Scout, NegaScout and Proof-Number Search

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Introduction

- It looks like alpha-beta pruning is the best we can do for a generic searching procedure.
 - What else can be done generically?
 - Alpha-beta pruning follows basically the "intelligent" searching behaviors used by human when domain knowledge is not involved.
 - Can we find some other "intelligent" behaviors used by human during searching?

Intuition: MAX node.

- Suppose we know currently we have a way to gain at least 300 points at the first branch.
- If there is an efficient way to know the second branch is at most gaining 300 points, then there is no need to search the second branch in detail.
 - ▶ Alpha-beta cut algorithm is one way to make sure of this exactly.
 - ▷ Is there a way to search a tree approximately?
 - ▶ Is searching approximately faster than searching exactly?

Similar intuition holds for a MIN node.

SCOUT procedure

- It may be possible to verify whether the value of a branch is greater than a value v or not in a way that is faster than knowing its exact value [Judea Pearl 1980].
- High level idea:
 - While searching a branch T_i of a MAX node, if we have already obtained a lower bound v_ℓ .
 - ▷ First TEST whether it is possible for T_i to return something greater than v_ℓ .
 - $\triangleright If FALSE, then there is no need to search T_i. This is called fails the test.$
 - $\triangleright If TRUE, then search T_i.$ This is called passes the test.
 - While searching a branch T_j of a MIN node, if we have already obtained an upper bound $v_{\boldsymbol{u}}$
 - ▷ First TEST whether it is possible for T_j to return something smaller than v_u .
 - ▷ If FALSE, then there is no need to search T_j . This is called fails the test.
 - $\triangleright If TRUE, then search T_j.$ This is called passes the test.

How to $\ensuremath{\mathsf{TEST}} > v$

procedure TEST(position p, condition >, value v) // test whether the value of the branch at p is > v

- determine the successor positions p_1, \ldots, p_b of p- if b = 0, then // terminal

 $\triangleright \ \ \text{if} \ f(p) > v \ \ \text{then} \ // \ f(): \ \text{evaluating function}$

▷ return TRUE

▷ else return FALSE

if p is a MAX node, then

• for i := 1 to b do

 $\triangleright \text{ if } \textbf{TEST}(p_i, >, v) \text{ is TRUE, then} \\ \textbf{return TRUE // succeed if a branch is } v$

• return FALSE // fail only if all branches $\leq v$

if p is a MIN node, then

```
• for i := 1 to b do
```

▷ if $TEST(p_i, >, v)$ is FALSE, then return FALSE // fail if a branch is $\leq v$

• return TRUE // succeed only if all branches are > v

Illustration of TEST

How to TEST — Discussions

- Sometimes it may be needed to test for ">= v", "< v" or "<= v".
 - TEST(p, >, v) is TRUE \equiv TEST(p, <=, v) is FALSE • TEST(p, >, v) is FALSE \equiv TEST(p, <=, v) is TRUE • TEST(p, <, v) is TRUE \equiv TEST(p, >=, v) is FALSE

TEST(
$$p$$
,<, v) is FALSE \equiv TEST(p ,>=, v) is TRUE

- Practical consideration:
 - Set a depth limit and evaluate the position's value when the limit is reached.

Main SCOUT procedure

Algorithm SCOUT(position *p***)**

• determine the successor positions p_1, \ldots, p_b

- if b = 0, then return f(p)
 - else $v = SCOUT(p_1)$ // SCOUT the first branch
- if p is a MAX node
 - for i := 2 to b do
 - ▷ if $TEST(p_i, >, v)$ is TRUE, // TEST first for the rest of the branches then $v = SCOUT(p_i)$ // find the value of this branch if it can be > v

• if p is a MIN node

- for i := 2 to b do
 - ▷ if $TEST(p_i, <, v)$ is TRUE, // TEST first for the rest of the branches then $v = SCOUT(p_i)$ // find the value of this branch if it can be < v
- **return** v

How to TEST $< \boldsymbol{v}$

procedure TEST(position p, condition <, value v) // test whether the value of the branch at p is < v

- determine the successor positions p_1, \ldots, p_b of p- if b = 0, then // terminal

 $\triangleright \ \ \text{if} \ f(p) < v \ \ \text{then} \ \ // \ \ f(): \ \ \text{evaluating function}$

▷ return TRUE

▷ else return FALSE

if p is a MAX node, then

• for i := 1 to b do

▷ if $TEST(p_i, <, v)$ is FALSE, then return FALSE // fail if a branch is $\geq v$

• return TRUE // succeed only if all branches < v• if p is a MIN node, then

• for i := 1 to b do

▷ if $TEST(p_i, <, v)$ is TRUE, then return TRUE // succeed if a branch is < v

• return FALSE // fail only if all branches are $\geq v$

Discussions for SCOUT (1/3)

Note that v is the current best value at any moment.
MAX node:

• For any i > 1, if TEST(p_i , >, v) is TRUE,

▷ then the value returned by $SCOUT(p_i)$ must be greater than v.

• We say the p_i passes the test if TEST(p_i , >, v) is TRUE.

MIN node:

- For any i > 1, if TEST(p_i , <, v) is TRUE,
 - \triangleright then the value returned by $SCOUT(p_i)$ must be smaller than v.
- We say the p_i passes the test if TEST(p_i , <, v) is TRUE.

Discussions for SCOUT (2/3)

• TEST which is called by SCOUT may visit less nodes than that of alpha-beta.

- Assume TEST(p, >, 5) is called by the root after the first branch is evaluated.
 - ▷ It calls TEST(K, >, 5) which skips K's second branch.
 - \triangleright TEST(p, >, 5) is FALSE, i.e., fails the test, after returning from the 3rd branch.
 - \triangleright No need to do SCOUT for the branch p.
- Alpha-beta needs to visit *K*'s second branch.

Discussions for SCOUT (3/3)

 SCOUT may pay many visits to a node that is cut off by alpha-beta.

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu ©

Number of nodes visited (1/4)

- For TEST to return TRUE for a subtree T, it needs to evaluate at least
 - \triangleright one child for a MAX node in T, and
 - \triangleright and all of the children for a MIN node in T.
 - ▷ If T has a fixed branching factor b and uniform depth b, the number of nodes evaluated is $\Omega(b^{\ell/2})$ where ℓ is the depth of the tree.

• For TEST to return FALSE for a subtree T, it needs to evaluate at least

- \triangleright one child for a MIN node in T, and
- \triangleright and all of the children for a MAX node in T.
- ▷ If T has a fixed branching factor b and uniform depth b, the number of nodes evaluated is $\Omega(b^{\ell/2})$.

Number of nodes visited (2/4)

- Assumptions:
 - Assume a full complete *b*-ary tree with depth ℓ where ℓ is even.
 - The depth of the root, which is a MAX node, is 0.
- The total number of nodes in the tree is $\frac{b^{\ell+1}-1}{b-1}$.
- H_1 : the minimum number of nodes visited by TEST when it returns TRUE.

$$H_{1} = 1 + 1 + b + b + b^{2} + b^{2} + b^{3} + b^{3} + \dots + b^{\ell/2-1} + b^{\ell/2-1} + b^{\ell/2}$$

$$= 2 \cdot (b^{0} + b^{1} + \dots + b^{\ell/2}) - b^{\ell/2}$$

$$= 2 \cdot \frac{b^{\ell/2+1} - 1}{b-1} - b^{\ell/2}$$

Number of nodes visited (3/4)

Assumptions:

- Assume a full complete *b*-ary tree with depth ℓ where ℓ is even.
- The depth of the root, which is a MAX node, is 0.
- H_2 : the minimum number of nodes visited by alpha-beta.

$$H_{2} = \sum_{i=0}^{\ell} (b^{\lceil i/2 \rceil} + b^{\lfloor i/2 \rfloor} - 1)$$

$$= \sum_{i=0}^{\ell} b^{\lceil i/2 \rceil} + \sum_{i=0}^{\ell} b^{\lfloor i/2 \rfloor} - (\ell + 1)$$

$$= \sum_{i=0}^{\ell} b^{\lceil i/2 \rceil} + H_{1} - (\ell + 1)$$

$$= (1 + b + b + \dots + b^{\ell/2 - 1} + b^{\ell/2} + b^{\ell/2}) + H_{1} - (\ell + 1)$$

$$= (H_{1} - 1 + b^{\ell/2} - b^{\ell/2 - 1}) + H_{1} - (\ell + 1)$$

$$= 2 \cdot H_{1} + b^{\ell/2} - b^{\ell/2 - 1} - (\ell + 2)$$

$$\sim (2.x) \cdot H_{1}$$

Number of nodes visited (4/4)

Comparisons

- When the first branch of a node has the best value, then TEST scans the tree fast.
 - The best value of the first i 1 branches is used to test whether the *i*th branch needs to be searched exactly.
 - If the value of the first i-1 branches of the root is better than the value of *i*th branch, then we do not have to evaluate exactly for the *i*th branch.
- Compared to alpha-beta pruning whose cut off comes from bounds of search windows.
 - It is possible to have some cut-off for alpha-beta as long as there are some relative move orderings are "good."
 - ▶ The moving orders of your children and the children of your ancestor who is odd level up decide a cut-off.
 - The search bound is updated during the searching.
 - Sometimes, a deep alpha-beta cut-off occurs because a bound found from your ancestor a distance away.

Performance of SCOUT (1/2)

• A node may be visited more than once.

- First visit is to TEST.
- Second visit is to SCOUT.

▷ During SCOUT, it may be TESTed with a different value.

- Q: Can information obtained in the first search be used in the second search?
- SCOUT is a recursive procedure.
 - A node in a branch that is not the first child of a node with a depth of ℓ .
 - \triangleright Note that the depth of the root is defined to be 0.
 - ▷ Every ancestor of you may initiate a TEST to visit you.
 - \triangleright It can be visited ℓ times by TEST.

Performance of SCOUT (2/2)

- Show great improvements on depth > 3 for games with small branching factors.
 - It traverses most of the nodes without evaluating them preciously.
 - Few subtrees remained to be revisited to compute their exact mini-max values.
- Experimental data on the game of Kalah show [UCLA Tech Rep UCLA-ENG-80-17, Noe 1980]:
 - SCOUT favors "skinny" game trees, that are game trees with high depth-to-width ratios.
 - On depth = 5, it saves over 40% of time.
 - Maybe bad for games with a large branching factor.
 - Move ordering is very important.
 - ▶ The first branch, if is good, offers a great chance of pruning further branches.

Alpha-beta revisited

In an alpha-beta search with a window [alpha,beta]:

- Failed-high means it returns a value that is larger than or equal to its upper bound *beta*.
- Failed-low means it returns a value that is smaller than or equal to its lower bound *alpha*.

Null or Zero window search:

- Using alpha-beta search with the window [m, m+1].
- The result can be either failed-high or failed-low.
- Failed-high means the return value is at least m+1.

 \triangleright Equivalent to TEST(p, >, m) is true.

- Failed-low means the return value is at most m.
 - \triangleright Equivalent to TEST(p, >, m) is false.

Alpha-Beta + Scout

Intuition:

- Try to incooperate SCOUT and alpha-beta together.
- The searching window of alpha-beta if properly set can be used as TEST in SCOUT.
- Using a searching window is better than using a single bound as in SCOUT.
- Can also apply alpha-beta cut if it applies.
- Modifications to the SCOUT algorithm:
 - Traverse the tree with two bounds as the alpha-beta procedure does.
 - \triangleright A searching window.
 - \triangleright Use the current best bound to guide the value used in TEST.
 - Use a fail soft version to get a better result when the returned value is out of the window.

The NegaScout Algorithm – MiniMax (1/2)

- Algorithm F4'(position p, value alpha, value beta, integer depth)
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0 // a terminal node
 - or depth = 0 // depth is the remaining depth to search or time is running up // from timing control
 - or some other constraints are met // apply heuristic here
 - then return f(p) else begin
 - $> m := -\infty // m \text{ is the current best lower bound; fail soft}$ $m := \max\{m, G4'(p_1, alpha, beta, depth - 1)\} // the first branch$ $if <math>m \ge beta$ then return(m) // beta cut off

$$\triangleright$$
 for $i := 2$ to b do

- ▷ 9: $t := G4'(p_i, m, m+1, depth 1) //$ null window search
- \triangleright 10: if t > m then // failed-high
 - 11: if $(depth < 3 \text{ or } t \ge beta)$
 - **12:** then m := t
 - 13: else $m := G4'(p_i, t, beta, depth 1)$ // re-search
- ▷ 14: if $m \ge beta$ then return(m) // beta cut off

end

• return m

The NegaScout Algorithm – MiniMax (2/2)

- Algorithm G4' (position p, value alpha, value beta, integer depth)
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0 // a terminal node
 - or depth = 0 // depth is the remaining depth to search or time is running up // from timing control
 - or some other constraints are met // apply heuristic here
 - then return f(p) else begin
 - *m* = ∞ // *m* is the current best upper bound; fail soft *m* := min{*m*, *F*4'(*p*₁, *alpha*, *beta*, *depth* − 1)} // the first branch if *m* ≤ *alpha* then return(*m*) // alpha cut off
 for *i* := 2 to b do

▷ 9:
$$t := F4'(p_i, m-1, m, depth - 1)$$
 // null window search

- \triangleright 10: if t < m then // failed-low
 - 11: if $(depth < 3 \text{ or } t \leq alpha)$
 - **12:** then m := t
 - 13: else $m := F4'(p_i, alpha, t, depth 1)$ // re-search
- ▷ 14: if $m \leq alpha$ then return(m) // alpha cut off

end

• return m

NegaScout – MiniMax version (1/2)

NegaScout – MiniMax version (2/2)

The NegaScout Algorithm

Use Nega-MAX format.

Algorithm F4(position p, value alpha, value beta, integer depth)

- determine the successor positions p_1, \ldots, p_b
- if b = 0 // a terminal node
 - or depth = 0 //depth is the remaining depth to search
 - or time is running up // from timing control
 - or some other constraints are met // apply heuristic here
- then return h(p) else
 - $\triangleright m := -\infty //$ the current lower bound; fail soft
 - \triangleright n := beta // the current upper bound
 - \triangleright for i := 1 to b do

▷ 9:
$$t := -F4(p_i, -n, -max\{alpha, m\}, depth - 1)$$

$$\triangleright$$
 10: if $t > m$ then

- 11: if $(n = beta \text{ or } depth < 3 \text{ or } t \geq beta)$
- **12:** then m := t
- 13: else $m := -F4(p_i, -beta, -t, depth 1)$ // re-search
- \triangleright 14: if $m \ge beta$ then return(m) // cut off
- \triangleright 15: $n := max\{alpha, m\} + 1 // set up a null window$
- return m

Search behaviors (1/3)

- If the depth is enough or it is a terminal position, then stop searching further.
 - Return h(p) as the value computed by an evaluation function.
 - Note:

 $h(p) = \left\{ \begin{array}{ll} f(p) & \text{if depth of } p \text{ is 0 or even} \\ -f(p) & \text{if depth of } p \text{ is odd} \end{array} \right.$

- Fail soft version.
- For the first child p_1 , search using the normal alpha beta window..
 - Ine 9: normal window for the first child
 - the initial value of m is $-\infty$, hence $-max\{alpha, m\} = -alpha$

 \triangleright *m* is the current best value

• that is, searching with the normal window [alpha, beta]

Search behaviors (2/3)

- For the second child and beyond p_i , i > 1, first perform a null window search for testing whether m is the answer.
 - line 9: a null-window of [n-1,n] searches for the second child and beyond where $n = max\{alpha, m\} + 1$.
 - \triangleright *m* is best value obtained so far
 - \triangleright alpha is the previous lower bound
 - \triangleright m's value will be first set at line 12 because n = beta
 - \triangleright The value of *n* is set at line 15.
 - line 11:
 - \triangleright n = beta: we are at first iteration.
 - depth < 3: on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
 - \triangleright $t \ge beta$: we have obtained a good enough value from the failed-soft version to guarantee a beta cut.

Search behaviors (3/3)

- For the second child and beyond p_i , i > 1, first perform a null window search for testing whether m is the answer.
 - line 11: on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
 - ▷ Normally, no need to do alpha-beta or any enhancement on very small subtrees.
 - ▶ The overhead is too large on small subtrees.
 - line 13: re-search when the null window search fails high.
 - \triangleright The value of this subtree is at least t.
 - \triangleright This means the best value in this subtree is more than m, the current best value.
 - \triangleright This subtree must be re-searched with the the window [t, beta].
 - line 14: the normal pruning from alpha-beta.

Example for NegaScout

Refinements

- When a subtree is re-searched, it is best to use information on the previous search to speed up the current search.
 - Restart from the position that the value t is returned.
- Maybe want to re-search using the normal alpha-beta procedure.
- F4 runs much better with a good move ordering and transposition tables.
 - Order the moves in a priority list.
 - Reduce the number of re-searches.

Performances

- Experiments done on a uniform random game tree [Reinefeld 1983].
 - Normally superior to alpha-beta when searching game trees with branching factors from 20 to 60.
 - Shows about 10 to 20% of improvement.

Comments

- Incooperating both SCOUT and alpha-beta.
- Used in state-of-the-art game search engines.
- The first search, though maybe unsuccessful, can provide useful information in the second search.
 - Information can be stored and then be reused.

Ideas for new search methods

- Consider the case of a 2-player game tree with either 0 or 1 on the leaves.
 - win, or not win which is lose or draw;
 - lose, or not lose which is win or draw;
 - Call this a binary valued game tree.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
 - The value of the root is either 0 or 1.
 - If a branch of the root returns 1, then we know for sure the value of the root is 1.
 - The value of the root is 0 only when all branches of the root returns 0.
 - An AND-OR game tree search.

Which node to search next?

- A most proving node for a node u: a node if its value is 1, then the value of u is 1.
- A most disproving node for a node u: a node if its value is 0, then the value of u is 0.

Proof or Disproof Number

- Assign a proof number and a disproof number to each node u in a binary valued game tree.
 - proof(u): the minimum number of leaves needed to visited in order for the value of u to be 1.
 - disproof(u): the minimum number of leaves needed to visited in order for the value of u to be 0.

Proof Number: Definition

• *u* is a leaf:

- If value(u) is unknown, then proof(u) is the cost of evaluating u.
- If value(u) is 1, then proof(u) = 0.
- If value(u) is 0, then $proof(u) = \infty$.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$proof(u) = \min_{i=1}^{i=b} proof(u_i);$$

• if u is a MIN node,

$$proof(u) = \sum_{i=1}^{i=b} proof(u_i).$$

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu ⓒ

Disproof Number: Definition

• *u* is a leaf:

- If value(u) is unknown, then disproof(u) is cost of evaluating u.
- If value(u) is 1, then $disproof(u) = \infty$.
- If value(u) is 0, then disproof(u) = 0.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$disproof(u) = \sum_{i=1}^{i=b} disproof(u_i);$$

• if u is a MIN node,

$$disproof(u) = \min_{i=1}^{i=b} disproof(u_i).$$

Illustrations

proof number, disproof number

proof number, disproof number

How to use these Numbers

- If the numbers are known in advance, then from the root, we search a child u with the value equals to $\min\{proof(root), disproof(root)\}$.
 - Then we find a path from the root towards a leaf recursively as follows,
 - ▷ if we try to prove it, then pick a child with the least proof number for a MAX node, and pick any node that has a chance to be proved for a MIN node.
 - ▷ if we try to disprove it, then pick a child with the least disproof number for a MIN node, and pick any node that has a chance to be disproved for a MAX node.
- Assume each leaf takes a lot of time to evaluate.
 - For example, the game tree represents an open game tree or an endgame tree.
 - Depends on the results we have so far, pick the next leaf to prove or disprove.
- Need to be able to update these numbers on the fly.

PN-search: algorithm

Icop: Compute or update proof and disproof numbers for each node in a bottom up fashion.

- If proof(root) = 0 or disproof(root) = 0, then we are done, otherwise
 - \triangleright proof(root) \leq disproof(root): we try to prove it.
 - \triangleright proof(root) > disproof(root): we try to disprove it.

• $u \leftarrow root$; {* find the leaf to prove or disprove *}

- if we try to prove, then
 - \triangleright while u is not a leaf do
 - ▷ if u is a MAX node, then $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero proof number;}$
 - ▶ if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with a non-zero proof number;
- if we try to disprove, then
 - \triangleright while u is not a leaf do
 - \triangleright if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with a non-zero disproof number;
 - \triangleright if current is a MIN node, then
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero disproof number;}$

Prove or disprove u; go to loop;

Multi-Valued game Tree

The values of the leaves may not be binary.

- Assume the values are non-negative integers.
- Note: it can be in any finite countable domain.

Revision of the proof and disproof numbers.

• $proof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.

▷ $proof(u) \equiv proof_1(u)$.

• $disproof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to < v.

 \triangleright disproof(u) \equiv disproof₁(u).

Illustration

Illustration

Multi-Valued Proof Number

• *u* is a leaf:

- If value(u) is unknown, then $proof_v(u)$ is cost of evaluating u.
- If $value(u) \ge v$, then $proof_v(u) = 0$.
- If value(u) < v, then $proof_v(u) = \infty$.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$proof_v(u) = \min_{i=1}^{i=b} proof_v(u_i);$$

• if u is a MIN node,

$$proof_v(u) = \sum_{i=1}^{i=b} proof_v(u_i).$$

TCG: Scout, NegaScout, PN-search, 20151204, Tsan-sheng Hsu ⓒ

Multi-valued Disproof Number

• *u* is a leaf:

- If value(u) is unknown, then $disproof_v(u)$ is cost of evaluating u.
- If $value(u) \ge v$, then $disproof_v(u) = \infty$.
- If value(u) < v, then $disproof_v(u) = 0$.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$disproof_v(u) = \sum_{i=1}^{i=b} disproof_v(u_i);$$

• if u is a MIN node,

$$disproof_v(u) = \min_{i=1}^{i=b} disproof_v(u_i).$$

Revised PN-search(v): algorithm

- *loop:* Compute or update proof_v and disproof_v numbers for each node in a bottom up fashion.
 - If $proof_v(root) = 0$ or $disproof_v(root) = 0$, then we are done, otherwise
 - ▷ $proof_v(root) \leq disproof_v(root)$: we try to prove it.
 - ▷ $proof_v(root) > disproof_v(root)$: we try to disprove it.

• $u \leftarrow root$; {* find the leaf to prove or disprove *}

- if we try to prove, then
 - \triangleright while u is not a leaf do
 - $\triangleright \quad \text{if } u \text{ is a MAX node, then}$
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero proof}_v \text{ number};$
 - \triangleright if current is a MIN node, then
 - $u \leftarrow \text{leftmost child of } u \text{ with a non-zero proof}_v \text{ number};$
- if we try to disprove, then
 - \triangleright while u is not a leaf do
 - \triangleright if u is a MAX node, then
 - $u \leftarrow \text{leftmost child of } u \text{ with a non-zero disproof}_v \text{ number };$
 - ▷ if current is a MIN node, then
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero disproof}_v \text{ number};$

Prove or disprove u; go to loop;

Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
 - Set the initial value of v to be 1.
 - loop: PN-search(v)
 - $\triangleright Prove the value of the search tree is \geq v or disprove it by showing it is < v.$
 - If it is proved, then double the value of v and go to loop again.
 - If it is disproved, then the true value of the tree is between $\lfloor v/2 \rfloor$ and v-1.
 - {* Use a binary search to find the exact returned value of the tree. *}
 - $low \leftarrow \lfloor v/2 \rfloor$; $high \leftarrow v 1$;
 - while $low \leq high$ do
 - \triangleright if low = high, then return low as the tree value
 - $\triangleright \ mid \leftarrow \lfloor (low + high)/2 \rfloor$
 - ▷ **PN-search**(mid)
 - \triangleright if it is disproved, then $high \leftarrow mid 1$
 - \triangleright else if it is proved, then $low \leftarrow mid$

Comments

Appears to be good for searching certain types of game trees.

- Find the easiest way to prove or disprove a conjecture.
- A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
 - Performance of most previous algorithms depends heavily on whether a good move ordering can be found.
- Searching the "easiest" branch may not give you the best performance.
 - Performance depends on the value of each internal nodes.
- Commonly used in verifying conjectures, e.g., first-player win.
 - Partition the opening moves in a tree-like fashion.
 - Try to the "easiest" way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.

References and further readings

- * J. Pearl. Asymptotic properties of minimax trees and gamesearching procedures. *Artificial Intelligence*, 14(2):113–138, 1980.
- * A. Reinefeld. An improvement of the scout tree search algorithm. *ICCA Journal*, 6(4):4–14, 1983.
- * L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. *Artificial Intelligence*, 66(1):91–124, 1994.