
Scout, NegaScout and
Proof-Number Search

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Introduction

It looks like alpha-beta pruning is the best we can do for a
generic searching procedure.
• What else can be done generically?
• Alpha-beta pruning follows basically the “intelligent” searching behav-

iors used by human when domain knowledge is not involved.
• Can we find some other “intelligent” behaviors used by human during

searching?

Intuition: MAX node.
• Suppose we know currently we have a way to gain at least 300 points

at the first branch.
• If there is an efficient way to know the second branch is at most

gaining 300 points, then there is no need to search the second branch
in detail.

. Alpha-beta cut algorithm is one way to make sure of this exactly.

. Is there a way to search a tree approximately?

. Is searching approximately faster than searching exactly?

Similar intuition holds for a MIN node.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 2



SCOUT procedure

It may be possible to verify whether the value of a branch
is greater than a value v or not in a way that is faster than
knowing its exact value [Judea Pearl 1980].
High level idea:
• While searching a branch Ti of a MAX node, if we have already

obtained a lower bound v`.
. First TEST whether it is possible for Ti to return something greater

than v`.
. If FALSE, then there is no need to search Ti.

This is called fails the test.
. If TRUE, then search Ti.

This is called passes the test.

• While searching a branch Tj of a MIN node, if we have already obtained
an upper bound vu

. First TEST whether it is possible for Tj to return something smaller
than vu.

. If FALSE, then there is no need to search Tj.
This is called fails the test.

. If TRUE, then search Tj.
This is called passes the test.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 3



How to TEST > v

procedure TEST(position p, condition >, value v)
// test whether the value of the branch at p is > v

determine the successor positions p1, . . . , pb of p
if b = 0, then // terminal

. if f(p) > v then // f(): evaluating function

. return TRUE

. else return FALSE

if p is a MAX node, then
• for i := 1 to b do

. if TEST(pi, >, v) is TRUE, then
return TRUE // succeed if a branch is > v

• return FALSE // fail only if all branches ≤ v
if p is a MIN node, then
• for i := 1 to b do

. if TEST(pi, >, v) is FALSE, then
return FALSE // fail if a branch is ≤ v

• return TRUE // succeed only if all branches are > v

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 4



Illustration of TEST

max

min

max

min

max

false true

true
false true true true

true

false false falsetrue

true true true
false

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 5



How to TEST — Discussions

Sometimes it may be needed to test for “>= v”, “< v” or
“<= v”.
• TEST(p,>,v) is TRUE ≡ TEST(p,<=,v) is FALSE

• TEST(p,>,v) is FALSE ≡ TEST(p,<=,v) is TRUE

• TEST(p,<,v) is TRUE ≡ TEST(p,>=,v) is FALSE

• TEST(p,<,v) is FALSE ≡ TEST(p,>=,v) is TRUE

Practical consideration:
• Set a depth limit and evaluate the position’s value when the limit is

reached.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 6



Main SCOUT procedure

Algorithm SCOUT(position p)

determine the successor positions p1, . . . , pb
if b = 0, then return f(p)

else v = SCOUT (p1) // SCOUT the first branch
if p is a MAX node
• for i := 2 to b do

. if TEST(pi, >, v) is TRUE, // TEST first for the rest of the branches
then v = SCOUT (pi) // find the value of this branch if it can be > v

if p is a MIN node
• for i := 2 to b do

. if TEST(pi, <, v) is TRUE, // TEST first for the rest of the branches
then v = SCOUT (pi) // find the value of this branch if it can be < v

return v

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 7



How to TEST < v

procedure TEST(position p, condition <, value v)
// test whether the value of the branch at p is < v

determine the successor positions p1, . . . , pb of p
if b = 0, then // terminal

. if f(p) < v then // f(): evaluating function

. return TRUE

. else return FALSE

if p is a MAX node, then
• for i := 1 to b do

. if TEST(pi, <, v) is FALSE, then
return FALSE // fail if a branch is ≥ v

• return TRUE // succeed only if all branches < v
if p is a MIN node, then
• for i := 1 to b do

. if TEST(pi, <, v) is TRUE, then
return TRUE // succeed if a branch is < v

• return FALSE // fail only if all branches are ≥ v

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 8



Discussions for SCOUT (1/3)

Note that v is the current best value at any moment.
MAX node:
• For any i > 1, if TEST(pi, >, v) is TRUE,

. then the value returned by SCOUT (pi) must be greater than v.

• We say the pi passes the test if TEST(pi, >, v) is TRUE.
MIN node:
• For any i > 1, if TEST(pi, <, v) is TRUE,

. then the value returned by SCOUT (pi) must be smaller than v.

• We say the pi passes the test if TEST(pi, <, v) is TRUE.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 9



Discussions for SCOUT (2/3)

TEST which is called by SCOUT may visit less nodes than that
of alpha-beta.

max

min

max

min

5

8

15

10

0

5

8

15

10

0

KK

SCOUT ALPHA−BETA

p p

• Assume TEST (p,>, 5) is called by the root after the first branch is
evaluated.

. It calls TEST (K,>, 5) which skips K’s second branch.

. TEST (p,>, 5) is FALSE, i.e., fails the test, after returning from the
3rd branch.

. No need to do SCOUT for the branch p.

• Alpha-beta needs to visit K’s second branch.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 10



Discussions for SCOUT (3/3)

SCOUT may pay many visits to a node that is cut off by
alpha-beta.

max

min

max

min

max

ALPHA−BETA

5

10

0

25

20

8

[10, infinity]

[10,25]

[10,25]

[10,25]

SCOUT

5

10

0

25

20

8

A

B

C

D

TEST[A,>,10]: true

TEST[B,>=,25]: false

TEST[C,>,0]: true

TEST[D,>=,8]: false

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 11



Number of nodes visited (1/4)

For TEST to return TRUE for a subtree T , it needs to evaluate
at least

. one child for a MAX node in T , and

. and all of the children for a MIN node in T .

. If T has a fixed branching factor b and uniform depth b, the number of nodes
evaluated is Ω(b`/2) where ` is the depth of the tree.

For TEST to return FALSE for a subtree T , it needs to evaluate
at least

. one child for a MIN node in T , and

. and all of the children for a MAX node in T .

. If T has a fixed branching factor b and uniform depth b, the number of nodes
evaluated is Ω(b`/2).

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 12



Number of nodes visited (2/4)

Assumptions:
• Assume a full complete b-ary tree with depth ` where ` is even.
• The depth of the root, which is a MAX node, is 0.

The total number of nodes in the tree is b`+1−1
b−1 .

H1: the minimum number of nodes visited by TEST when it
returns TRUE.

H1 = 1 + 1 + b + b + b2 + b2 + b3 + b3 + · · ·+ b`/2−1 + b`/2−1 + b`/2

= 2 · (b0 + b1 + · · ·+ b`/2)− b`/2

= 2 · b
`/2+1−1

b−1 − b`/2

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 13



Number of nodes visited (3/4)

Assumptions:
• Assume a full complete b-ary tree with depth ` where ` is even.
• The depth of the root, which is a MAX node, is 0.

H2: the minimum number of nodes visited by alpha-beta.
H2 =

∑`
i=0(b

di/2e + bbi/2c − 1)

=
∑`

i=0 b
di/2e +

∑`
i=0 b

bi/2c − (` + 1)

=
∑`

i=0 b
di/2e + H1 − (` + 1)

= (1 + b + b + · · ·+ b`/2−1 + b`/2 + b`/2) + H1 − (` + 1)

= (H1 − 1 + b`/2 − b`/2−1) + H1 − (` + 1)

= 2 ·H1 + b`/2 − b`/2−1 − (` + 2)

∼ (2.x) ·H1

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 14



Number of nodes visited (4/4)

max

min

max

min

max

OR

AND

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 15



Comparisons

When the first branch of a node has the best value, then TEST
scans the tree fast.
• The best value of the first i − 1 branches is used to test whether the
ith branch needs to be searched exactly.

• If the value of the first i − 1 branches of the root is better than the
value of ith branch, then we do not have to evaluate exactly for the
ith branch.

Compared to alpha-beta pruning whose cut off comes from
bounds of search windows.
• It is possible to have some cut-off for alpha-beta as long as there are

some relative move orderings are “good.”
. The moving orders of your children and the children of your ancestor

who is odd level up decide a cut-off.

• The search bound is updated during the searching.
. Sometimes, a deep alpha-beta cut-off occurs because a bound found

from your ancestor a distance away.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 16



Performance of SCOUT (1/2)

A node may be visited more than once.
• First visit is to TEST.
• Second visit is to SCOUT.

. During SCOUT, it may be TESTed with a different value.

• Q: Can information obtained in the first search be used in the second
search?

SCOUT is a recursive procedure.
• A node in a branch that is not the first child of a node with a depth

of `.
. Note that the depth of the root is defined to be 0.
. Every ancestor of you may initiate a TEST to visit you.
. It can be visited ` times by TEST.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 17



Performance of SCOUT (2/2)

Show great improvements on depth > 3 for games with small
branching factors.
• It traverses most of the nodes without evaluating them preciously.
• Few subtrees remained to be revisited to compute their exact mini-max

values.
Experimental data on the game of Kalah show [UCLA Tech
Rep UCLA-ENG-80-17, Noe 1980]:
• SCOUT favors “skinny” game trees, that are game trees with high

depth-to-width ratios.
• On depth = 5, it saves over 40% of time.
• Maybe bad for games with a large branching factor.
• Move ordering is very important.

. The first branch, if is good, offers a great chance of pruning further
branches.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 18



Alpha-beta revisited

In an alpha-beta search with a window [alpha,beta]:
• Failed-high means it returns a value that is larger than or equal to its

upper bound beta.
• Failed-low means it returns a value that is smaller than or equal to its

lower bound alpha.
Null or Zero window search:
• Using alpha-beta search with the window [m,m+ 1].
• The result can be either failed-high or failed-low.
• Failed-high means the return value is at least m+ 1.

. Equivalent to TEST (p,>,m) is true.

• Failed-low means the return value is at most m.
. Equivalent to TEST (p,>,m) is false.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 19



Alpha-Beta + Scout

Intuition:
• Try to incooperate SCOUT and alpha-beta together.
• The searching window of alpha-beta if properly set can be used as

TEST in SCOUT.
• Using a searching window is better than using a single bound as in

SCOUT.
• Can also apply alpha-beta cut if it applies.

Modifications to the SCOUT algorithm:
• Traverse the tree with two bounds as the alpha-beta procedure does.

. A searching window.

. Use the current best bound to guide the value used in TEST.

• Use a fail soft version to get a better result when the returned value
is out of the window.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 20



The NegaScout Algorithm – MiniMax (1/2)

Algorithm F4′(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // depth is the remaining depth to search
or time is running up // from timing control
or some other constraints are met // apply heuristic here

• then return f(p) else
begin

. m := −∞ // m is the current best lower bound; fail soft
m := max{m,G4′(p1, alpha, beta, depth− 1)} // the first branch
if m ≥ beta then return(m) // beta cut off

. for i := 2 to b do

. 9: t := G4′(pi,m,m + 1, depth− 1) // null window search

. 10: if t > m then // failed-high
11: if (depth < 3 or t ≥ beta)
12: then m := t
13: else m := G4′(pi, t, beta, depth− 1) // re-search

. 14: if m ≥ beta then return(m) // beta cut off

end
• return m

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 21



The NegaScout Algorithm – MiniMax (2/2)

Algorithm G4′(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // depth is the remaining depth to search
or time is running up // from timing control
or some other constraints are met // apply heuristic here

• then return f(p) else
begin

. m =∞ // m is the current best upper bound; fail soft
m := min{m,F4′(p1, alpha, beta, depth− 1)} // the first branch
if m ≤ alpha then return(m) // alpha cut off

. for i := 2 to b do

. 9: t := F4′(pi,m− 1,m, depth− 1) // null window search

. 10: if t < m then // failed-low
11: if (depth < 3 or t ≤ alpha)
12: then m := t
13: else m := F4′(pi, alpha, t, depth− 1) // re-search

. 14: if m ≤ alpha then return(m) // alpha cut off

end
• return m

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 22



NegaScout – MiniMax version (1/2)

5 4 7 4 45

[3,9]

3 4

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 23



NegaScout – MiniMax version (2/2)

5 4 7 4 453

[3,9]

[3,9]

[3,9]

[5,6]

5

5

3
(re−search)

[4,5]

[4,5]

4

[3,4] [4,5]

[4,5]

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 24



The NegaScout Algorithm

Use Nega-MAX format.
Algorithm F4(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 //depth is the remaining depth to search
or time is running up // from timing control
or some other constraints are met // apply heuristic here

• then return h(p) else
. m := −∞ // the current lower bound; fail soft
. n := beta // the current upper bound
. for i := 1 to b do
. 9: t := −F4(pi,−n,−max{alpha,m}, depth− 1)
. 10: if t > m then

11: if (n = beta or depth < 3 or t ≥ beta)
12: then m := t
13: else m := −F4(pi,−beta,−t, depth− 1) // re-search

. 14: if m ≥ beta then return(m) // cut off

. 15: n := max{alpha,m}+ 1 // set up a null window

• return m

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 25



Search behaviors (1/3)

If the depth is enough or it is a terminal position, then stop
searching further.
• Return h(p) as the value computed by an evaluation function.
• Note:

h(p) =

{
f(p) if depth of p is 0 or even
−f(p) if depth of p is odd

Fail soft version.
For the first child p1, search using the normal alpha beta
window..
• line 9: normal window for the first child
• the initial value of m is −∞, hence −max{alpha,m} = −alpha

. m is the current best value

• that is, searching with the normal window [alpha, beta]

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 26



Search behaviors (2/3)

For the second child and beyond pi, i > 1, first perform a null
window search for testing whether m is the answer.
• line 9: a null-window of [n − 1, n] searches for the second child and

beyond where n = max{alpha,m}+ 1.
. m is best value obtained so far
. alpha is the previous lower bound
. m’s value will be first set at line 12 because n = beta
. The value of n is set at line 15.

• line 11:
. n = beta: we are at first iteration.
. depth < 3: on a smaller depth subtree, i.e., depth at most 2, NegaScout

always returns the best value.
. t ≥ beta: we have obtained a good enough value from the failed-soft

version to guarantee a beta cut.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 27



Search behaviors (3/3)

For the second child and beyond pi, i > 1, first perform a null
window search for testing whether m is the answer.
• line 11: on a smaller depth subtree, i.e., depth at most 2, NegaScout

always returns the best value.
. Normally, no need to do alpha-beta or any enhancement on very small

subtrees.
. The overhead is too large on small subtrees.

• line 13: re-search when the null window search fails high.
. The value of this subtree is at least t.
. This means the best value in this subtree is more than m, the current

best value.
. This subtree must be re-searched with the the window [t, beta].

• line 14: the normal pruning from alpha-beta.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 28



Example for NegaScout

−5 −4 −6 −7 −4 −4

[4,5]

−5−9

[−5,−4]

[4,5]

5

[5,5]
5

−5

[4,5]

6

[6,5]6

−6
[−5,−4]

5

[5,5]

5

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 29



Refinements

When a subtree is re-searched, it is best to use information on
the previous search to speed up the current search.
• Restart from the position that the value t is returned.

Maybe want to re-search using the normal alpha-beta procedure.
F4 runs much better with a good move ordering and
transposition tables.
• Order the moves in a priority list.
• Reduce the number of re-searches.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 30



Performances

Experiments done on a uniform random game tree [Reinefeld
1983].
• Normally superior to alpha-beta when searching game trees with

branching factors from 20 to 60.
• Shows about 10 to 20% of improvement.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 31



Comments

Incooperating both SCOUT and alpha-beta.
Used in state-of-the-art game search engines.
The first search, though maybe unsuccessful, can provide useful
information in the second search.
• Information can be stored and then be reused.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 32



Ideas for new search methods

Consider the case of a 2-player game tree with either 0 or 1 on
the leaves.
• win, or not win which is lose or draw;
• lose, or not lose which is win or draw;
• Call this a binary valued game tree.

If the game tree is known as well as the values of some leaves
are known, can you make use of this information to search this
game tree faster?
• The value of the root is either 0 or 1.
• If a branch of the root returns 1, then we know for sure the value of

the root is 1.
• The value of the root is 0 only when all branches of the root returns 0.
• An AND-OR game tree search.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 33



Which node to search next?

A most proving node for a node u: a node if its value is 1, then
the value of u is 1.
A most disproving node for a node u: a node if its value is 0,
then the value of u is 0.

a

b c

d e f g h

1 ?1 ? ?

a

b c

d e f g h

1 ? ?

? 00

0

i j k

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 34



Proof or Disproof Number

Assign a proof number and a disproof number to each node u
in a binary valued game tree.
• proof(u): the minimum number of leaves needed to visited in order for

the value of u to be 1.
• disproof(u): the minimum number of leaves needed to visited in order

for the value of u to be 0.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 35



Proof Number: Definition

u is a leaf:
• If value(u) is unknown, then proof(u) is the cost of evaluating u.
• If value(u) is 1, then proof(u) = 0.
• If value(u) is 0, then proof(u) =∞.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

proof(u) =
i=b
min
i=1

proof(ui);

• if u is a MIN node,

proof(u) =

i=b∑
i=1

proof(ui).

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 36



Disproof Number: Definition

u is a leaf:
• If value(u) is unknown, then disproof(u) is cost of evaluating u.
• If value(u) is 1, then disproof(u) =∞.
• If value(u) is 0, then disproof(u) = 0.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

disproof(u) =

i=b∑
i=1

disproof(ui);

• if u is a MIN node,

disproof(u) =
i=b
min
i=1

disproof(ui).

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 37



Illustrations

a

b c

d e f g h

1 ?1 ? ?

disproof numberproof number, 

1,

2, 1, 11

2

a

b c

d e f g h

1 ? ?

? 00

0

disproof numberproof number, 

2, 1 infty, 0

1,1

2,1

i j k

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 38



How to use these Numbers

If the numbers are known in advance, then from the
root, we search a child u with the value equals to
min{proof(root), disproof(root)}.
• Then we find a path from the root towards a leaf recursively as follows,

. if we try to prove it, then pick a child with the least proof number for
a MAX node, and pick any node that has a chance to be proved for a
MIN node.

. if we try to disprove it, then pick a child with the least disproof number
for a MIN node, and pick any node that has a chance to be disproved
for a MAX node.

Assume each leaf takes a lot of time to evaluate.
• For example, the game tree represents an open game tree or an

endgame tree.
• Depends on the results we have so far, pick the next leaf to prove or

disprove.
Need to be able to update these numbers on the fly.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 39



PN-search: algorithm

loop: Compute or update proof and disproof numbers for each
node in a bottom up fashion.
• If proof(root) = 0 or disproof(root) = 0, then we are done, otherwise

. proof(root) ≤ disproof(root): we try to prove it.

. proof(root) > disproof(root): we try to disprove it.

u← root; {∗ find the leaf to prove or disprove ∗}
• if we try to prove, then

. while u is not a leaf do

. if u is a MAX node, then
u← leftmost child of u with the smallest non-zero proof number;

. if current is a MIN node, then
u← leftmost child of u with a non-zero proof number;

• if we try to disprove, then
. while u is not a leaf do
. if u is a MAX node, then

u← leftmost child of u with a non-zero disproof number;
. if current is a MIN node, then

u← leftmost child of u with the smallest non-zero disproof number;

Prove or disprove u; go to loop;

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 40



Multi-Valued game Tree

The values of the leaves may not be binary.
• Assume the values are non-negative integers.
• Note: it can be in any finite countable domain.

Revision of the proof and disproof numbers.
• proofv(u): the minimum number of leaves needed to visited in order

for the value of u to ≥ v.
. proof(u) ≡ proof1(u).

• disproofv(u): the minimum number of leaves needed to visited in order
for the value of u to < v.

. disproof(u) ≡ disproof1(u).

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 41



Illustration

a

b c

d e f g h

?? ?18 10

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 42



Illustration

a

b c

d e f g h

?? ?18 10

v<=18? v<=18?

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 43



Multi-Valued Proof Number

u is a leaf:
• If value(u) is unknown, then proofv(u) is cost of evaluating u.
• If value(u) ≥ v, then proofv(u) = 0.
• If value(u) < v, then proofv(u) =∞.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

proofv(u) =
i=b
min
i=1

proofv(ui);

• if u is a MIN node,

proofv(u) =

i=b∑
i=1

proofv(ui).

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 44



Multi-valued Disproof Number

u is a leaf:
• If value(u) is unknown, then disproofv(u) is cost of evaluating u.
• If value(u) ≥ v, then disproofv(u) =∞.
• If value(u) < v, then disproofv(u) = 0.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

disproofv(u) =

i=b∑
i=1

disproofv(ui);

• if u is a MIN node,

disproofv(u) =
i=b
min
i=1

disproofv(ui).

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 45



Revised PN-search(v): algorithm

loop: Compute or update proofv and disproofv numbers for each
node in a bottom up fashion.
• If proofv(root) = 0 or disproofv(root) = 0, then we are done, otherwise

. proofv(root) ≤ disproofv(root): we try to prove it.

. proofv(root) > disproofv(root): we try to disprove it.

u← root; {∗ find the leaf to prove or disprove ∗}
• if we try to prove, then

. while u is not a leaf do

. if u is a MAX node, then
u← leftmost child of u with the smallest non-zero proofv number;

. if current is a MIN node, then
u← leftmost child of u with a non-zero proofv number;

• if we try to disprove, then
. while u is not a leaf do
. if u is a MAX node, then

u← leftmost child of u with a non-zero disproofv number ;
. if current is a MIN node, then

u← leftmost child of u with the smallest non-zero disproofv number;

Prove or disprove u; go to loop;

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 46



Multi-valued PN-search: algorithm

When the values of the leaves are not binary, use an open value
binary search to find an upper bound of the value.
• Set the initial value of v to be 1.
• loop: PN-search(v)

. Prove the value of the search tree is ≥ v or
disprove it by showing it is < v.

• If it is proved, then double the value of v and go to loop again.
• If it is disproved, then the true value of the tree is between bv/2c and
v − 1.

• {∗ Use a binary search to find the exact returned value of the tree. ∗}
• low ← bv/2c; high← v − 1;
• while low ≤ high do

. if low = high, then return low as the tree value

. mid← b(low + high)/2c

. PN-search(mid)

. if it is disproved, then high← mid− 1

. else if it is proved, then low ← mid

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 47



Comments

Appears to be good for searching certain types of game trees.
• Find the easiest way to prove or disprove a conjecture.
• A dynamic strategy depends on work has been done so far.

Performance has nothing to do with move ordering.
• Performance of most previous algorithms depends heavily on whether

a good move ordering can be found.
Searching the “easiest” branch may not give you the best
performance.
• Performance depends on the value of each internal nodes.

Commonly used in verifying conjectures, e.g., first-player win.
• Partition the opening moves in a tree-like fashion.
• Try to the “easiest” way to prove or disprove the given conjecture.

Take into consideration the fact that some nodes may need
more time to process than the other nodes.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 48



References and further readings

* J. Pearl. Asymptotic properties of minimax trees and game-
searching procedures. Artificial Intelligence, 14(2):113–138,
1980.

* A. Reinefeld. An improvement of the scout tree search
algorithm. ICCA Journal, 6(4):4–14, 1983.

* L. V. Allis, M. van der Meulen, and H. J. van den Herik.
Proof-number search. Artificial Intelligence, 66(1):91–124,
1994.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu c© 49


