
Parallel Game Tree Search

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Abstract

Use multiprocessor shared-memory or distributed memory
machines to search the game tree in parallel.
Questions:
• Is it possible to search multiple branches of the game tree at the same

time while also gets benefits from the searching window introduced in
alpha-beta search?

• What can be done to parallelize Monte-Carlo based game tree search?

Tradeoff between overheads and benefits.
• Communication
• Computation
• Synchronization

Can achieve reasonable speed-up using a moderate number of
processors on a shared-memory multiprocessor machine.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 2



Comments on parallelization

Parallelization can add more computation power, but synchro-
nization introduces overhead and may be difficult to implement.
Synchronization methods
• Message passing, such as MPI
• Shared memory cells

. Avoid a record becoming inconsistent because one is reading the first
item, but the last item is being written.

. Memory locked before using.

• It may be efficient to broadcast a message.

Locking the whole transposition table is definitely too costly.
• The ability to lock each record.
• Lockless transposition table technique.

A global transposition table v.s. distributed transposition tables.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 3



Speed-up (1/2)

Speed-up: the amount of performance improvement gotten in
comparison to the the amount of hardware you used.
• Assume the amount of resources, e.g., time, consumed is Tn when you

use n when you use n processors.
• Speed-up = T1

Tn
using n processors.

Speed-up is a function of n and can be expressed as sp(n).
• Scalability: whether you can obtain “reasonable” performance gain

when n gets larger.

Choose the “resources” where comparisons are made.
• The elapsed time.
• The total number of nodes visited.
• The scores.
• · · ·

Choose the game trees where experiments are performed.
• Artificial constructed trees with a pre-specified average branching factor

and depth.
• Real game trees.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 4



Speed-up (2/2)

Three different setups for experiments.
• Use the a sequential algorithm Pseq for the baseline of comparison.
• Use the the best sequential algorithm Pbest for the baseline of compar-

ison.
• Use a 1-processor version of your parallel program P1,par as the baseline

of comparison.
. It is usually the case that P1,par is much slower than Pbest.
. It is often the case that P1,par is slower than Pseq.

• Use an optimized sequential version of your parallel program P1,opt as
the baseline of comparison.

. It is also usually the case that P1,opt is slower than Pbest.

Choose the game trees where experiments are performed.
• Artificial constructed trees with a pre-specified average branching factor

and depth.
• Real game trees.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 5



Amdahl’s law

The best you can do about parallelization [G. Amdahl 1967].
Assume a program needs to execute T instructions and and x
of them can be parallelized.
• Assume you have n processors and an instruction takes a unit of time.
• Parallel processing time is

≥ T − x+
x

n
+On ≥ T − x.

where On is the overhead cost in doing parallelization with n processors.
• Speed-up is

≤ T

T − x
.

If 20% of the code cannot be parallelized, then your parallel
program can be at most 5 times faster no matter how many
processors you have.
Depending on On, it may not be wise to use too many
processors.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 6



Load balancing and speed-up factor

Load balancing
. The ratio between the amount of the largest work on a PE and the amount

of the lightest work on another PE.
. Good load balancing is a key to have a good speed-up factor.

Speed-up factor: ratio between the parallel version with a given
number of processors and the baseline version.
Is it possible to achieve super linear speed-up?
• Super linear speed-up means you can make the code to run N times

faster using less than N times about of hardware.
. Yes, on badly ordered game trees.
. Not in real game trees with a reasonable good algorithm.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 7



Super-linear speed-up (1/3)

Sequential alpha-beta search with a pre-assigned window [0, 5]:
• Visited 13 nodes.

max

min

max

min
10

[0,5]

2 11 2

1 2

10

10

−3 −10

13

13

1

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 8



Super-linear speed-up (2/3)

Parallel alpha-beta search with a pre-assigned window [0, 5] on
two processors:
• P2: visited 5 nodes, and then the root performs a beta cut.
• P1: being terminated by the root after 5 nodes are visited.

max

min

max

min

P1 P2

10

[0,5]

2 11 2

1 2

10

10

−3 −10

13

13

1

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 9



Super-linear speed-up (3/3)

Total sequential time: visited 13 nodes.
Total parallel time for 2 processors: visited 6 nodes.
We have achieved a super-linear speed-up.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 10



Comments on super-linear speed-up (1/2)

Parallelization can achieve super-linear speed-up only if the
solution is not found by enumerating all possibilities.
• For example: finding an entry of 1 in an array in parallel.

If the solution is found by exhaustively examining all possibilities,
then there is no chance of getting a super-linear speed-up.
• For example: the problem of counting the total number of 1’s in an

array.

Overhead in parallelization comes from how much work should
each processor “talks” to each other in order to decide the
solution.
• Trivially parallelizable: almost no need to talk to each other.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 11



Comments on super-linear speed-up (2/2)

Why is it possible to obtain a super-linear speed-up in searching
a game tree using alpha-beta based algorithm?
• Assume some cut-off happens during the execution.
• Parallel algorithms offer a chance of getting a different “move order-

ing”.
• It is possible to find a solution faster.

It is also possible to get poor speed-up if the “move ordering”
of the parallel version is bad.
• You may perform unnecessary work, e.g., searching a branch that will

be cut in the future.

For Monte-Carlo based search algorithm, super-linear speed-up
maybe obtain by trying out different PV branches at the same
time.
• Increase the chance of finding the right branch.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 12



Parallel α-β search

Three major approaches: depend on what tasks can be
parallelized and the model of parallelism.
• Principle variation splitting (PV split)

. Central control or global synchronization model of parallelism.

• Young Brothers Wait Concept (YBWC)
. Client-server model of parallelism.

• Dynamic Tree Splitting (DTS)
. Peer-to-peer model of parallelism.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 13



Classification of nodes (1/2)

Classify nodes in a game tree according to [Knuth & Moore
1975].

type 1

type 2.1

type 2.2

type 3.1

type 3.2

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 14



Classification of nodes (2/2)

Type 1 (PV): principle variation.
. Nodes in the leftmost branch.
. PV nodes needs to be searched first to established a good search bound.
. After the first child is searched, the rest of its children can be searched in

parallel.

Type 2 (CUT): cut nodes.
. Children of type-1 and type-3 nodes.
. Because children of a cut node may be cut, it is not wise to perform searches

in parallel for children of a cut node.

Type 3 (ALL): all nodes.
. The first branch of a cut node.
. All children of an all node need to be explored.
. It is better to search these children in parallel.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 15



Principle variation splitting

Algorithm PV S:
• Execute the first branch to get a PV branch n1, n2, n3, . . . , nd where nd

is a leaf node.
• for i = d− 1 down to 1 do

. Update the bound information using information backed-up from ni+1

. for each non-PV branch of ni do in parallel

. A processor gets a branch and searches

. Update the bounds when a branch is done

type 1

type 2.1

type 2.2

type 3.1

type 3.2

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 16



Comments for PV splitting

Comments:
• Parallelism is done on type-2 branches of a type-1 node.
• May not be able to use a large number of processors efficiently.
• Load balancing is not good.

. The ratio between the amount of the largest work on a PE and the
amount of the lightest work on another PE.

• Synchronization overhead is large.
• When the first branch is usually not the best branch, then the overhead

is huge.
• Achieve a speed-up of 4.1 for 8 processors and 4.6 for 16 processors.

. Poor scalability.

. Limited speed-up: within 5.

• Improvements:
. When a processor is idle, it helps out a busy processor by sharing its

tasks.
. Observe some improvements, but not much.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 17



Young brothers wait concept (1/2)

Concept: at each node, when the first branch is explored and a
bound is obtained, then all the other branches can be executed
in parallel.
• Split point: a node whose value of the first branch is known.
• Highest split point of a tree: a split point whose depth is the least.
• A processor is assigned and owns a subtree rooted at a node.

. This processor is the server of this subtree.

• An idle processor asks a server for a subtree to search.
. This processor is a client of this server.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 18



Young brothers wait concept (2/2)

Algorithm Y BWC:
• Let P1 own the root of the game tree and begin to search using

alpha-beta pruning until the tree is completely searched.
. During searching, maintain the split point information.

• While the game tree is not searched completely, do
In parallel for each processor Pi do
. If Pi is idle, it looks for server processors with split points.
. Pi gets a branch from a highest split point and owns this subtree.
. Pi begins to search using alpha-beta pruning and maintain the split

point information.
. When a subtree owned by Pi has been searched, returns the information

to the server processor where it gets the job from.
. Pi is idle again.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 19



Comments for YBWC

Comments:
• Can utilize many processors.
• Parallelism is done on almost all nodes.
• It is possible to use non-shared-memory architectures.

. For example: distributed memory machines.

. Speed-up: 137 using 256 processors.

. Scalability is moderate.

. Load balancing is not always good.

• The cost of splitting a node needs to be calculated to avoid splitting
small trees.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 20



Dynamic tree splitting (DTS)

Concepts:
• Peer-to-peer approach so that no one owns any subtree.
• The processor who finished last on a split point reports the value to

the parent of the split point.
• More criteria for the selections of split points.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 21



DTS: Classification of nodes

D-PV: a node that has the same alpha and beta values as the
root.
D-CUT: a minimizing node with the same beta as the root or a
maximizing node with the same alpha as the root.
• On a MAX node,

. if some branches are searched, then the returned values from the
branches may update the lower bound.

. If the lower bound is highered (updated), then it is possible to visit less
nodes.

. Hence it may not be cost effective to parallelize.

. Note: It takes time to initialize a new job.

• On a MIN node,
. if some branches are searched, then the returned values from the

branches may update the upper bound.
. If the upper bound is lowered (updated), then it is possible to visit less

nodes.
. Hence it may not be cost effective to parallelize.
. Note: It takes time to initialize a new job.

D-ALL: any node that is neither D-PV nor D-CUT.
• Nothing much is known here.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 22



Split point: confidence

A confidence factor is associated with each D-CUT and D-ALL
node.
• Means the chance of being a node of the specified type.

If many moves (up to a limit of 3) have been searched at a
D-CUT node, then the confidence that it is a D-CUT node
decreases.
If several moves have been searched at a D-ALL node, then the
confidence that it is a D-ALL node increases.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 23



DTS: Split point

Criteria for a split point:
• The node must be of type D-PV, D-ALL with a high confidence or or

D-CUT with a low confidence.
• If it is a D-PV node, its first branch must have been searched.
• Set thresholds for confidence factors.

. A D-ALL node with a high confidence factor remains to be a candidate
for a split point.

. Can also fork a D-ALL node with the highest confidence factor first.

. A D-CUT node with a low confidence factor may be a split point.

Note:
. Nodes that are higher up in the tree (closer to the root) represent more work.
. You want to fork a branch that are higher up and with a larger confidence

factor for D-ALL, or with a smaller confidence factor for D-CUT.
. Use the above information to compute a global priority.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 24



DTS: Algorithm

Algorithm DTS:
• Initialize a global job list with the root as the only available job.
• while the job list is not empty do

. Idle processors look for jobs with the highest priority in the global job
list.

. A working processor maintains its own split point information at the
global job list.

. A working processor updates bounds when a job is finished and then
becomes idle.

Comments:
• Used by several state-of-the-art chess programs.
• Spend a bit more time to decide whether a node is a split point or not.

. Takes some time to tune for the best parameters.

• Speed-up factor is very good: 3.7 for 4 processors, 6.6 for 8 processors
and 11.1 for 16 processors.

• Load balancing is good.
• Scalability is reasonable.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 25



Comments: parallel α-β search

DTS is currently being used by most Chess-like programs.
It also takes time to find the system parameters for DTS to
work well.
• The threshold for confidence factors.
• Dynamically adjusting of the confidence factors.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 26



Memory issues (1/2)

During searching, each process needs to maintain the following
information.
• Local data: such as the current depth, current best move.
• Data that can be used later: such as the hash information.

Distributed memory model.
• Maintain each own data in a private memory area.
• Exchange information when needed.

. Using message passing to probe a hash entry.

. Using message passing to return the value of a probe.

Shared memory model.
• Maintain each local data in a private memory area.
• Maintain the re-used information in a global area.

. Current read is often allowed in the model.

. Lock the cell when it needs to write.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 27



Memory issues (2/2)

Advantage and disadvantage
• Distributed memory model.

. Coding is easy.

. Slow response time.

• Shared memory model.
. Overhead in locking.
. Fast response time when there is no extensive memory contention.

Often used techniques: Lockless transposition tables.
• Allow concurrent read.
• Do not assume writing of an entry is atomic.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 28



Lockless transposition table

Scenario
• Assume each entry of the transposition table H contains two parts

where reading/writing each part is atomic.
. Position signature: 64 bits → H1.
. Data: 64 bits → H2.

• Assume the hash key hash key is the rightmost h, say h = 32, bits of
Position signature.

To read or write an hash entry given a position P , you do the
followings.
• Compute Position signature(P ) and Data(P ).
• Let hash key(P ) be the rightmost h bits of Position signature(P ).
• Read or write H1(hash key(P )).
• Read or write H2(hash key(P )).

Problem: The hash entry is corrupted if
• P is being visited at the same time by two processes C1 and C2 so that

. C1 writes H1(hash key(P )).

. C2 writes H2(hash key(P )).

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 29



Solution

Algorithm for writing an entry
• Compute Position signature(P ) and Data(P ).
• Let hash key(P ) be the rightmost h bits of Position signature(P ).
• write: H1(hash key(P ))← Position signature(P ) XOR Data(P ).
• write: H2(hash key(P ))← Data(P ).

Algorithm for reading an entry
• Compute Position signature(P ).
• Let hash key(P ) be the rightmost h bits of Position signature(P ).
• read: W1 ← H1(hash key(P ))
• read: W2 ← H2(hash key(P ))
• reconstruct: W1 ←W1 XOR W2

• verify: check whether W1 = Position signature(P )
. if they equal, then use this entry
. if they do not equal, then the entry is corrupted.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 30



Why this works

H1(hash key(P )) = Position signature(P ) XOR Data(P ).
H2(hash key(P )) = Data(P ).
H1(hash key(P )) XOR H2(hash key(P )) = Position signature(P ).
If H1(i) and H2(i) are written by two different processes with
Data(P1) and Data(P2), then it will probably not produce the
right position signature.
Comments:
• May have errors because of hash collisions.
• It is not too difficult to extend this method to an hash table with more

than 2 entries.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 31



Parallel Monte-Carlo tree search

Leaf parallelization.
Root parallelization.
Tree parallelization with global synchronization.
Tree parallelization with local synchronization.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 32



MCTS with UCT

Algorithm MCTS:
1: Obtain an initial game tree
2: Repeat the following sequence Ntotal times
• 2.1: Selection

. From the root, pick a PV path to a leaf such that each node has best
UCB “score” among its siblings

. May decide to “trust” the score of a node if it is visited more than a
threshold number of times.

. May decide to “prune” a node if its score is too bad now to save time.

• 2.2: Expansion
. From a best leaf, expand it by one level.
. Use some node expansion policy to expand.

• 2.3: Simulation
. For the expanded leaves, perform some trials (playouts).
. May decide to add knowledge into the trials.

• 2.4: Back propagation
. Update the “scores” for nodes using a good back propagation policy.

Pick a child of the root with the best score as your move.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 33



MCTS: example

0 0 0

selection expansion simulation propagation

6/30+x1

1/10+x2 3/10+x3 2/10+x4

6/30+x1

1/10+x2 3/10+x3 2/10+x4

6/30+x1

1/10+x2 3/10+x3 2/10+x4

6/30+x1

1/10+x2 3/10+x3 2/10+x4

9/50+x5

1/10+x6 6/30+x7 2/10+x8

2/10+x9 1/10+x0

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 34



Leaf parallelization

Algorithm PMCTSleaf :
• Select the best leaf.
• Perform Expansion in sequential.
• Perform Simulation, i.e., multiple trials, in parallel on the same leaf.
• Perform Back propagation in sequential.

Comments:
• Coding is very easy.
• Good parallelization for performing a large number of trials.
• Can utilize a large number of PE’s.
• The best leaf may no longer be the best after only a few more trials.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 35



Root parallelization

Algorithm PMCTSroot:
• Duplicate k copies of the current game tree.
• Perform Monte-Carlo tree simulation on each copy in parallel for a few

trials.
• Combine the copies into one copy by merging statistics on nodes and

put the information into the current game tree.

Comments:
• Coding is easy.
• Can utilize as many PE’s as available.
• May need to make sure that each tree does not pick the same best

leaf.
• Need to have a mechanism to properly choose the best leaves among

all trees.
. Avoid duplicated efforts.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 36



Tree parallelization — global synchronization

Algorithm PMCTSTg:
• Use only one game tree.
• Perform Selection, Expansion and Simulation in parallel.

. Different threads may work on different nodes in parallel.

. Need a mechanism to ensure threads are not working on the same leaf.

• Use a global lock to make sure the game tree is writable by one thread
during the Back propagation phase.

Comments:
• Speed-up is bad.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 37



Tree parallelization — local synchronization

Algorithm PMCTSTl:
• Make every node of the game tree as a global variable.
• Perform Selection, Expansion, Simulation and Back propagation in

parallel.
. Different threads may work on different nodes in parallel.
. Need a mechanism to ensure threads are not working on the same leaf.

• Use a lock to make sure each node is writable by one thread during
Back propagation.

Comments:
• Heavy O.S. overhead.
• Unsure about the scalability.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 38



Problems of parallel Monte-Carlo search

Each iteration of a Monte-Carlo simulation is a Markov chain
process.
• You need to know the result of the previous trial to decide the current

selection.
• Making trials in parallel has a larger statistical error.
• May explore the wrong branch if synchronization is done only after a

lot of trials.
• May not have too much parallelism if synchronization is done after

only a few trials.

The cost of synchronization.
• Shared global variable.
• Cost of lock and unlock.
• Memory bandwidth.
• Network bandwidth.

The cost of programming.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 39



Parallel Monte-Carlo search: Analysis

Amdahl’s law: assume a program needs to execute T instructions
and and x of them can be parallelized. can be parallelized.
• Assume you have n processors and an instruction take a unit of time.
• Parallel processing time ≥ T − x + x/n + pn ≥ T − x where pn is the

cost for overhead in doing parallelization with n processors.
• Speed-up ≤ T/(T − x).

. If 20% of the code cannot be parallelized, then your parallel program
can be at most 5 times faster no matter how many processors you have.

Leaf and root parallelization both have a large portion that is
not parallelizable.
Global or local synchronization has a large overhead.
Comments
• Need a better parallel implementation.
• Need a better way to deal with the increasing error in doing more

samplings.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 40



Concluding remarks

Need to think about tradeoff between costs in doing parallelism
and benefits of saving in searching efforts because of parallelism.
May need to think how to maintain distributed transposition
tables.
May need to think about the machine architecture.
• Shared-memory vs. distributed memory.
• Fine grain or coarse grain.
• Whether the parallel version is stable or not?

. Ease of debugging.

. Ease of coding.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 41



References and further readings (1/2)

* Valavan Manohararajah. Parallel alpha-beta search on shared
memory multiprocessors. Master’s thesis, Graduate Department
of Electrical and Computer Engineering, University of Toronto,
Canada, 2001.

* G. M.J.-B. Chaslot, M. H.M. Winands, and H. J. van den
Herik. Parallel Monte-Carlo tree search. In H. Jaap van den
Herik, X. Xu, Z. Ma, and M. H.M. Winands, editors, Lecture
Notes in Computer Science 5131: Proceedings of the 6th
International Conference on Computers and Games, pages
60–71. Springer-Verlag, New York, NY, 2008.

* R. M. Hyatt and T. Mann. A lockless transposition-table
implementation for parallel search. International Computer
Game Association (ICGA) Journal, 25(1):36–39, 2002.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 42



References and further readings (2/2)

R. M. Hyatt. The dynamic tree-splitting parallel search
algorithm. ICCA Journal, 20(1):3–19, 1997.
M.G. Brockington. A taxonomy of parallel game-tree searching
algorithms. ICCA Journal, 19(3):162–174, 1996.
Rainer Feldmann, Peter Mysliwietz, and Burkhard Monien.
Studying overheads in massively parallel min/max-tree evalua-
tion. In SPAA, pages 94–103, 1994.

TCG: Parallel Game Tree Search, 20131227, Tsan-sheng Hsu c© 43


