Heuristic Search with Pre－Computed Databases

Tsan－sheng Hsu

徐讚昇

tshsu＠iis．sinica．edu．tw
http：／／www．iis．sinica．edu．tw／～tshsu

Abstract

- Use pre-computed partial results to improve the efficiency of heuristic search.
- Introducing a new form of heuristic called pattern databases.
- Compute the cost of solving individual subgoals independently.
- If the subgoals are disjoint, then we can use the sum of costs of the subgoals as a new and better admissible cost function.
$\triangleright A$ way to get a new and better heuristic function by composing known heuristic functions.
- Make use of the fact that computers can memorize lots of patterns.
- Solutions to pre-stored patterns can be pre-computed.
- Speed up factor of over 2000 compared to previous results in 1985.

Definitions

- $n^{2}-1$ puzzle problem:
- The numbers 1 through $n^{2}-1$ are arranged in a n by n square with one empty cell.

$$
\triangleright \text { Let } N=n^{2}-1 \text {. }
$$

- Slide the tiles to a given goal position.
- 15 puzzle:
- May be invented in 1874 and was popular in 1880.
- It looks like one can rearrange an arbitrary state into a given goal state.
- Publicized and published by Sam Loyd in January 1896.
\triangleright A prize of US\$ 1000 was offered to solve one "impossible", but seems to be feasible case.
\triangleright Note: average wage per hour for a worker is US\$0.3.
- Generalizations:
- $n \cdot m-1$ puzzle.
- Puzzles of different shapes.

15 puzzle

- Rules:
- 15 tiles in a 4*4 square with numbers from 1 to 15.
- One empty cell.
- A tile can be slid horizontally or vertically into an empty cell.
- From an initial position, slide the tiles into a goal position.
\triangleright Optimal version: using the fewest number of moves.
- Examples:
- Initial position:

10	8		12
3	7	6	2
1	14	4	11
15	13	9	5

- Goal position:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

15 Puzzle - State Space

- State space is divided into subsets of even and odd permutations [Johnson \& Story 1879].
- Treat a board into a permutation by appending the rows from left to right and from top to bottom.
- f_{1} is number of inversions in a permutation $\pi_{1} \pi_{2} \cdots \pi_{N}$ where an inversion is a distinct pair $\pi_{i}>\pi_{j}$ such that $i<j$.
\triangleright Let $\operatorname{inv}(i, j)=1$ if $\pi_{i}>\pi_{j}$ and $i<j$; otherwise, it is 0.
$\triangleright f_{1}=\sum_{\forall i, j} \operatorname{inv}(i, j)$.
\triangleright Example: the permutation 10,8,12,3,7,6,2,1,14,4,11,15,13,9,5 has $9+7+9+2+5+4+1+0+5+0+2+3+2+1+0=51$ inversions.
- f_{2} is the row number, i.e., $1,2,3$, or 4 , of the empty cell.
- $f=f_{1}+f_{2}$.
- parity
\triangleright Even parity: one whose f value is even.
\triangleright Odd parity: one whose f value is odd.

15 Puzzle — Property 1 and 2

- Property 1: The parity of a board is either even or odd.
- Property 2: There exists some boards with even parity and some other boards with odd parity.
- There is a board with an even parity.

\triangleright The goal position:	5	6	7	8
9	10	11	12	
13	14	15		
$y y y y y y$				

$$
\triangleright f_{1}=0 \text { and } f_{2}=4
$$

- There is a board with an odd parity.

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

$$
f_{1}=1 \text { and } f_{2}=4 .
$$

15 Puzzle — Property 3 and 4

- Property 3: Slide a tile never change the parity of a 15-puzzle board.
- This may not be true for other values of n and for other shapes.
- A proof sketch is given in the next slide.
- Property 4: Given 2 boards with the same parity, we can obtain one from the other by sliding tides.
- Proof is omitted.

Proof sketch of Property 3

- Slide a tile horizontally does not change the parity.
- Slide a tile vertically:
- Change the parity of f_{2}, i.e., row number of the empty cell.
- Change the value of f_{1}, i.e., the number of inversions by

$$
\begin{array}{ll}
\triangleright & +3 \\
\triangleright & +1 \\
\triangleright & -1 \\
\triangleright & -3
\end{array}
$$

- Example: when " a " is slid down
\triangleright only the relative order of "a", " b ", " c " and " d " are changed
\triangleright analyze the 4 cases according to the rank of "a" in "a", "b", "c" and ${ }^{66} d$ ".

$*$	$*$	$*$	$*$
$*$	\mathbf{a}	\mathbf{b}	\mathbf{c}
\mathbf{d}		$*$	$*$
$*$	$*$	$*$	$*$

Core of past algorithms

- Using DEC 2060 a 1-MIPS machine: solves several random instances of the 15 puzzle problem within 30 CPU minutes in 1985.
- Using Iterative-deepening A*.
- Using the Manhattan distance heuristic as an estimation of the remaining cost.
- Suppose a tile is currently at (i, j) and its goal is at $\left(i^{\prime}, j^{\prime}\right)$, then \triangleright the Manhattan distance for this tile is $\left|i-i^{\prime}\right|+\left|j-j^{\prime}\right|$.
- The Manhattan distance between a board and a goal board is the sum of the Manhattan distance of all the tiles.
- Manhattan distance is a lower bound on the number of slides needed to reach the goal position.
- It is admissible.

Non-additive pattern databases

- Intuition: do not measure the distance of one tile at a time.
- Pattern database: measure the collective distance of a pattern, i.e., a group of tiles, at a time.
- Complications.
- The tiles get in each other's way.
- Sliding a tile to reach its goal destination may make the other tiles that are already in their destinations to move away.
- A form of interaction is called linear conflict:
\triangleright To flip two adjacent tiles needs more than 2 moves.
\triangleright In addition, sliding tiles other than the two adjacent tiles to be flipped is also needed in order to flip them.

Example: Linear conflict

- The sum of Manhattan distance for the following position is 4.

1	2	3	4
5	6	7	8
9	12	10	11
13	14	15	

- However it takes much more than 4 slides to reach the goal.

1	2	3	4					
5	6	7	8					
9	12	10	11					
13	14	15		\Longrightarrow	1	2	3	4
:---:	:---:	:---:	:---:					
5	6	7	8					
9	10	11	12					
13	14	15						

Fringe (1/2)

A fringe is the arrangement of a subset of tiles, and may include the empty cell, by treating tiles not selected don't-care.

- Don't-cared tiles are indistinguishable within themselves.
- The subset of tiles selected is called a pattern.
- Example:

$*$	$*$	4	
$*$	8	$*$	12
$*$	13	$*$	15
$*$	$*$	14	$*$

- Notations for specifying a pattern.
- "*" means don't-care.
- We need to know the whereabout of the empty cell no matter it is selected or not.
\triangleright An empty space means a selected empty cell.
\triangleright " \bigcirc " means an unselected empty cell.

Fringe (2/2)

- Example:

$*$	$*$	4	
$*$	8	$*$	12
$*$	13	$*$	15
$*$	$*$	14	$*$

- In this example, there are 7 selected tiles, including the empty cell.
- There are $16!/ 9!=57,657,600$ possible fringe arrangements which is called the pattern size.
- The goal fringe arrangement for the selected subset of tiles:

$*$	$*$	$*$	4
$*$	$*$	$*$	8
$*$	$*$	$*$	12
13	14	15	

Solving a fringe arrangement

- For each fringe arrangement, pre-compute the minimum number of moves needed to make it into the goal fringe arrangement.
- This is called the fringe number for the given fringe arrangement.
- There are many possible ways to solve this problem since the pattern size is small enough to fit into the main memory.
\triangleright Sample solution 1: Using the original Manhattan distance heuristic to solve this smaller problem.
\triangleright Sample solution 2: BFS.

Comments on pattern size

- Pro's.
- Pattern with a larger size is better in terms of having a larger fringe number.
- A larger fringe number usually means better estimation, i.e., closer to the goal fringe arrangement.
- Con's.
- Pattern with a larger size means consuming lots of memory to memorize these arrangements.
- Pattern with a larger size also means consuming lots of time in constructing these arrangements.
\triangleright Depends on your resource, pick the right pattern size.

Usage of fringe numbers (1/2)

Divide and conquer.

- Reduce a 15-puzzle problem into a 8-puzzle one.
- Solution =
\triangleright First reach a goal fringe arrangement consisted of the first row and column.
\triangleright Then solve the 8-puzzle problem without using the fringe tiles.
\triangleright Finally Combining these two partial solutions to form a solution for the 15-puzzle problem.
- May not be optimal.

\odot	$*$	$*$	$\mathbf{4}$					
$\mathbf{1 3}$	$*$	$\mathbf{3}$	$*$					
$*$	$\mathbf{9}$	$\mathbf{5}$	$*$					
$*$	$\mathbf{2}$	$*$	$\mathbf{1}$					
$\mathbf{1}$				$\quad \Longrightarrow$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
:---:	:---:	:---:	:---:					
$\mathbf{5}$	$*$	\varnothing	$*$					
$\mathbf{1 3}$	$*$	$*$	$*$					

- Divide and conquer may not be working because often times you cannot combine two sub-solutions to form the final optimal solution easily.
- In solving the second half, you may affect tiles that have reached the goal destinations in the first half.
- The two partial solutions may not be disjoint.

Usage of fringe numbers (2/2)

- New heuristic function $h()$ for IDA*: using the fringe number as the new lower bound estimation.
- The fringe number is a lower bound on the remaining cost.
\triangleright It is admissible.
\triangleright Q: how to prove it is admissible?
- How to find better patterns for fringes?
- Large pattern require more space to store and more time to compute.
- Can we combine smaller patterns to form bigger patterns?
\triangleright They are not disjoint.
\triangleright May be overlapping physically.
\triangleright May be overlapping in solutions.

More than one patterns

- Can have many different patterns that may have some overlaps:

$*$	$*$	3	$*$
$*$	$*$	7	$*$
9	10	11	12
$*$	$*$	15	\odot

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{5}$	$*$	$*$	$*$
$\mathbf{9}$	$*$	$*$	$*$
$\mathbf{1 3}$	$*$	$*$	$<$

- Cannot use the divide and conquer approach anymore for some of the patterns.
- If you have many different pattern databases $P_{1}, P_{2}, P_{3}, \ldots$
- The heuristics or patterns may not be disjoint.
\triangleright Solving tiles in one pattern may help/hurt solving tiles in another pattern even if they have no common cells.
- The heuristic function we can use is

$$
h\left(P_{1}, P_{2}, P_{3}, \ldots\right)=\max \left\{h\left(P_{1}\right), h\left(P_{2}\right), h\left(P_{3}\right), \ldots\right\} .
$$

Problems with multiple patterns (1/2)

- If you have many different pattern databases $P_{1}, P_{2}, P_{3}, \ldots$
- It is better to have

$$
\triangleright h\left(P_{1}, P_{2}, P_{3}, \ldots\right)=h\left(P_{1}\right)+h\left(P_{2}\right)+h\left(P_{3}\right)+\cdots,
$$

instead of
$\triangleright h\left(P_{1}, P_{2}, P_{3}, \ldots\right)=\max \left\{h\left(P_{1}\right), h\left(P_{2}\right), h\left(P_{3}\right), \ldots\right\}$.

- A larger $h()$ means a better performance for \mathbf{A}^{*}.
- Key problem: how to make sure $h()$ is admissible?

Problems with multiple patterns (2/2)

- Why not making the heuristics and the patterns disjoint?
- If the patterns are not disjoint, then we cannot add them together.
\triangleright Divide the board into several disjoint regions.
- Though patterns are disjoint, their costs are not disjoint.
\triangleright Some moves are counted more than once.
- Q: Why can we add the Manhattan distance of all tiles together to form a heuristic function?
- We add 15 1-cell patterns together to form a better heuristic function.
- What are the property of these patterns so that they can be added together?

Key observations (1/2)

- Partition the board into disjoint regions.
- Using the tiles in a region of the goal arrangement as a pattern.
- Examples:

\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{A}
\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{A}
\mathbf{B}	\mathbf{B}	\mathbf{B}	\mathbf{B}
\mathbf{B}	\mathbf{B}	\mathbf{B}	\mathbf{B}

\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{B}
\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{B}
\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{B}
\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{B}

- Can also divide the board into more than 2 disjoint patterns.

\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{B}
\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{B}
\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{B}
\mathbf{C}	\mathbf{C}	\mathbf{C}	\mathbf{B}

Key observations (2/2)

- For each region, solve the problem optimally and then count the moves that are made only by tiles in this region.
- Note: if the empty cell is selected, we do not count the moves of the empty cell.
- The "fringe" number for an arrangement is the minimum number of slides made on tiles in this region.
- It is now possible to add fringe numbers of all disjoint regions together to form a composite fringe number.
\triangleright Q: How to prove this?
- For the Manhattan distance heuristic:
- Each pattern is a tile.
- They are disjoint.
\triangleright They only count the number of slides made by each tile.
- Thus they can be added together to form a heuristic function.

Disjoint patterns

- A heuristic function $f()$ is disjoint with respect to two patterns P_{1} and P_{2} if
- P_{1} and P_{2} have no common cells.
- The solutions corresponding to $f\left(P_{1}\right)$ and $f\left(P_{2}\right)$ do not interfere each other.
- Then $f\left(P_{1}\right)+f\left(P_{2}\right)$ is admissible if
(1) $f()$ is disjoint with respect to P_{1} and P_{2} and
(2) both $f\left(P_{1}\right)$ and $f\left(P_{2}\right)$ are admissible.
- Q: How to prove this?

Revised fringe number

- Fringe number: for each fringe arrangement, the minimum number of moves needed to make it into the goal fringe arrangement.
- Given a fringe arrangement H, let $f(H)$ be its fringe number.
- Revised fringe number: for each fringe arrangement F during the course of making a sequence of moves to the goal fringe arrangement, the minimum number of fringe-only moves in the sequence of moves.
- Given a fringe arrangement H, let $f^{\prime}(H)$ be its revised fringe number.
- Given two patterns P_{1} and P_{2} without overlapping cells, then
- $f\left(P_{1}\right)$ and $f^{\prime}\left(P_{1}\right)$ are both admissible.
- $f\left(P_{2}\right)$ and $f^{\prime}\left(P_{2}\right)$ are both admissible.
- $f\left(P_{1}\right)+f\left(P_{2}\right)$ is not admissible.
- $f^{\prime}\left(P_{1}\right)+f^{\prime}\left(P_{2}\right)$ is admissible.
- Note: the Manhattan distance of a 1-cell pattern is a lower bound of its revised fringe number.

Comments

- A special form of divide and conquer with additional properties.
- Spaces required by patterns must be within the main memory.
- Each pattern must be able to be solved optimally by "primitive" methods.
- It is better to put near-by tiles together to better deal with the conflicting problem.
- It is now possible to design a better admissible heuristic function f by composing two simple admissible heuristic functions f_{1} and f_{2}.
- Let f_{1}^{\prime} be the function that does not count moves of tiles not in its region when computing f_{1}.

$$
\triangleright f_{1}^{\prime}(x) \leq f_{1}(x)
$$

- Let f_{2}^{\prime} be the function that does not count moves of tiles not in its region when computing f_{2}.

$$
\triangleright f_{2}^{\prime}(x) \leq f_{2}(x)
$$

- Let $f=f_{1}^{\prime}+f_{2}^{\prime}$.
\triangleright Hopefully, $f(x)>f_{1}(x)$ and $f(x)>f_{2}(x)$.

Performance

- Running on a $440-\mathrm{MHZ}$ Sun Ultra 10 workstation.
- SPECint = 1.0 (1 MIPS) in 1985.
- SPECint = 17.9 in 2002.
- Solves the 15 puzzle problem that is more than 2,000 times faster than the previous result by using the Manhattan distance heuristic.
- $2,000 * 17.9$ times faster in wall time time.
- Solves the 24-puzzle problem
- An average of two days per problem instance.
- Generates 2,110,000 nodes per second.
- The average solution length was 100.78 moves.
- The maximum solution length was 114 moves.
- Prediction: using the Manhattan distance heuristic, it would take an average of about 50,000 years to solve a problem instance.
\triangleright The average Manhattan distance is 76.078 moves.
\triangleright The average value for the disjoint database heuristic is 81.607 moves, which gives a tighter bound.

Other heuristics (1/2)

- One of the main drawbacks of using the disjoint heuristics is that it does not capture interactions between tiles in different regions.
- 2-tile pattern database:
- For each pair of tiles, and for each pair of possible locations, compute the optimal solution, i.e., minimum number of all moves made by these 2 tiles, for this pair of tiles to both move to their destinations.
\triangleright This is called pairwise distance.
\triangleright For an $n^{2}-1$ puzzle, we have $O\left(n^{4}\right)$ different combinations.
\triangleright For $n=4, n^{4}=256$.
\triangleright For $n=5, n^{4}=625$.
- It is usually the case that the pairwise distance of 2 tiles x and y is much larger than the sum of the Manhattan distances of x and y.
- The pairwise distance is at least the sum of the Manhattan distances.
- Q: How to prove this?

Other heuristics (2/2)

- For a given board, partition the board into a collection of 2-tiles so that the sum of cost is maximized.
- For partitioning the board, we mean to find eight 2-titles so that they cover all tiles, including the empty cell.
- This new cost estimation function is admissible.
\triangleright Q: How to prove this?
- This can be done using a maximum weighted perfect matching.
- Build a complete graph with the tiles being the vertices.
- The edge cost is the pairwise distance between these two tiles.
- Try to find a perfect matching with the sum of edge costs being the largest possible.
- Algorithm runs in $O(\sqrt{n} \cdot m)$ time is known where n is the number of vertices and m is the number of edges.
\triangleright S. Micali and V.V. Vazirani, "An $O(\sqrt{|V|} \cdot|E|)$ algorithm for finding maximum matching in general graphs", Proc. 21st IEEE Symp. Foundations of Computer Science, pp. 17-27, 1980.
\triangleright Faster algorithms are known since the input is a complete graph.

Comments

- The Manhattan distance is a partition into 1-tile patterns.

For 2-tile patterns:

- Faster approximation algorithms for finding maximum perfect matchings on complete graphs are known.
- The cost for exhaustive enumeration is

$$
\binom{16}{2}\binom{14}{2} \cdots\binom{4}{2}\binom{2}{2} / 8!
$$

$$
\triangleright=16!/\left(2^{8} \cdot 8!\right)=2,027,025
$$

- Can also build 3-tile databases, but the corresponding 3-D matching problem for partitioning is NP-C.
- Requires much less memory than that of the the fringe method.
- Some kinds of bootstrapping: solving smaller problems using primitive methods, and then using these results to solve larger problems.

What else can be done?

- Looks like some kinds of two-stage search.
- First stage searching means building pre-computed results, e.g., patterns.
- Second stage searching meets the pre-computed results if found.
- Better way of partitioning.
- Is it possible to generalize this result to other problem domains?
- How to decide the amount of time used in searching and the amount of time used in retrieving pre-computed knowledge?
- Memorize vs Compute

References and further readings

- Wm. Woolsey Johnson and William E. Story. Notes on the "15" puzzle. American Journal of Mathematics, 2(4):397-404, December 1879.
- R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence, 27:97-109, 1985.
- J. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence, 14(3):318-334, 1998.
* R. E. Korf and A. Felner. Disjoint pattern database heuristics. Artificial Intelligence, 134:9-22, 2002.

