B B
B B B B

•

A A B B
A A B B
A A B B
A A B B

Can also divide the board into more than 2 disjoint patterns.

•

A A A B
A A B B
C A C B
C C C B

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 17

Key observations (2/2)

For each region, solve the problem optimally and then count
the moves that are made only by tiles in this region.
• The “fringe” number for an arrangement is the minimum number of

slides made on tiles in this region.
• It is now possible to add fringe numbers of all disjoint regions together

to form a composite fringe number.
. Q: How to prove this?

For the Manhattan distance heuristic:
• Each pattern is a tile.
• They are disjoint.

. They only count the number of slides made by each tile.

• Thus they can be added together to form a heuristic function.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 18

Disjoint patterns

A heuristic function f() is disjoint with respect to two patterns
P1 and P2 if
• P1 and P2 have no common cells.
• The solutions corresponding to f(P1) and f(P2) do not interfere each

other.

If they are disjoint, then f(P1)+f(P2) is admissible if both f(P1)
and f(P2) are admissible.
• Q: How to prove this?

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 19

Revised fringe number

Fringe number: for each fringe arrangement, the minimum
number of moves needed to make it into the goal fringe
arrangement.
• Given a fringe arrangement H, let f(H) be its fringe number.

Revised fringe number: for each fringe arrangement F during
the course of making a sequence of moves to the goal fringe
arrangement, the minimum number of fringe-only moves in the
sequence of moves.
• Given a fringe arrangement H, let f ′(H) be its revised fringe number.

Given two patterns P1 and P2 without overlapping cells, then
• f(P1) and f ′(P1) are both admissible.
• f(P2) and f ′(P2) are both admissible.
• f(P1) + f(P2) is not admissible.
• f ′(P1) + f ′(P2) is admissible.

Note: the Manhattan distance of a 1-cell pattern is a lower
bound of its revised fringe number.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 20

Comments

A special form of divide and conquer with additional properties.
Spaces required by patterns must be within the main memory.
Each pattern must be able to be solved optimally by “primitive”
methods.
It is better to put near-by tiles together to better deal with the
conflicting problem.
It is now possible to design a better admissible heuristic function
f by composing two simple admissible heuristic functions f1 and
f2.
• Let f ′1 be the function that does not count moves of tiles not in its

region when computing f1.
. f ′1(x) ≤ f1(x)

• Let f ′2 be the function that does not count moves of tiles not in its
region when computing f2.

. f ′2(x) ≤ f2(x)

• Let f = f ′1 + f ′2.
. Hopefully, f(x) > f1(x) and f(x) > f2(x).

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 21

Performance

Running on a 440-MHZ Sun Ultra 10 workstation.
• SPECint = 1.0 (1 MIPS) in 1985.
• SPECint = 17.9 in 2002.

Solves the 15 puzzle problem that is more than 2,000 times
faster than the previous result by using the Manhattan distance
heuristic.
Solves the 24-puzzle problem
• An average of two days per problem instance.
• Generates 2,110,000 nodes per second.
• The average solution length was 100.78 moves.
• The maximum solution length was 114 moves.
• Prediction: using the Manhattan distance heuristic, it would take an

average of about 50,000 years to solve a problem instance.
. The average Manhattan distance is 76.078 moves.
. The average value for the disjoint database heuristic is 81.607 moves,

which gives a tighter bound.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 22

Other heuristics

The main drawback of disjoint heuristics is that they do not
capture interactions between tiles in different regions.
2-tile pattern database:
• For each pair of tiles, and for each pair of possible locations, compute

the optimal solution for this pair of tiles to move to their destinations.

. This is called pairwise distance.

. For an n2 − 1 puzzle, we have O(n4) different combinations.

. For n = 4, n4 = 256.

. For n = 5, n4 = 625.

• For a given board, partition the board into a collection of 2-tiles so
that the sum of cost is maximized.

. This can be done using a maximum weighted perfect matching.

. Build a complete graph with the tiles being the vertices.

. The edge cost is the pairwise distance between these two tiles.

. Try to find a perfect matching with the sum of edge costs being the
largest possible.

. Algorithm runs in O(n(m + n logn)) is known where n is the number
of vertices and m is the number of edges.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 23

Comments

The Manhattan distance is a partition into 1-tile patterns.
For 2-tile patterns:
• Faster approximation algorithms for finding maximum perfect match-

ings on complete graphs are known.
• The cost for exhaustive enumeration is

. (
16
2

)(
14
2

)
· · ·
(

4
2

)(
2
2

)
/8!

. = 16!/(28·8!) = 2, 027, 025

Can also build 3-tile databases, but the corresponding 3-D
matching problem for partitioning is NP-C.
Requires much less memory than that of the the fringe method.
Some kinds of bootstrapping: solving smaller problems using
primitive methods, and then using these results to solve larger
problems.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 24

What else can be done?

Looks like some kinds of two-stage search.
• First stage searching means building pre-computed results, e.g., pat-

terns.
• Second stage searching meets the pre-computed results if found.

Better way of partitioning.
Is it possible to generalize this result to other problem domains?
How to decide the amount of time used in searching and the
amount of time used in retrieving pre-computed knowledge?
• Memorize vs Compute

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 25

References and further readings

Wm. Woolsey Johnson and William E. Story. Notes on the ”15”
puzzle. American Journal of Mathematics, 2(4):397–404,
December 1879.
R. E. Korf. Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence, 27:97–109,
1985.
J. Culberson and J. Schaeffer. Pattern databases. Computa-
tional Intelligence, 14(3):318–334, 1998.

* R. E. Korf and A. Felner. Disjoint pattern database heuristics.
Artificial Intelligence, 134:9–22, 2002.

TCG: disjoint pattern DB, 20121011, Tsan-sheng Hsu c© 26

