
Theory of Computer Games:
Concluding Remarks

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Abstract

Practical issues.
• The open book.
• Smart usage of resources.

. time during searching

. memory

. coding efforts

. debugging efforts

• Putting everything together.

Some advanced research issues.
• The graph history interaction (GHI) problem.
• Opponent models.
• Searching chance nodes.

How to test your program?

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 2

The open book (1/2)

During the open game, it is frequently the case
• branching factor is huge;
• it is difficult to write a good evaluating function;
• the number of possible distinct positions up to a limited length is small

as compared to the number of possible positions encountered during
middle game search.

Acquire game logs from
• books;
• games between masters;
• games between computers;

. Use off-line computation to find out the value of a position for a given
depth that cannot be computed online during a game due to resource
constraints.

• · · ·

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 3

The open book (2/2)

Assume you have collected r games.
• For each position in the r games, compute the following 3 values:

. win: the number of games reaching this position and then wins.

. loss: the number of games reaching this position and then loss.

. draw: the number of games reaching this position and then draw.

When r is large and the games are trustful, then use the 3
values to compute an estimated goodness for this position.
Comments:
• Pure statistically.
• Can build a static open book.
• You program may not be able to take over when the open book is over.
• It is difficult to acquire large amount of “trustful” game logs.
• Automatically analysis of game logs written by human experts. [Chen

et. al. 2006]
• Using high-level meta-knowledge to guide the way in searching:

. Dark chess: adjacent attack of the opponent’s Cannon. [Chen and Hsu
2013]

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 4

Example: Chinese chess open book (1/3)

A total of 28,591 (Red win)+21,072 (Red lose)+55,930 (draw)
games.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 5

Example: Chinese chess open book (2/3)

Can be sorted using different criteria.
• Win-lose
• winning rates
• ...

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 6

Example: Chinese chess open book (3/3)

A tree-like structure.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 7

Using resources: time and others

Time is the most critical resource [Hyatt 1984] [Šolak and
Vučković 2009].
Watch out different timing rules.
• An upper bound on the total amount of time can be used.

. It is hard to predict the total number of moves in a game in advance.
However, you can have some rough ideas.

• Fixed amount of time per ply.
• An upper bound T1 on the total amount of time is given, and then you

need to play X plys every T2 amount of time.

Thinking style of human players.
• Using almost no time while you are in the open book.
• More time is spent in the beginning immediately after the program is

out of the book.
• Stop searching a path further when you think the position is stable in

the middle game.
• In the endgame phase, use more time in critical positions or when you

try to initiate an attack.
• Do not think at all if you have only one possible logical move left.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 8

Pondering

Pondering:
• Use the time when your opponent is thinking.
• Guessing and then pondering.

How pondering is done.
• In your turn, keep the first 2 plys m1 and m2 in the PV you obtained.
• You choose to play m1, and then it’s the opponent’s turn to think.
• In pondering, you can assume the opponent plays m2.
• Then you continue to think at the same time your opponent thinks.
• If the opponent plays m2, then you can continue the pondering search

in your turn.
• If the opponent plays other moves, then you restart a new search.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 9

Using other resources

Memory
• Using a large transposition table occupies a large space and thus slows

down the program.
. A large number of positions are not visited too often.

• Using no transposition table makes you to search a position more than
once.

CPU
• Do not fork a process to search branches that have little hope of finding

the PV even you have more than enough hardware.

Other resources.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 10

Putting everything together

Game playing system
• GUI
• Use some sorts of open books.
• Middle-game searching: usage of a search engine.

. Evaluating function: knowledge.

. Main search algorithm.

. Enhancements: transposition tables, Quiescent search and possible oth-
ers.

• Use some sorts of endgame databases.

Debugging and testing

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 11

Graph history interaction problem

The graph history interaction (GHI) problem [Campbell 1985]:
• In a game graph, a position can be visited by more than one paths.
• The value of the position depends on the path visiting it.

. It can be win. loss or draw for Chinese chess.

. It can only be draw for Western chess.

. It can only be loss for Go.

In the transposition table, you record the value of a position,
but not the path leading to it.
• Values computed from rules on repetition cannot be used later on.
• It takes a huge amount of storage to store all the paths visiting it.

This is a very difficult problem to be solved in real time [Wu et
al. ’05].

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 12

GHI problem – example

A

B C

D E F

G

H

loss

win
I

J

• Assume the one causes loops loses the game.

• A→ B → E → I → J → H → E is loss because of rules of repetition.
. Memorized H as a loss position.

• A→ B → D is a loss.

• A→ C → F → H is loss because H is recorded as loss.

• A is loss because both branches lead to loss.

• However, A→ C → F → H → E → G is a win.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 13

Opponent models

In a normal alpha-beta search, it is assumed that you and the
opponent use the same strategy.
• What is good to you is bad to the opponent and vice versa!
• Hence we can reduce a minimax search to a NegaMax search.
• This is normally true when the game ends, but may not be true in the

middle of the game.

What will happen when there are two strategies or evaluating
functions f1 and f2 so that
• for some positions p, f1(p) is better than f2(p)

. “better” means closer to the real value f(p)

• for some positions q, f2(q) is better than f1(q)

If you are using f1 and you know your opponent is using f2,
what can be done to take advantage of this information.
• This is called OM (opponent model) search [Carmel and Markovitch

1996].
. In a MAX node, use f1.
. In a MIN node, use f2.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 14

Opponent models – comments

Comments:
• Need to know your opponent model precisely.
• How to learn the opponent on-line or off-line?
• When there are more than 2 possible opponent strategies, use a

probability model (PrOM search) to form a strategy.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 15

Search with chance nodes

Chinese dark chess
• Two player, zero sum, complete information
• Perfect information
• Stochastic
• There is a chance node during searching [Ballard 1983].

. The value of a node is a distribution, not a fixed value.

Previous work
• Alpha-beta based [Ballard 1983]
• Monte-Carlo based [Lancoto et al 2013]

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 16

Example

Black to flip a1.
• If a1 is black cannon, then black can win.
• If a1 is black king, then it is difficult for black to win.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 17

Basic ideas for searching chance nodes

Assume a chance node x has a score probability distribution
function Pr(∗) with the range of possible outcomes from 1 to
N where N is a positive integer.
• For each possible outcome i, there is a score(i) to be computed.

• The expected value E =
∑N
i=1 score(i) ∗ Pr(x = i).

• The minimum value is m = minNi=1{score(i) | Pr(x = i) > 0}.
• The maximum value is M = maxNi=1{score(i) | Pr(x = i) > 0}.

Example: in Chinese dark chess.
• For the first ply, N = 14 ∗ 32.

. Using symmetry, we can reduce it to 7*8.

• We now consider the chance node of flipping the piece at the cell a1.
. N = 14.
. Assume x = 1 means a black King is revealed and x = 8 means a red

King is revealed.
. Then score(1) = score(8).
. Pr(x = 1) = Pr(x = 8) = 1/14.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 18

Bounds in a chance node

Assume the various possibilities of a chance node is evaluated
one by one in the order that at the end of phase i, i = N is
evaluated.
• Assume vmin ≤ score(i) ≤ vmax.

How do the lower and upper bounds, namely mi and Mi, of the
chance node change at the end of phase i?
• i = 0.

. m0 = vmin

. M0 = vmax

• i = 1, we first compute score(1), and then know
. m1 ≥ score(1) ∗ Pr(x = 1) + vmin ∗ (1− Pr(x = 1)), and
. M1 ≤ score(1) ∗ Pr(x = 1) + vmax ∗ (1− Pr(x = 1)).

• · · ·
• i = i∗, we have computed score(1), . . . , score(i∗), and then know

. mi∗ ≥
∑i∗

i=1 score(i) ∗ Pr(x = i) + vmin ∗ (1−
∑i∗

i=1 Pr(x = i)), and

. Mi∗ ≤
∑i∗

i=1 score(i) ∗ Pr(x = i) + vmax ∗ (1−
∑i∗

i=1 Pr(x = i)).

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 19

Algorithm: Chance Search

Algorithm F4.8′(position p, value alpha, value beta, integer
depth)
• determine the successor positions p1, . . . , pb
• · · ·
• for h = 1 to b do
• if ph is not a chance node, then search normally
• else we searching a chance node ph with N choices such that with a

probability Pri it will be ki
• m0 = alpha;
• M0 = beta;
• for each possible choice ki from 1 to N do

. t := G4.8′(ki,mi−1,Mi−1, depth− 1);

. mi = mi−1 + (t− alpha) ∗ Pri;

. Mi = Mi−1 + (t− beta) ∗ Pri;
• · · ·

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 20

Example: Chinese dark chess

Assumption:
• The range of the scores of Chinese dark chess is [-10,10] inclusive.
• N = 7.
• Pr(x = i) = 1/N = 1/7.

Calculation:
• i = 0,

. m0 = −10.

. M0 = 10.

• i = 1 and if score(1) = −2, then
. m1 = −2 ∗ 1/7 +−10 ∗ 6/7 = −62/7 ' −8.86.
. M1 = −2 ∗ 1/7 + 10 ∗ 6/7 = 58/7 ' 8.26.

• i = 1 and if score(1) = 3, then
. m1 = 3 ∗ 1/7 +−10 ∗ 6/7 = −57/7 ' −8.14.
. M1 = 3 ∗ 1/7 + 10 ∗ 6/7 = 63/7 = 9.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 21

How to use these bounds

The lower and upper bounds of the expected score can be used
to do alpha-beta pruning.
• Nicely fit into the alpha-beta search algorithm.

Can do better by not searching the DFS order.
• It is not necessary to search completely the subtree of x = 1 first, and

then start to look at the subtree of x = 2.
• Assume it is a MAX chance node, e.g., the opponent takes a flip.

. Knowing some value v′1 of a subtree for x = 1 gives an upper bound,
i.e., score(1) ≥ v′1.

. Knowing some value v′2 of a subtree for x = 2 gives another upper
bound, i.e., score(2) ≥ v′2.

. These bounds can be used to make the search window further narrower.

For Monte-Carlo based algorithm, we need to use a sparse
sampling algorithm to efficiently estimate the expected value of
a chance node [Kearn et al 2002].

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 22

Testing

You have two versions P1 and P2.
You make the 2 programs play against each other using the
same resource constraints.
To make it fair, during a round of testing, the numbers of a
program plays first and second are equal.
After a few rounds of testing, how do you know P1 is better or
worse than P2?

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 23

How to know you are successful

Assume during a self-play experiment, two copies of the same
program are playing against each other.
• Since two copies of the same program are playing against each other,

the outcome of each game is an independent random trial and can be
modeled as a trinomial random variable.

• Assume for a copy playing first,

Pr(gamefirst) =

{
p if win
q if draw
1− p− q if lose

• Hence for a copy playing second,

Pr(gamelast) =

{
1− p− q if win
q if draw
p if lose

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 24

Outcome of self-play games

Assume 2n games, g1, g2, . . . , g2n are played.
• In order to offset the initiative, namely first player’s advantage, each

copy plays first for n games.
• We also assume each copy alternatives in playing first.
• Let g2i−1 and g2i be the ith pair of games.

Let the outcome of the ith pair of games be a random variable
Xi from the prospective of the copy who plays g2i−1.
• Assume we assign a score of x for a game won, a score of 0 for a game

drawn and a score of −x for a game lost.

The outcome of Xi and its occurrence probability is thus

Pr(Xi) =

p(1− p− q) if Xi = 2x
pq + (1− p− q)q if Xi = x
p2 + (1− p− q)2 + q2 if Xi = 0
pq + (1− p− q)q if Xi = −x
(1− p− q)p if Xi = −2x

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 25

How good we are against the baseline?

Properties of Xi.
• The mean E(Xi) = 0.
• The standard deviation of Xi is√

E(X2
i) = x

√
2pq + (2q + 8p)(1− p− q),

and it is a multi-nominally distributed random variable.

When you have played n pairs of games, what is the probability
of getting a score of s, s > 0?
• Let X[n] =

∑n
i=1Xi.

. The mean of X[n], E(X[n]), is 0.

. The standard deviation ofX[n], σn, is x
√
n
√

2pq + (2q + 8p)(1− p− q),

• If s > 0, we can calculate the probability of Pr(|X[n]| ≤ s) using well
known techniques from calculating multi-nominal distributions.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 26

Practical setup

Parameters that are usually used.
• x = 1.
• For Chinese chess, q is about 0.3161, p = 0.3918 and 1− p− q is 0.2920.

. Data source: 63,548 games played among masters recorded at
www.dpxq.com.

. This means the first player has a better chance of winning.

• The mean of X[n], E(X[n]), is 0.
• The standard deviation of X[n], σn, is

x
√
n
√
2pq + (2q + 8p)(1− p− q) =

√
1.16n.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 27

Results (1/3)

Pr(|X[n]| ≤ s) s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

n = 10, σ10 = 3.67 0.108 0.315 0.502 0.658 0.779 0.866 0.924
n = 20, σ20 = 5.19 0.076 0.227 0.369 0.499 0.613 0.710 0.789
n = 30, σ30 = 6.36 0.063 0.186 0.305 0.417 0.520 0.612 0.693
n = 40, σ40 = 7.34 0.054 0.162 0.266 0.366 0.460 0.546 0.624
n = 50, σ50 = 8.21 0.049 0.145 0.239 0.330 0.416 0.497 0.571

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 28

Results (2/3)

Pr(|X[n]| ≤ s) s = 7 s = 8 s = 9 s = 10 s = 11 s = 12 s = 13

n = 10, σ10 = 3.67 0.960 0.981 0.991 0.997 0.999 1.000 1.000
n = 20, σ20 = 5.19 0.851 0.899 0.933 0.958 0.974 0.985 0.991
n = 30, σ30 = 6.36 0.761 0.819 0.865 0.902 0.930 0.951 0.967
n = 40, σ40 = 7.34 0.693 0.753 0.804 0.847 0.883 0.912 0.934
n = 50, σ50 = 8.21 0.639 0.699 0.753 0.799 0.839 0.872 0.900

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 29

Results (3/3)

Pr(|X[n]| ≤ s) s = 14 s = 15 s = 16 s = 17 s = 18 s = 19 s = 20

n = 10, σ10 = 3.67 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n = 20, σ20 = 5.19 0.995 0.997 0.999 0.999 1.000 1.000 1.000
n = 30, σ30 = 6.36 0.978 0.986 0.991 0.994 0.997 0.998 0.999
n = 40, σ40 = 7.34 0.952 0.966 0.976 0.983 0.989 0.992 0.995
n = 50, σ50 = 8.21 0.923 0.941 0.956 0.967 0.976 0.983 0.988

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 30

Statistical behaviors

Hence assume you have two programs that are playing against
each other and have obtained a score of s + 1, s > 0, after
trying n pairs of games.
• Assume Pr(|X[n]| ≤ s) is say 0.95.

. Then this result is meaningful, that is a program is better than the
other, because it only happens with a low probability of 0.05.

• Assume Pr(|X[n]| ≤ s) is say 0.05.
. Then this result is not very meaningful, because it happens with a high

probability of 0.95.

In general, it is a very rare case, e.g., less than 5% of chance
that it will happen, that your score is more than 2σn.
• For our setting, if you perform n pairs of games, and your net score

is more than 2 ∗
√
1.16 ∗

√
n ' 2.154

√
n, then it means something

statistically.

You can also decide your “definition” of “a rare case”.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 31

Concluding remarks

Consider your purpose of studying a game:
• It is good to solve a game completely.

. You can only solve a game once!

• It is better to acquire the knowledge about why the game wins, draws
or loses.

. You can learn lots of knowledge.

• It is even better to discover knowledge in the game and then use it to
make the world a better place.

. Fun!

Try to use the techniques learned from this course in other
areas!

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 32

References and further readings (1/3)

M. Buro. Toward opening book learning. International
Computer Game Association (ICGA) Journal, 22(2):98–
102, 1999.
David Carmel and Shaul Markovitch. Learning and using
opponent models in adversary search. Technical Report
CIS9609, Technion, 1996.
R. M. Hyatt. Using time wisely. International Computer
Game Association (ICGA) Journal, pages 4–9, 1984.

R. Šolak and R. Vučković Time management during a chess
game, ICGA Journal, no. 4, vol. 32, pp. 206–220, 2009.
M. Campbell. The graph-history interaction: on ignoring
position history. In Proceedings of the 1985 ACM annual
conference on the range of computing : mid-80’s perspec-
tive, pages 278–280. ACM Press, 1985.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 33

References and further readings (2/3)

B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Abstract-
ing knowledge from annotated Chinese-chess game records.
In H. Jaap van den Herik, P. Ciancarini, and H.H.L.M.
Donkers, editors, Lecture Notes in Computer Science 4630:
Proceedings of the 5th International Conference on Com-
puters and Games, pages 100–111. Springer-Verlag, New
York, NY, 2006.
Bo-Nian Chen and Tsan-sheng Hsu. Automatic Generation
of Chinese Dark Chess Opening Books Proceedings of the
8th International Conference on Computers and Games (CG),
August 2013, to appear.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 34

References and further readings (3/3)

Bruce W. Ballard The *-minimax search procedure for trees
containing chance nodes Artificial Intelligence, Volume 21, Issue
3, September 1983, Pages 327-350
Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald,
Mark H. M. Winands Monte-Carlo *-MiniMax Search Proceed-
ings IJCAI, pages 580–586, 2013.
KEARNS, Michael; MANSOUR, Yishay; NG, Andrew Y. A
sparse sampling algorithm for near-optimal planning in large
Markov decision processes. Machine Learning, 2002, 49.2-3:
193-208.
Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu ”The Graph
History Interaction Problem in Chinese Chess,” Proceedings of
the 11th Advances in Computer Games Conference, (ACG),
Springer-Verlag LNCS# 4250, pages 165–179, 2005.

TCG: Concluding remarks, 20160111, Tsan-sheng Hsu c© 35

