Scout and NegaScout

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

- It looks like alpha-beta pruning is the best we can do for an exact generic searching procedure.
 - What else can be done generically?
 - Alpha-beta pruning follows basically the "intelligent" searching behaviors used by human when domain knowledge is not involved.
 - Can we find some other "intelligent" behaviors used by human during searching?
- Intuition: MAX node.
 - Suppose we know currently we have a way to gain at least 300 points at the first branch.
 - If there is an efficient way to know the second branch is at most gaining 300 points, then there is no need to search the second branch in detail.
 - ▶ Alpha-beta cut algorithm is one way to make sure of this by returning an exact value.
 - ▶ Is there a way to search a tree by only returning a bound?
 - ▶ Is searching with a bound faster than searching exactly?
- Similar intuition holds for a MIN node.

SCOUT procedure

- It may be possible to verify whether the value of a branch is greater than a value v or not in a way that is faster than knowing its exact value [Judea Pearl 1980].
- High level idea:
 - While searching a branch T_i of a MAX node, if we have already obtained a lower bound v_ℓ .
 - \triangleright First TEST whether it is possible for T_i to return something greater than v_ℓ .
 - \triangleright If FALSE, then there is no need to search T_i . This is called fails the test.
 - ightharpoonup If TRUE, then search T_i .

 This is called passes the test.
 - While searching a branch T_j of a MIN node, if we have already obtained an upper bound v_u
 - \triangleright First TEST whether it is possible for T_j to return something smaller than v_n .
 - \triangleright If FALSE, then there is no need to search T_j . This is called fails the test.
 - ightharpoonup If TRUE, then search T_j .

 This is called passes the test.

How to TEST > v

```
procedure TEST_{>}(position p, value v)
  // test whether the value of the branch at p is > v
• determine the successor positions p_1, \ldots, p_b of p
• if b=0, then // terminal
     \triangleright if f(p) > v then // f(): evaluating function
            return TRUE
     ▶ else return FALSE
if p is a MAX node, then
      • for i := 1 to b do

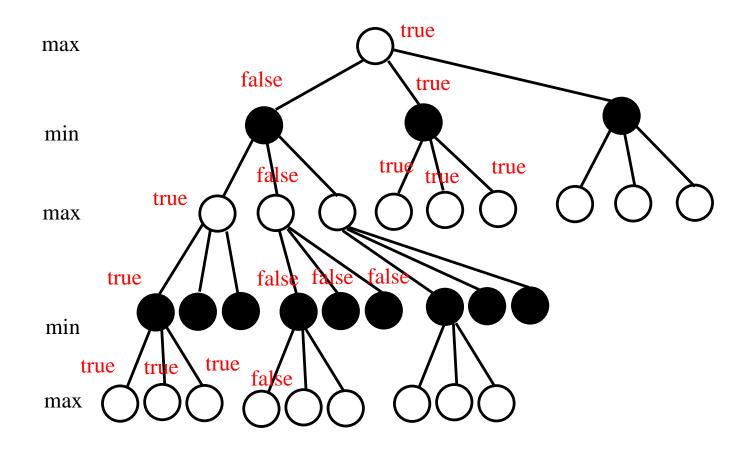
ightharpoonup if TEST_{>}(p_i, v) is TRUE, then
                  return TRUE // succeed if a branch is > v
      • return FALSE // fail only if all branches \leq v
if p is a MIN node, then
      • for i := 1 to b do
            \triangleright if TEST_{>}(p_i, v) is FALSE, then
                  return FALSE // fail if a branch is \leq v
      • return TRUE // succeed only if all branches are > v
```

How to TEST < v

```
procedure TEST_{<}(position p, value v)
  // test whether the value of the branch at p is < v
• determine the successor positions p_1, \ldots, p_b of p
• if b=0, then // terminal
     \triangleright if f(p) < v then // f(): evaluating function
            return TRUE
      ▶ else return FALSE
if p is a MAX node, then
      • for i := 1 to b do
            \triangleright if TEST<sub><</sub>(p_i, v) is FALSE, then
                  return FALSE // fail if a branch is \geq v
      • return TRUE // succeed only if all branches < v
if p is a MIN node, then
      • for i := 1 to b do

ightharpoonup if TEST_{<}(p_i, v) is TRUE, then
                  return TRUE // succeed if a branch is < v
      • return FALSE // fail only if all branches are \geq v
```

Illustration of TEST>



How to TEST — Discussions

■ Sometimes it may be needed to test for " $\geq v$ ", or " $\leq v$ ".

• TEST
$$_>(p,v)$$
 is TRUE \equiv TEST $_\le(p,v)$ is FALSE \equiv TEST $_<(p,v)$ is TRUE

•
$$\mid$$
 TEST $_{<}(p,v)$ is TRUE \mid \equiv \mid TEST $_{\geq}(p,v)$ is FALSE

•
$$\mid$$
 TEST $_{<}(p,v)$ is FALSE \mid \equiv \mid TEST $_{\geq}(p,v)$ is TRUE

- Practical consideration:
 - Set a depth limit and evaluate the position's value when the limit is reached.

Main SCOUT procedure

Algorithm SCOUT(position p)

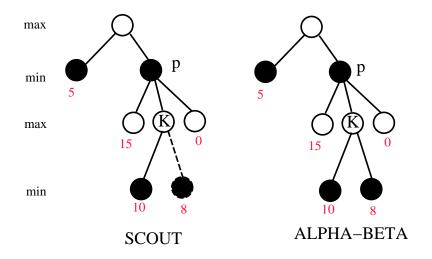
- determine the successor positions p_1, \ldots, p_b
- if b = 0, then return f(p)
- else $v = SCOUT(p_1)$ // SCOUT the first branch
- if p is a MAX node
 - for i := 2 to b do
 - \triangleright if $TEST_{>}(p_i, v)$ is TRUE, // TEST first for the rest of the branches then $v = SCOUT(p_i)$ // find the value of this branch if it can be > v
- if p is a MIN node
 - for i := 2 to b do
 - \triangleright if $TEST_{<}(p_i, v)$ is TRUE, // TEST first for the rest of the branches then $v = SCOUT(p_i)$ // find the value of this branch if it can be < v
- lacksquare return v

Discussions for SCOUT (1/3)

- Note that v is the current best value at any moment.
- MAX node:
 - For any i > 1, if TEST $_{>}(p_i, v)$ is TRUE,
 - \triangleright then the value returned by $SCOUT(p_i)$ must be greater than v.
 - We say the p_i passes the test if TEST_>(p_i , v) is TRUE.
- MIN node:
 - For any i > 1, if TEST $_{<}(p_i, v)$ is TRUE,
 - \triangleright then the value returned by $SCOUT(p_i)$ must be smaller than v.
 - We say the p_i passes the test if TEST_< (p_i, v) is TRUE.

Discussions for SCOUT (2/3)

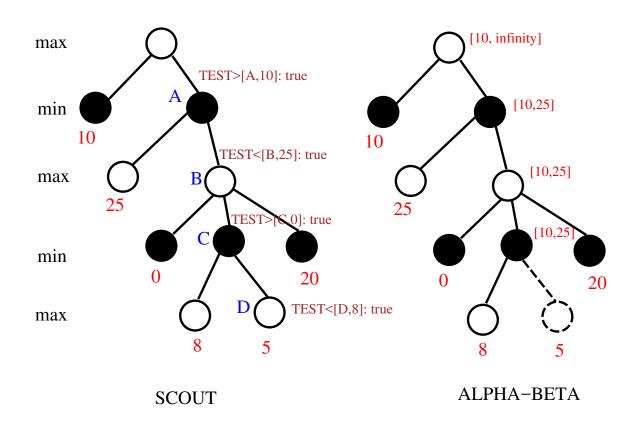
 TEST which is called by SCOUT may visit less nodes than that of alpha-beta.



- Assume TEST $_>(p,5)$ is called by the root after the first branch is evaluated.
 - \triangleright It calls TEST_>(K,5) which skips K's second branch.
 - $ightharpoonup TEST_{>}(p,5)$ is FALSE, i.e., fails the test, after returning from the 3rd branch.
 - \triangleright No need to do SCOUT for the branch p.
- Alpha-beta needs to visit K's second branch.

Discussions for SCOUT (3/3)

SCOUT may pay many visits to a node that is cut off by alpha-beta.



Number of nodes visited (1/4)

- ullet For TEST to return TRUE for a subtree T, it needs to evaluate at least
 - \triangleright one child for a MAX node in T, and
 - \triangleright and all of the children for a MIN node in T.
 - ▶ If T has a fixed branching factor b and uniform depth b, the number of nodes evaluated is $\Omega(b^{\ell/2})$ where ℓ is the depth of the tree.
- For TEST to return FALSE for a subtree T, it needs to evaluate at least
 - \triangleright one child for a MIN node in T, and
 - \triangleright and all of the children for a MAX node in T.
 - ▶ If T has a fixed branching factor b and uniform depth b, the number of nodes evaluated is $\Omega(b^{\ell/2})$.

Number of nodes visited (2/4)

- Assumptions:
 - Assume a full complete b-ary tree with depth ℓ where ℓ is even.
 - The depth of the root, which is a MAX node, is 0.
- The total number of nodes in the tree is $\frac{b^{\ell+1}-1}{b-1}$.
- H_1 : the minimum number of nodes visited by TEST when it returns TRUE.

$$H_{1} = 1 + 1 + b + b + b^{2} + b^{2} + b^{3} + b^{3} + \dots + b^{\ell/2-1} + b^{\ell/2-1} + b^{\ell/2}$$

$$= 2 \cdot (b^{0} + b^{1} + \dots + b^{\ell/2}) - b^{\ell/2}$$

$$= 2 \cdot \frac{b^{\ell/2+1} - 1}{b-1} - b^{\ell/2}$$

Number of nodes visited (3/4)

Assumptions:

- Assume a full complete b-ary tree with depth ℓ where ℓ is even.
- The depth of the root, which is a MAX node, is 0.
- H_2 : the minimum number of nodes visited by alpha-beta.

$$H_{2} = \sum_{i=0}^{\ell} (b^{\lceil i/2 \rceil} + b^{\lfloor i/2 \rfloor} - 1)$$

$$= \sum_{i=0}^{\ell} b^{\lceil i/2 \rceil} + \sum_{i=0}^{\ell} b^{\lfloor i/2 \rfloor} - (\ell + 1)$$

$$= \sum_{i=0}^{\ell} b^{\lceil i/2 \rceil} + H_{1} - (\ell + 1)$$

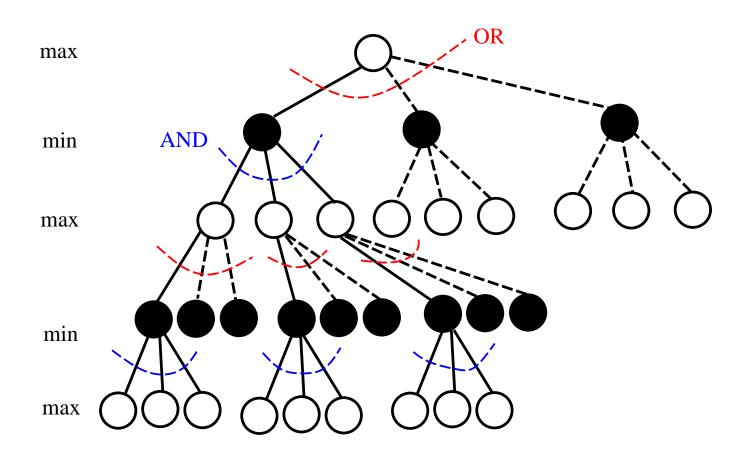
$$= (1 + b + b + \dots + b^{\ell/2 - 1} + b^{\ell/2} + b^{\ell/2}) + H_{1} - (\ell + 1)$$

$$= (H_{1} - 1 + b^{\ell/2} - b^{\ell/2 - 1}) + H_{1} - (\ell + 1)$$

$$= 2 \cdot H_{1} + b^{\ell/2} - b^{\ell/2 - 1} - (\ell + 2)$$

$$\sim (2.x) \cdot H_{1}$$

Number of nodes visited (4/4)



Comparisons

- When the first branch of a node has the best value, then TEST scans the tree fast.
 - The best value of the first i-1 branches is used to test whether the ith branch needs to be searched exactly.
 - If the value of the first i-1 branches of the root is better than the value of ith branch, then we do not have to evaluate exactly for the ith branch.
- Compared to alpha-beta pruning whose cut off comes from bounds of search windows.
 - It is possible to have some cut-off for alpha-beta as long as there are some relative move orderings are "good."
 - ▶ The moving orders of your children and the children of your ancestor who is odd level up decide a cut-off.
 - The search bound is updated during the searching.
 - ▶ Sometimes, a deep alpha-beta cut-off occurs because a bound found from your ancestor a distance away.

Performance of SCOUT (1/2)

- A node may be visited more than once.
 - First visit is to TEST.
 - Second visit is to SCOUT.
 - During SCOUT, it may be TESTed with a different value.
 - Q: Can information obtained in the first search be used in the second search?
- SCOUT is a recursive procedure.
 - A node in a branch that is not the first child of a node with a depth of ℓ .
 - ▶ Note that the depth of the root is defined to be 0.
 - ▶ Every ancestor of you may initiate a TEST to visit you.
 - \triangleright It can be visited ℓ times by TEST.

Performance of SCOUT (2/2)

- Show great improvements on depth > 3 for games with small branching factors.
 - It traverses most of the nodes without evaluating them preciously.
 - Few subtrees remained to be revisited to compute their exact mini-max values.
- Experimental data on the game of Kalah show [UCLA Tech Rep UCLA-ENG-80-17, Noe 1980]:
 - SCOUT favors "skinny" game trees, that are game trees with high depth-to-width ratios.
 - On depth = 5, it saves over 40% of time.
 - Maybe bad for games with a large branching factor.
 - Move ordering is very important.
 - ▶ The first branch, if is good, offers a great chance of pruning further branches.

Alpha-beta revisited

- In an alpha-beta search with a window [alpha,beta]:
 - Failed-high means it returns a value that is larger than or equal to its upper bound beta.
 - Failed-low means it returns a value that is smaller than or equal to its lower bound alpha.
- Null or Zero window search:
 - Using alpha-beta search with the window [m, m+1].
 - The result can be either failed-high or failed-low.
 - Failed-high means the return value is at least m+1.
 - \triangleright Equivalent to TEST_>(p,m) is TRUE.
 - Failed-low means the return value is at most m.
 - \triangleright Equivalent to TEST_>(p,m) is FALSE.
- The above works for both fail hard and fail soft versions of the alpha-beta algorithm.

Alpha-Beta + Scout

Intuition:

- Try to incooperate SCOUT and alpha-beta together.
- The searching window of alpha-beta if properly set can be used as TEST in SCOUT.
- Using a searching window is better than using a single bound as in SCOUT.
- Can also apply alpha-beta cut if it applies.
- Modifications to the SCOUT algorithm:
 - Traverse the tree with two bounds as the alpha-beta procedure does.
 - ▶ A searching window.
 - ▶ Use the current best bound to guide the value used in TEST.
 - Use a fail soft version to get a better result when the returned value is out of the window.

The NegaScout Algorithm – MiniMax (1/2)

- Algorithm F4' (position p, value alpha, value beta, integer depth)
 - determine the successor positions p_1, \ldots, p_b
 - if b=0 // a terminal node or depth=0 // depth is the remaining depth to search or time is running up // from timing control or some other constraints are met // apply heuristic here
 - then return f(p) else begin

```
> m := -∞ // m is the current best lower bound; fail soft m := max{m, G4'(p₁, alpha, beta, depth - 1)} // the first branch if m ≥ beta then return(m) // beta cut off
> for i := 2 to b do
> 9: t := G4'(pᵢ, m, m + 1, depth - 1) // null window search
> 10: if t > m then // failed-high

11: if (depth < 3 or t ≥ beta)</li>
12: then m := t
13: else m := G4'(pᵢ, t, beta, depth - 1) // re-search
> 14: if m ≥ beta then return(m) // beta cut off

end
```

• return m

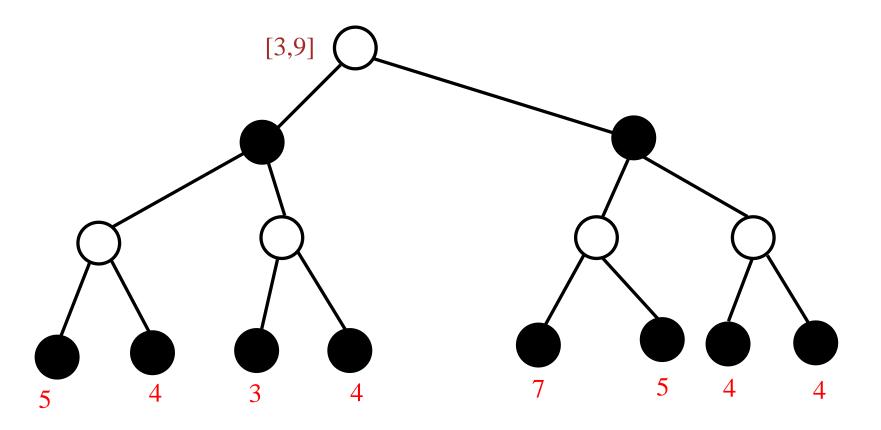
The NegaScout Algorithm – MiniMax (2/2)

- Algorithm G4' (position p, value alpha, value beta, integer depth)
 - determine the successor positions p_1, \ldots, p_b
 - if b=0 // a terminal node or depth=0 // depth is the remaining depth to search or time is running up // from timing control or some other constraints are met // apply heuristic here
 - then return f(p) else begin

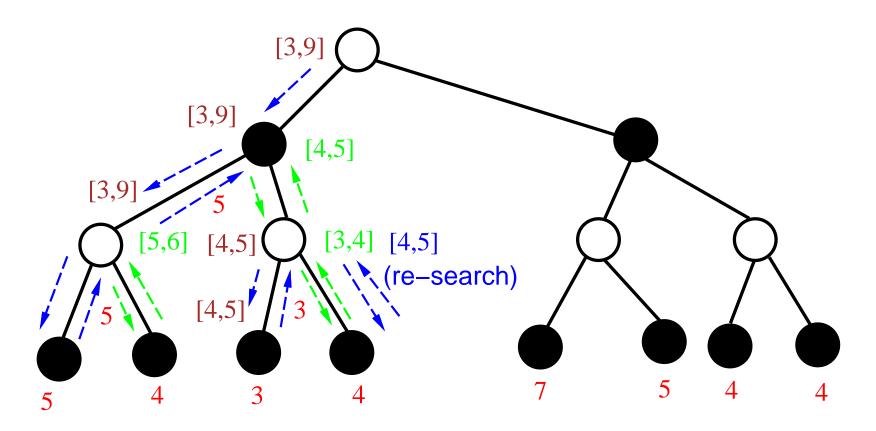
```
▷ m = ∞ // m is the current best upper bound; fail soft m := min{m, F4'(p₁, alpha, beta, depth - 1)} // the first branch if m ≤ alpha then return(m) // alpha cut off
▷ for i := 2 to b do
▷ 9: t := F4'(pᵢ, m - 1, m, depth - 1) // null window search
▷ 10: if t < m then // failed-low</li>
11: if (depth < 3 or t ≤ alpha)</li>
12: then m := t
13: else m := F4'(pᵢ, alpha, t, depth - 1) // re-search
▷ 14: if m ≤ alpha then return(m) // alpha cut off
```

• return m

NegaScout – MiniMax version (1/2)



NegaScout – MiniMax version (2/2)



The NegaScout Algorithm

- Use Nega-MAX format.
- Algorithm F4 (position p, value alpha, value beta, integer depth)
 - determine the successor positions p_1, \ldots, p_b
 - if b=0 // a terminal node or depth=0 //depth is the remaining depth to search or time is running up // from timing control or some other constraints are met // apply heuristic here
 - then return h(p) else

• return m

Search behaviors (1/3)

- If the depth is enough or it is a terminal position, then stop searching further.
 - Return h(p) as the value computed by an evaluation function.
 - Note:

$$h(p) = \left\{ \begin{array}{ll} f(p) & \text{if depth of } p \text{ is 0 or even} \\ -f(p) & \text{if depth of } p \text{ is odd} \end{array} \right.$$

- Fail soft version.
- For the first child p_1 , search using the normal alpha beta window.
 - line 9: normal window for the first child
 - the initial value of m is $-\infty$, hence $-max\{alpha, m\} = -alpha$ m is the current best value
 - that is, searching with the normal window [alpha, beta]

Search behaviors (2/3)

- For the second child and beyond p_i , i>1, first perform a null window search for testing whether m is the answer.
 - line 9: a null-window of [n-1,n] searches for the second child and beyond where $n=max\{alpha,m\}+1$.
 - ▶ m is best value obtained so far
 - ▶ alpha is the previous lower bound
 - \triangleright m's value will be first set at line 12 because n = beta
 - \triangleright The value of n is set at line 15.

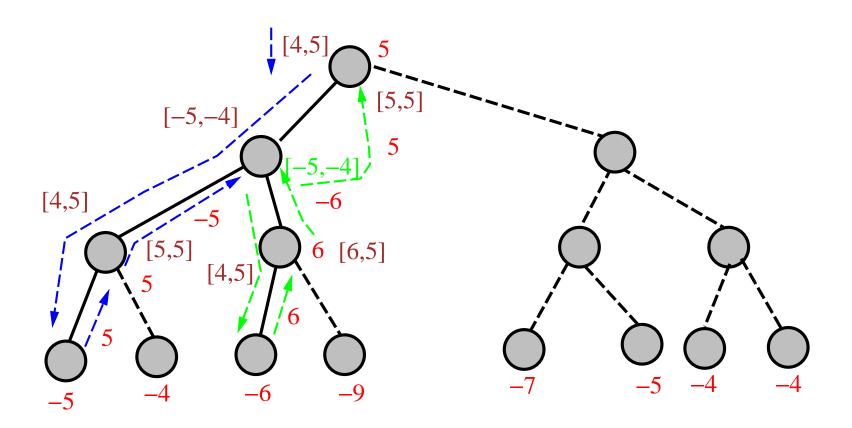
• line 11:

- \triangleright n = beta: we are at the first iteration.
- ightharpoonup depth < 3: on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
- $\triangleright t \ge beta$: we have obtained a good enough value from the failed-soft version to guarantee a beta cut.

Search behaviors (3/3)

- For the second child and beyond p_i , i>1, first perform a null window search for testing whether m is the answer.
 - line 11: on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
 - Normally, no need to do alpha-beta or any enhancement on very small subtrees.
 - ▶ The overhead is too large on small subtrees.
 - line 13: re-search when the null window search fails high.
 - \triangleright The value of this subtree is at least t.
 - \triangleright This means the best value in this subtree is more than m, the current best value.
 - \triangleright This subtree must be re-searched with the the window [t, beta].
 - line 14: the normal pruning from alpha-beta.

Example for NegaScout



Refinements

- When a subtree is re-searched, it is best to use information on the previous search to speed up the current search.
 - ullet Restart from the position that the value t is returned.
- Maybe want to re-search using the normal alpha-beta procedure.
- F4 runs much better with a good move ordering and some form of transposition table.
 - Order the moves in a priority list.
 - Reduce the number of re-searches.

Performances

- Experiments done on a uniform random game tree [Reinefeld 1983].
 - Normally superior to alpha-beta when searching game trees with branching factors from 20 to 60.
 - Shows about 10 to 20% of improvement.

Comments

- Incooperating both SCOUT and alpha-beta.
- Used in state-of-the-art game search engines.
- The first search, though maybe unsuccessful, can provide useful information in the second search.
 - Information can be stored and then reused.

References and further readings

- * J. Pearl. Asymptotic properties of minimax trees and game-searching procedures. $Artificial\ Intelligence,\ 14(2):113-138,\ 1980.$
- * A. Reinefeld. An improvement of the scout tree search algorithm. $ICCA\ Journal$, 6(4):4–14, 1983.