Scout，NegaScout and Proof－Number Search

Tsan－sheng Hsu

徐讚昇

tshsu＠iis．sinica．edu．tw
http：／／www．iis．sinica．edu．tw／～tshsu

Introduction

- It looks like alpha-beta pruning is the best we can do for a generic searching procedure.
-What else can be done generically?
- Alpha-beta pruning follows basically the "intelligent" searching behaviors used by human when domain knowledge is not involved.
- Can we find some other "intelligent" behaviors used by human during searching?
- Intuition: MAX node.
- Suppose we know currently we have a way to gain at least 300 points at the first branch.
- If there is an efficient way to know the second branch is at most gaining 300 points, then there is no need to search the second branch in detail.
\triangleright Is there a way to search a tree approximately?
\triangleright Is searching approximately faster than searching exactly?
- Similar intuition holds for a MIN node.

SCOUT procedure

- Invented by Judea Pearl in 1980.
- It may be possible to verify whether the value of a branch is greater than a value v or not in a way that is faster than knowing its exact value.
- High level idea:
- While searching a branch T_{b} of a MAX node, if we have already obtained a lower bound v_{ℓ}.
\triangleright First TEST whether it is possible for T_{b} to return something greater than v_{ℓ}.
\triangleright If FALSE, then there is no need to search T_{b}.
This is called fails the test.
\triangleright If TRUE, then search T_{b}.
This is called passes the test.
- While searching a branch T_{c} of a MIN node, if we have already obtained an upper bound v_{u}
\triangleright First TEST whether it is possible for T_{c} to return something smaller than v_{u}.
\triangleright If FALSE, then there is no need to search T_{c}. This is called fails the test.
\triangleright If TRUE, then search T_{c}.
This is called passes the test.

How to TEST $>v$

procedure TEST(position p, value v, condition $>$)
// test whether the value of the branch at p is $>v$

- determine the successor positions p_{1}, \ldots, p_{d} of p
- if $d=0$, then // terminal
\triangleright if $f(p)>v$ then $/ / f()$: evaluating function
$\triangleright \quad$ return TRUE
\triangleright else return FALSE
- if p is a MAX node, then
- for $i:=1$ to d do
\triangleright if $\operatorname{TEST}\left(p_{i}, v,>\right)$ is TRUE, then return TRUE // succeed if a branch is >v
- return FALSE // fail only if all branches $\leq v$
- if p is a MIN node, then
- for $i:=1$ to d do
\triangleright if $\operatorname{TEST}\left(p_{i}, v,>\right)$ is FALSE, then return FALSE // fail if a branch is $\leq v$
- return TRUE // succeed only if all branches are $>v$

Illustration of TEST

How to TEST - Discussions

- Condition can be stated as < by properly revising the algorithm.
- TEST $(p, v,>)$ is TRUE $\equiv \operatorname{TEST}(p, v,<=)$ is FALSE
- $\operatorname{TEST}(p, v,>)$ is $\operatorname{FALSE} \equiv \operatorname{TEST}(p, v,<=)$ is TRUE
- $\operatorname{TEST}(p, v,<)$ is TRUE $\equiv \operatorname{TEST}(p, v,>=)$ is FALSE
- $\operatorname{TEST}(p, v,<)$ is FALSE $\equiv \operatorname{TEST}(p, v,>=)$ is TRUE
- Practical consideration:
- Set a depth limit and evaluate the position's value when the limit is reached.

How to TEST $<v$

procedure TEST(position p, value v, condition $<$)
// test whether the value of the branch at p is $<v$

- determine the successor positions p_{1}, \ldots, p_{d} of p
- if $d=0$, then $/ /$ terminal
\triangleright if $f(p)<v$ then $/ / f()$: evaluating function
$\triangleright \quad$ return TRUE
\triangleright else return FALSE
- if p is a MAX node, then
- for $i:=1$ to d do
\triangleright if $\operatorname{TEST}\left(p_{i}, v,<\right)$ is FALSE, then return FALSE // succeed if a branch is $\geq v$
- return TRUE // succeed only if all branches $<v$
- if p is a MIN node, then
- for $i:=1$ to d do
\triangleright if TEST $\left(p_{i}, v,<\right)$ is TRUE, then return TRUE // succeed if a branch is $<v$
- return FALSE // fail only if all branches are $\geq v$

Main SCOUT procedure (1/2)

Algorithm SCOUT(position p)

determine the successor positions p_{1}, \ldots, p_{d}

- if $d=0$, then return $f(p)$
- if p is a MAX node
- for $i:=2$ to d do
\triangleright if TEST $\left(p_{i}, v,>\right)$ is TRUE, // TEST first for the rest of the branches then $v=\operatorname{SCOUT}\left(p_{i}\right) / /$ find the value of this branch if it can be $>v$
- if p is a MIN node
- for $i:=2$ to d do
\triangleright if $\operatorname{TEST}\left(p_{i}, v,<\right)$ is TRUE, // TEST first for the rest of the branches then $v=S C O U T\left(p_{i}\right) / /$ find the value of this branch if it can be $<v$
- return v

Main SCOUT procedure (2/2)

- Note that v is the current best value at any moment.
- MAX node:
- For any $i>1$, if $\operatorname{TEST}\left(p_{i}, v,>\right)$ is TRUE,
\triangleright then the value returned by $S C O U T\left(p_{i}\right)$ must be greater than v.
- We say the p_{i} passes the test if $\operatorname{TEST}\left(p_{i}, v,>\right)$ is TRUE.
- MIN node:
- For any $i>1$, if $\operatorname{TEST}\left(p_{i}, v,<\right)$ is TRUE,
\triangleright then the value returned by $S C O U T\left(p_{i}\right)$ must be smaller than v.
- We say the p_{i} passes the test if $\operatorname{TEST}\left(p_{i}, v,<\right)$ is TRUE.

Discussions for SCOUT (1/2)

- TEST who is called by SCOUT may visit less nodes than alpha-beta.

- Assume $\operatorname{TEST}(p, 5,>)$ is called by the root after the first branch is evaluated.
\triangleright It calls $T E S T(K, 5,>)$ which skips K 's second branch.
$\triangleright T E S T(p, 5,>)$ is $F A L S E$, i.e., fails the test, after returning from the 3rd branch.
\triangleright No need to do SCOUT for the branch p.
- Alpha-beta needs to visit K 's second branch.

Discussions for SCOUT (2/2)

- SCOUT may pay many visits to a node that is cut off by alpha-beta.

Number of nodes visited (1/3)

- For TEST to return TRUE for a subtree T, it needs to evaluate at least
\triangleright one child for a MAX node in T, and
\triangleright and all of the children for a MIN node in T.
\triangleright If T has a fixed branching factor b and uniform depth d, the number of nodes evaluated is $\Omega\left(b^{d / 2}\right)$.
- For TEST to return FALSE for a subtree T, it needs to evaluate at least
\triangleright one child for a MIN node in T, and
\triangleright and all of the children for a MAX node in T.
\triangleright If T has a fixed branching factor b and uniform depth d, the number of nodes evaluated is $\Omega\left(b^{d / 2}\right)$.

Number of nodes visited (2/3)

- Assumptions:
- Assume a full complete d-ary tree with depth ℓ where ℓ is even.
- The depth of the root, which is a MAX node, is 0 .
- The total number of nodes in the tree is $\frac{d^{2+1}-1}{d-1}$.
- The minimum number of nodes visited by TEST when it returns TRUE.

$$
\begin{array}{cc}
= & 1+1+d+d+d^{2}+d^{2}+d^{3}+d^{3}+\cdots+d^{\ell / 2-1}+d^{\ell / 2-1}+d^{\ell / 2} \\
= & 2 \cdot\left(d^{0}+d^{1}+\cdots+d^{\ell / 2}\right)-d^{\ell / 2} \\
= & 2 \cdot \frac{d^{\ell / 2+1}-1}{d-1}-d^{\ell / 2}
\end{array}
$$

- The minimum number of nodes visited by alpha-beta.

$$
\begin{array}{cc}
= & \sum_{i=0}^{\ell} d^{\lceil i / 2\rceil}+d^{\lfloor i / 2\rfloor}-1 \\
= & \sum_{i=0}^{\ell} d^{\lceil i / 2\rceil}+\sum_{i=0}^{\ell} d^{[i / 2\rfloor}-(\ell+1) \\
= & \left(1+d+d+\cdots+d^{\ell / 2}+d^{\ell / 2}\right)+ \\
& \left(1+1+d+d+\cdots+d^{\ell / 2-1}+d^{\ell / 2-1}+d^{\ell / 2}\right)-(\ell+1)
\end{array}
$$

Number of nodes visited (3/3)

Comparisons

- When the first branch of a node has the best value, then TEST scans the tree fast.
- The best value of the first $i-1$ branches is used to test whether the i th branch needs to be searched exactly.
- If the value of the first $i-1$ branches of the root is better than the value of i th branch, then we do not have to evaluate exactly for the i th branch.
- Compared to alpha-beta pruning whose cut off comes from bounds of search windows.
- It is possible to have some cut-off for alpha-beta as long as there are some relative move orderings are "good."
\triangleright The moving orders of your children and the children of your ancestor who is odd level up decide a cut-off.
- The search bound is updated during the searching.
\triangleright Sometimes, a deep alpha-beta cut-off occurs because a bound found from your ancestor a distance away.

Performance of SCOUT (1/2)

- A node may be visited more than once.
- First visit is to TEST.
- Second visit is to SCOUT.
\triangleright During SCOUT, it may be TESTed with a different value.
- Q: Can information obtained in the first search be used in the second search?
- SCOUT is a recursive procedure.
- A node in a branch that is not the first child of a node with a depth of ℓ.
\triangleright Note that the depth of the root is defined to be 0 .
\triangleright Every ancestor of you may initiate a TEST to visit you.
\triangleright It can be visited ℓ times by TEST.

Performance of SCOUT (2/2)

- Show great improvements on depth >3 for games with small branching factors.
- It traverses most of the nodes without evaluating them preciously.
- Few subtrees remained to be revisited to compute their exact mini-max values.
- Experimental data on the game of Kalah show [UCLA Tech Rep UCLA-ENG-80-17, Noe 1980]:
- SCOUT favors "skinny" game trees, that are game trees with high depth-to-width ratios.
- On depth = 5, it saves over 40% of time.
- Maybe bad for games with a large branching factor.
- Move ordering is very important.
\triangleright The first branch, if is good, offers a great chance of pruning further branches.

Alpha-beta revisited

- In an alpha-beta search with a window [alpha,beta]:
- Failed-high means it returns a value that is larger than its upper bound beta.
- Failed-low means it returns a value that is smaller than its lower bound alpha.
- Null or Zero window search:
- Using alpha-beta search with the window [$m, m+1$].
- The result can be either failed-high or failed-low.
- Failed-high means the return value is at least $m+1$. \triangleright Equivalent to $T \operatorname{EST}(p, m,>)$ is true.
- Failed-low means the return value is at most m.
\triangleright Equivalent to $\operatorname{TEST}(p, m,>)$ is false.

Alpha-Beta + Scout

- Intuition:
- Try to incooperate SCOUT and alpha-beta together.
- The searching window of alpha-beta if properly set can be used as TEST in SCOUT.
- Using a searching window is better than using a single bound as in SCOUT.
- Can also apply alpha-beta cut if it applies.
- Modifications to the SCOUT algorithm:
- Traverse the tree with two bounds as the alpha-beta procedure does.
$\triangleright A$ searching window.
\triangleright Use the current best bound to guide the TEST value.
- Use a fail soft version to get a better result when the returned value is out of the window.

The NegaScout Algorithm - MiniMax (1/2)

Algorithm $F 4^{\prime}$ (position p, value $a l p h a$, value beta, integer depth)

- determine the successor positions p_{1}, \ldots, p_{d}
- if $d=0 / /$ a terminal node
or depth $=0 / /$ depth is the remaining depth to search or time is running up // from timing control
or some other constraints are met // apply heuristic here
- then return $f(p)$ else begin

```
\triangleright m : = - \infty / / ~ m ~ i s ~ t h e ~ c u r r e n t ~ b e s t ~ l o w e r ~ b o u n d ; ~ f a i l ~ s o f t ~
    m}:=\operatorname{max}{m,G4'(\mp@subsup{p}{1}{},\mathrm{ alpha, beta, depth - 1)} // the first branch
    if m}\geq\mathrm{ beta then return(m) // beta cut off
    for }i:=2\mathrm{ to }d\mathrm{ do
    9: t:=G4'( 
    \triangleright ~ 1 0 : ~ i f ~ t > m ~ t h e n ~ / / ~ f a i l e d - h i g h ~
    11: if (depth < 3 or }t\geq\mathrm{ beta)
    12: then m}:=
    13: else m:=G4'(pi,t, beta,depth - 1) // re-search
14: if m}\geq\mathrm{ beta then return(m) // beta cut off
```

 end
 - return m

The NegaScout Algorithm - MiniMax (2/2)

Algorithm $G 4^{\prime}$ (position p, value $a l p h a$, value beta, integer depth)

- determine the successor positions p_{1}, \ldots, p_{d}
- if $d=0 / /$ a terminal node
or depth $=0 / /$ depth is the remaining depth to search or time is running up // from timing control
or some other constraints are met // apply heuristic here
- then return $f(p)$ else begin

```
\(\triangleright m=\infty / / m\) is the current best upper bound; fail soft
    \(m:=\min \left\{m, F 4^{\prime}\left(p_{1}\right.\right.\), alpha, beta, depth -1\(\left.)\right\} / /\) the first branch
    if \(m \leq\) alpha then return \((m) / /\) alpha cut off
    \(\triangleright\) for \(i:=2\) to \(d\) do
    \(\triangleright\) 9: \(\quad t:=F 4^{\prime}\left(p_{i}, m, m+1\right.\), depth -1\() / /\) null window search
    \(\triangleright\) 10: if \(t<=m\) then // failed-low
    11: \(\quad\) if (depth \(<3\) or \(t \leq\) alpha)
    12: \(\quad\) then \(m:=t\)
    13: else \(m:=F 4^{\prime}\left(p_{i}\right.\), alpha, \(t\), depth -1\() / /\) re-search
    \(\triangleright\) 14: if \(m \leq\) alpha then return \((m) / /\) alpha cut off
```

 end
 - return m

NegaScout - MiniMax version (1/2)

NegaScout - MiniMax version (2/2)

The NegaScout Algorithm

- Use Nega-MAX format.
- Algorithm $F 4$ (position p, value alpha, value beta, integer depth)
- determine the successor positions p_{1}, \ldots, p_{d}
- if $d=0 / /$ a terminal node
or depth $=0 / /$ depth is the remaining depth to search or time is running up // from timing control or some other constraints are met // apply heuristic here
- then return $h(p)$ else

```
\(\triangleright m:=-\infty / /\) the current lower bound; fail soft
\(\triangleright n:=\) beta // the current upper bound
\(\triangleright\) for \(i:=1\) to \(d\) do
\(\triangleright\) 9: \(\quad t:=-F 4\left(p_{i},-n,-\max \{a l p h a, m\}\right.\), depth -1\()\)
\(\triangleright\) 10: if \(t>m\) then
    11: \(\quad\) if \((n=\) beta or depth \(<3\) or \(t \geq\) beta \()\)
    12: \(\quad\) then \(m:=t\)
    13: \(\quad\) else \(m:=-F 4\left(p_{i},-\operatorname{beta},-t\right.\), depth -1\() / /\) re-search
\(\triangleright\) 14: if \(m \geq\) beta then return \((m) / /\) cut off
\(\triangleright\) 15: \(\quad n:=\max \{\operatorname{alph} a, m\}+1 / /\) set up a null window
```

- return m

Search behaviors (1/3)

- If the depth is enough or it is a terminal position, then stop searching further.
- Return $h(p)$ as the value computed by an evaluation function.
- Note:

$$
h(p)= \begin{cases}f(p) & \text { if depth of } p \text { is } \mathbf{0} \text { or even } \\ -f(p) & \text { if depth of } p \text { is odd }\end{cases}
$$

- Fail soft version.
- For the first child p_{1}, search using the normal alpha beta window..
- line 9: normal window for the first child
- the initial value of m is $-\infty$, hence $-\max \{a l p h a, m\}=-a l p h a$

```
\(\triangleright m\) is the current best value
```

- that is, searching with the normal window [alpha, beta]

Search behaviors (2/3)

- For the second child and beyond $p_{i}, i>1$, first perform a null window search for testing whether m is the answer.
- line 9: a null-window of $[m, m+1$] searches for the second child and beyond.
$\triangleright m$ is best value obtained so far
\triangleright m's value will be first set at line 12 because $n=$ beta
\triangleright The null window is set at line 15.
- line 11 :
$\triangleright n=$ beta: we are at first iteration.
\triangleright depth <3 : on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
$\triangleright t \geq$ beta: we have obtained a good enough value from the failed-soft version to guarantee a beta cut.

Search behaviors (3/3)

- For the second child and beyond $p_{i}, i>1$, first perform a null window search for testing whether m is the answer.
- line 11: on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
\triangleright Normally, no need to do alpha-beta or any enhancement on very small subtrees.
\triangleright The overhead is too large on small subtrees.
- line 13: re-search when the null window search fails high.
\triangleright The value of this subtree is at least t.
\triangleright This means the best value in this subtree is more than m, the current best value.
\triangleright This subtree must be re-searched with the the window [t, beta].
- line 14: the normal pruning from alpha-beta.

Example for NegaScout

Refinements

- When a subtree is re-searched, it is best to use information on the previous search to speed up the current search.
- Restart from the position that the value t is returned.
- Maybe want to re-search using the normal alpha-beta procedure.
- F4 runs much better with a good move ordering and transposition tables.
- Order the moves in a priority list.
- Reduce the number of re-searches.

Performances

- Experiments done on a uniform random game tree [Reinefeld 1983].
- Normally superior to alpha-beta when searching game trees with branching factors from 20 to 60.
- Shows about 10 to 20% of improvement.

Comments

- Incooperating both SCOUT and alpha-beta.
- Used in state-of-the-art game search engines.
- The first search, though maybe unsuccessful, can provide useful information in the second search.
- Information can be stored and then be reused.

Ideas for new search methods

- Consider the case of a 2 -player game tree with either 0 or 1 on the leaves.
- win, or not win which is lose or draw;
- lose, or not lose which is win or draw;
- Call this a binary valued game tree.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
- The value of the root is either 0 or 1 .
- If a branch of the root returns 1 , then we know for sure the value of the root is 1 .
- The value of the root is $\mathbf{0}$ only when all branches of the root returns $\mathbf{0}$.
- An AND-OR game tree search.

Which node to search next?

- A most proving node for a node u : a node if its value is 1 , then the value of u is 1 .
- A most disproving node for a node u : a node if its value is 0 , then the value of u is 0 .

Proof or Disproof Number

- Assign a proof number and a disproof number to each node u in a binary valued game tree.
- $\operatorname{proof}(u)$: the minimum number of leaves needed to visited in order for the value of u to be 1 .
- disproof (u) : the minimum number of leaves needed to visited in order for the value of u to be $\mathbf{0}$.

Proof Number: Definition

- u is a leaf:
- If value (u) is unknown, then $\operatorname{proo}_{v}(u)$ is the cost of evaluating u.
- If $\operatorname{value}(u)$ is $\mathbf{1}$, then $\operatorname{proof}(u)=0$.
- If $\operatorname{value}(u)$ is $\mathbf{0}$, then $\operatorname{proof}(u)=\infty$.
$\square u$ is an internal node with children u_{1}, \ldots, u_{k} :
- if u is a MAX node,

$$
\operatorname{proof}(u)=\min _{i=1}^{i=k} \operatorname{proof}\left(u_{i}\right) ;
$$

- if u is a MIN node,

$$
\operatorname{proof}(u)=\sum_{i=1}^{i=k} \operatorname{proof}\left(u_{i}\right)
$$

Disproof Number: Definition

- u is a leaf:
- If value (u) is unknown, then $\operatorname{proo}_{v}(u)$ is cost of evaluating u.
- If $\operatorname{value}(u)$ is $\mathbf{1}$, then $\operatorname{disproof}(u)=\infty$.
- If $\operatorname{value}(u)$ is $\mathbf{0}$, then $\operatorname{disproof}(u)=0$.
$\square u$ is an internal node with children u_{1}, \ldots, u_{k} :
- if u is a MAX node,

$$
\operatorname{disproof}(u)=\sum_{i=1}^{i=k} \operatorname{disproof}\left(u_{i}\right)
$$

- if u is a MIN node,

$$
\operatorname{disproof}(u)=\min _{i=1}^{i=k} \operatorname{disproof}\left(u_{i}\right)
$$

Illustrations

proof number, disproof number

proof number, disproof number

How to Use these Numbers

- If the numbers are known in advance, then from the root, we search a child u with the value equals to $\min \{\operatorname{proof}($ root $)$, disproof (root $)\}$.
- Then we find a path from the root towards a leaf recursively as follows,
\triangleright if we try to prove it, then pick a child with the least proof number for a MAX node, and pick any node that has a chance to be proved for a MIN node.
\triangleright if we try to disprove it, then pick a child with the least disproof number for a MIN node, and pick any node that has a chance to be disproved for a MAX node.
- Assume each leaf takes a lot of time to evaluate.
- For example, the game tree represents an open game tree or an endgame tree.
- Depends on the results we have so far, pick the next leaf to prove or disprove.
Need to able to update these numbers on the fly.

PN-search: algorithm

- loop: Compute or update proof and disproof numbers for each node in a bottom up fashion.
- If $\operatorname{proof}($ root $)=0$ or disproof $($ root $)=0$, then we are done, otherwise
$\triangleright \operatorname{proof}($ root $) \leq \operatorname{disproof}($ root $)$: we try to prove it.
$\triangleright \operatorname{proof}($ root $)>\operatorname{disproof}($ root $)$: we try to disprove it.
- $u \leftarrow$ root; $\{*$ find the leaf to prove or disprove $*\}$
- if we try to prove, then
\triangleright while u is not a leaf do
$\triangleright \quad$ if u is a MAX node, then $u \leftarrow$ leftmost child of u with the smallest non-zero proof number;
$\triangleright \quad$ if current is a MIN node, then $u \leftarrow$ leftmost child of u with a non-zero proof number;
- if we try to disprove, then
\triangleright while u is not a leaf do
$\triangleright \quad$ if u is a MAX node, then $u \leftarrow$ leftmost child of u with a non-zero disproof number;
$\triangleright \quad$ if current is a MIN node, then $u \leftarrow$ leftmost child of u with the smallest non-zero disproof number;
- Prove or disprove u; go to loop;

Multi-Valued game Tree

- The values of the leaves may not be binary.
- Assume the values are non-negative integers.
- Note: it can be in any finite countable domain.
- Revision of the proof and disproof numbers.
- $\operatorname{proo}_{v}(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.
$\triangleright \operatorname{proof}(u)=\operatorname{proof}_{1}(u)$.
- disproof $f_{v}(u)$: the minimum number of leaves needed to visited in order for the value of u to $<v$.

$$
\triangleright \operatorname{disproof}(u)=\operatorname{disproo} f_{1}(u)
$$

Multi-Valued Proof Number

- u is a leaf:
- If value (u) is unknown, then $\operatorname{proo}_{v}(u)$ is cost of evaluating u.
- If value $(u) \geq v$, then $\operatorname{proof}_{v}(u)=0$.
- If $\operatorname{value}(u)<v$, then $\operatorname{proof}_{v}(u)=\infty$.
- u is an internal node with children u_{1}, \ldots, u_{k} :
- if u is a MAX node,

$$
\operatorname{proof}_{v}(u)=\min _{i=1}^{i=k} \operatorname{proof}_{v}\left(u_{i}\right)
$$

- if u is a MIN node,

$$
\operatorname{proo}_{v}(u)=\sum_{i=1}^{i=k} \operatorname{proo}_{v}\left(u_{i}\right)
$$

Multi-valued Disproof Number

- u is a leaf:
- If value (u) is unknown, then $\operatorname{proo}_{v}(u)$ is cost of evaluating u.
- If $\operatorname{value}(u) \geq v$ is $\mathbf{1}$, then $\operatorname{disproof~}_{v}(u)=\infty$.
- If $\operatorname{value}(u)<v$ is $\mathbf{0}$, then $\operatorname{disproof}_{v}(u)=0$.
- u is an internal node with children u_{1}, \ldots, u_{k} :
- if u is a MAX node,

$$
\operatorname{disproof}_{v}(u)=\sum_{i=1}^{i=k} \operatorname{disproof}_{v}\left(u_{i}\right)
$$

- if u is a MIN node,

$$
\operatorname{disproo} f_{v}(u)=\min _{i=1}^{i=k} \operatorname{disproo}_{v}\left(u_{i}\right)
$$

Revised PN-search(v): algorithm

- loop: Compute or update proof_{v} and disproof ${ }_{v}$ numbers for each node in a bottom up fashion.
- If $\operatorname{proo} f_{v}($ root $)=0$ or disproo $_{v}($ root $)=0$, then we are done, otherwise
$\triangleright \operatorname{proof}_{v}($ root $) \leq \operatorname{disproof~}_{v}($ root $)$: we try to prove it.
$\triangleright \operatorname{proof}_{v}($ root $)>\operatorname{disproof}_{v}($ root $)$: we try to disprove it.
- $u \leftarrow$ root; $\{*$ find the leaf to prove or disprove $*\}$
- if we try to prove, then
\triangleright while u is not a leaf do
$\triangleright \quad$ if u is a MAX node, then
$u \leftarrow$ leftmost child of u with the smallest non-zero proof ${ }_{v}$ number;
$\triangleright \quad$ if current is a MIN node, then
$u \leftarrow$ leftmost child of u with a non-zero proof $_{v}$ number;
- if we try to disprove, then
\triangleright while u is not a leaf do
$\triangleright \quad$ if u is a MAX node, then
$u \leftarrow$ leftmost child of u with a non-zero disproof ${ }_{v}$ number ;
$\triangleright \quad$ if current is a MIN node, then
$u \leftarrow$ leftmost child of u with the smallest non-zero disproof ${ }_{v}$ number;
- Prove or disprove u; go to loop;

Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
- Set the initial value of v to be 1 .
- loop: PN-search(v)
\triangleright Prove the value of the search tree is $\geq v$ or disprove it by showing it is $<v$.
- If it is proved, then double the value of v and go to loop again.
- If it is disproved, then the true value of the tree is between $\lfloor v / 2\rfloor$ and $v-1$.
- $\{*$ Use a binary search to find the exact returned value of the tree. $*\}$
- low $\leftarrow\lfloor v / 2\rfloor$; high $\leftarrow v-1$;
- while low \leq high do
\triangleright if low $=$ high, then return low as the tree value
\triangleright mid $\leftarrow\lfloor($ low $+h i g h) / 2\rfloor$
$\triangleright P N$-search (mid)
\triangleright if it is disproved, then high \leftarrow mid -1
\triangleright else if it is proved, then low \leftarrow mid

Comments

- Appears to be good for certain searching certain game trees.
- Find the easiest way to prove or disprove a conjecture.
- A dynamic strategy depends on work has been done so far.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.

References and further readings

* J. Pearl. Asymptotic properties of minimax trees and gamesearching procedures. Artificial Intelligence, 14(2):113-138, 1980.
* A. Reinefeld. An improvement of the scout tree search algorithm. ICCA Journal, 6(4):4-14, 1983.
* L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. Artificial Intelligence, 66(1):91-124, 1994.

