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Abstract

The complexities of various search algorithms are considered in
terms of time, space, and cost of the solution paths.
• Systematic brute-force search

. Breadth-first search (BFS)

. Depth-first search (DFS)

. Depth-first Iterative-deepening (DFID)

. Bi-directional search

• Heuristic search: best-first search
. A∗

. IDA∗

The issue of storing information in the DISK instead of the
main memory.
Solving 15-puzzle.
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Definitions

Node branching factor b: the number of different new states
generated from a state.
• Average node branching factor.
• Assumed to be a constant here.

Edge branching factor e: the number of possible new, maybe
duplicated, states generated from a state.
• Average node branching factor.
• Assumed to be a constant here.

Depth of a solution d: the shortest length from the initial state
to one of the goal states
• The depth of the root is 0.
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Illustration
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Single-player Game and Search

A single-player game defines a state space in which goals are
hidden.
• A pre-defined set of possible configurations.
• An initial configuration and rules of state transitions are given.
• Once an instance of a game is announced or published there is no way

to change its configuration or structure.
• The puzzle hidden inside an instance of a game is fixed.

Purpose of a puzzle:
. Finding the goal that fits given constraints: NoNoGram and Sodoku.
. Finding a, sometimes best, solution path: 15-puzzle.

A search program finds a goal state starting from the initial
state by exploring states in the state space.
• Brute-force search

. Try each possible state one by one

. Need better ways to enumerate all possible states

• Heuristic search
. Use knowledge or heuristics to cut states that cannot be solutions
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Brute-force search

A brute-force search algorithm is one that uses information
about
• the initial state,
• operators on finding the states adjacent to a state,
• and a test function whether a goal is reached.

A “pure” brute-force search program.
• A state maybe re-visited many times.

An “intelligent” brute-force search algorithm.
• Make sure a state will be eventually visited.
• Make sure a state will be visited a limited number of times.

TCG: Basic Search, 20181004, Tsan-sheng Hsu c© 6



A “pure” brute-force search

A “pure” brute-force search is a brute-force search algorithm
that does not care whether a state to be visited has been
visited before or not.
Algorithm Brute-force(N0)
{∗ do brute-force search from the starting state N0 ∗}
• current ← N0

• While true do
. If current is a goal,

then return success
. current ← a state that current can reach in one step

Comments
• Very easy to code and use very little memory.
• May take infinite time because there is no guarantee that

. a state will be eventually visited.

• If you pick a random next state, then it is called a random walk.
. Truly random numbers are hard and expensive to get.
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Pure brute-force approach

Random forward walk
• From a state, know how to find your neighbors

. forward neighbors

. backward neighbors

• Each step moves closer to the goal.
• Branch and cut
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Pitfall of Brute-Force approach

When you need to cross a bridge, which is something you need
to do immediately to reach the next level.
• Example: In Chinese Chess, you need to un-check immediately.
• Sometimes you do not know that is a bridge and/or how to cross a

bridge.
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Example:bridge
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Intelligent brute-force search

An “intelligent” brute-force search algorithm.
• Assume S is the set of all possible states
• Use a systematic way to examine each state in S one by one so that

. a state is not examined too many times — does not have too many
duplications;

. it is efficient to find an unvisited state in S.

Need to know whether a state has been previously visited
efficiently.
• Need some mechanism to “remember” the past behaviors.

. Store previously visited states in memory

. Use a smart visiting order, say assign a unique index from 0 to S − 1,
to avoid visiting a state twice where S is the number of distinct states.

Some notable algorithms.
• Breadth-first search (BFS).
• Depth-first search (DFS) and its variations.
• Depth-first Iterative deepening (DFID).
• Bi-directional search.
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Breadth-first search (BFS)

deeper(N): gives the set of all possible states that can be
reached from the state N .
• It takes at least O(e) time to compute deeper(N).
• The number of distinct elements in deeper(N) is b.

Algorithm BFS(N0) {∗ do BFS from the starting state N0 ∗}
• If the starting state N0 is a goal state,

then return success
• Queue Init(Q)
• Enqueue(Q,N0);
• While Queue Empty(Q) is FALSE do

. N ← Dequeue(Q)

. for each state Z in deeper(N) do
if Z is a goal state then return success
else Enqueue(Q,Z)

• Return fail

TCG: Basic Search, 20181004, Tsan-sheng Hsu c© 13



BFS
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BFS
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BFS
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BFS
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BFS: Illustration

open list

closed list

current node

bfs ordering
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BFS: analysis (1/2)

How to find the path from the starting state to the goal after
BFS return success?
• When a state, other than N0, is added, record its parent state N in

this state.
• We can then back trace the path by tracing the parent pointers.

Space complexity:
• O(bd)

. The average number of distinct elements at depth d is bd.

. We may need to store all distinct elements at depth d in the Queue.

Time complexity:
• 1∗e+ b∗e+ b2 ∗e+ b3 ∗e+ · · ·+ bd−1 ∗e = (bd−1)∗e/(b−1) = O(bd−1 ∗e),

if b is a constant.
. For each element N in the Queue, it takes at least O(e) time to find

deeper(N).
. It is always true that e ≥ b.
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BFS: analysis (2/2)

Nodes to be considered:
• Open list: the set of nodes that are in the queue, namely, those to be

explored later.
• Closed list (optional): the set of nodes that have been explored.
• During searching, a node in the open list is first selected, and then

explored, and finally placed into the closed list.

A smart mechanism for the closed list is needed if you want to
make sure each node is visited at most once.
• It needs to keep track of all visited nodes.

. 1 + b + b2 + b3 + · · ·+ bd = (bd+1 − 1)/(b− 1) = O(bd).

• Need a good algorithm to check for states in deeper(N) have been
visited or not.

. Hash

. Binary search

. · · ·
• This is not really needed since it won’t guarantee to improve the

performance because of the extra cost to maintain and compare states
in the closed list under the assumption that a goal is reachable!
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BFS: comments

Always finds an optimal solution, i.e., one with the smallest
possible depth d.
• Do not need to worry about falling into loops as long as there exists a

goal.
. Need to store nodes that are already visited (closed list) if it is possible

to have no solution.

Using distance to the root to partition the search space and to
make sure each node will be visited some time.
• We need to use length = i states in order to find length = i+ 1 states.

Need extra effort to find the solution path.
Most critical drawback: huge space requirement.
• It is tolerable for an algorithm to be 100 times slower, but not so for

one that is 100 times larger.
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BFS: ideas when there is little memory

What can be done when you do not have enough main memory?

• DISK
. Store states that has been visited before into DISK and maintain them

as sorted ⇒ closed list.
. Store the QUEUE into DISK ⇒ open list.

• Memory: buffers
. Most recently visited nodes ⇒ closed list.
. Candidates of possible newly explored nodes ⇒ open list.

• Merge closed list in memory with the one in DISK when memory is full
• Append the buffer of newly explored nodes (open list) to the QUEUE

in DISK when memory is full or QUEUE in DISK is empty.
. We only need to know when a newly explored node has been visited or

not when it is about to be removed from the QUEUE.
. The decision of whether it has been visited or not can be delayed.
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BFS: disk based

Algorithm BFSdisk(N0)
{∗ do disk based BFS from the starting state N0 ∗}
{∗ only show maintaining of open list ∗}
• If the starting state N0 is a goal state, then return success
• Queue Init(Qd) for nodes to visit in DISK
• Queue Init(Qm) for nodes to visit in main memory
• Enqueue(Qd,N0);
• While (Queue Empty(Qd) AND Queue Empty(Qm)) is FALSE do

. If Queue Empty(Qd), then {
Append states in Qm to Qd; Empty Qm

}
. N ← Dequeue(Qd)
. for each state Z in deeper(N) do

if Z is a goal state then return success
else if Z is not visited before then Enqueue(Qm,Z)

. If Queue Full(Qm), then {
Append states in Qm to Qd; Empty Qm

}
• Return fail

TCG: Basic Search, 20181004, Tsan-sheng Hsu c© 23



Open lists

disk queue

memory queue

end of queue

head of queue
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Disk based algorithms

When data cannot be loaded into the memory, you need to
re-invent algorithms even for tasks that may look simple.
• Batched processing.

. Accumulate tasks and then try to perform these tasks when they need
to.

. Combine tasks into one to save disk I/O time.

. Ordered disk accessing patterns.

Main ideas:
• It is not too slow to read all records of a large file in sequence.
• It is very slow to read every record in a large file in a random order.
• Sorting of data stored on the DISK can be done relatively efficient.
• When two files are sorted, it is cost effective to

. compare the difference of them;

. merge them.
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Disk based BFS (1/2)

States to be visited (open list) are already sorted using their
depths in ascending order.
• No extra work is needed.
• The states are appended according to their depths.

Implementation of the QUEUE.
• QUEUE can be stored in one disk file.
• Newly explored ones are appended at the end of the file.

. fopen(“filename”,”a+”);

• Always retrieve the one at the head of the disk queue.
. lseek() can be used to mark the current head of queue.
. Can periodically move the content of the disk queue to the beginning

of the file.
. Can move the content of the disk queue to the beginning of the file

when the disk queue is empty.

A newly explored node will be explored after the current
QUEUE is empty.
• Property of BFS.
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Disk based BFS (2/2)

How to find out a newly explored node has been visited before
or not if this is desired?
• Maintain the list of visited nodes (closed list) on DISK sorted according

to some index function on ID’s of the nodes.
. When the memory buffer is full, sort it according to their indexes.
. Merge the sorted list of newly visited nodes in the memory buffer into

the one stored on DISK.

• We can easily compare two sorted lists and find out the intersection or
difference of the two.

. We can easily remove the ones that are already visited before once Qm

is sorted.
. To revert items in Qm back to its the original BFS order, which is

needed for persevering the BFS search order, we need to sort again
using the original BFS ordering.

Why we can delay the decision of whether a newly explored
node has been visited or not?
• We only need to know when a newly explored node has been visited or

not when it is about to be removed from the QUEUE.
• The decision of whether it has been visited or not can be delayed or

batched for processing.
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Closed lists

memory queue

end of queue

head of queue

sort

compare

sort

merge

sorted closed list (file)

disk queue (file)

X

Y

X−Y

un−sort

Z

Z−Y

sorted & uniqued sorted & uniqued

buffer
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Depth-first search (DFS)

next(current,N): returns the state next to the state “current”
in deeper(N).
• Assume states in deeper(N) are given a linear order with dummy first

and last elements both being null, and assume current ∈ deeper(N).
• Assume we can efficiently generate next(current,N) based on

“current” and N .
Algorithm DFS(N0) {∗ do DFS from the starting state N0 ∗}
• Stack Init(S)
• Push(S,(null,N0))
• While Stack Empty(S) is FALSE do

. (current,N)← Pop(S)

. R← next(current,N)

. If R is null, then continue {∗ visited all N ’s children; backtrack!! ∗}

. If R is a goal, then return success

. Push(S,(R,N))

. If R is already in S, then continue {∗ to avoid loops ∗}

. Can introduce some cut-off depth here in order not to go too deep

. Push(S,(null, R)) {∗ search deeper ∗}
• Return fail
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DFS: analysis (1/2)

Time complexity:
• O(ed)

. The number of possible
branches at depth d is ed.

• This is only true when the game
tree searched is not skewed.

. The leaves of the game tree
are all of O(d).

• It can be as bad as O(eD) where
D is the maximum depth of the
tree.

GOAL

D

d

Space complexity:
• O(d)

. Only need to store the current path in the Stack.

• This is also only true when the tree is not skewed.
• It can be as bad of O(D) where D is the maximum depth of the tree.
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DFS: analysis (2/2)

open list: STACK
closed list: visited nodes.
May need to store the set of visited nodes in order not to visit
a node too many times.
• Methods:

. Hash table

. Sorted list and then use binary search

. Balanced search tree

. · · ·
• This is a real issue in order to get out of a long and wrong branch as

fast as you can.

Solution found may not be optimal.
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DFS: Illustration

Layout the nodes in a 2-D plane, and sweep the plane from
“shallow to deep” and from “left to right”.
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DFS with two Stacks

May be complex to implement next(current,N).
Uses two stacks for DFS.
• Stack 1: to keep track of the branches to be searched.

. When a new node is visited, push all of its children to the stack plus a
“null” symbol as a separator.

. Pop one if you want to visit the next state.

. When a “null” symbol is popped, then we know it is to backtrack from
the current node.

. Needs O(d · b) space.

• Stack 2: to keep track of the current path.
. When a new node is visited, push it into the stack.
. When a “null” symbol is found, then we pop a node to indicate “back-

track”.
. Needs O(d) space.
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DFS with a little bit more space

Algorithm DFS′(N0) {∗ do DFS from the starting state N0 ∗}
{∗ uses two stacks and takes O(d · b+ d) space ∗}

Stack Init(S) {∗ open list ∗}
Stack Init(P ) {∗ the current path ∗}
Push(S,N0)
While Stack Empty(S) is FALSE do
• N ← Pop(S)
• if N is Null then N ← Pop(P ); continue {∗ backtrack ∗}

else Push(P ,N) {∗ search deeper ∗}
• if N is a goal state, then return success
• Push(S,Null) {∗ maker for end of search siblings ∗}
• for each state Z in deeper(N) do

. if Z is not in P then Push(S,Z) {∗ to avoid loops ∗}
• Can introduce some cut-off depth here in order not to go too deep

Return fail
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DFS: comments

If it needs to find the path leading to the goal, you have to
store the parent node of each node being visited.
Without a good cut-off depth, it may not be able to find a
solution in time.
May not find an optimal solution at all.
Heavily depends on the move ordering.
• Which one to search first when you have multiple choices for your next

move?

A node can be searched many times.
• Need to do something, e.g., hashing, to avoid researching too much.
• Need to balance the effort to memorize and the effort to research.

Very easy to construct the solution path from the STACK once
the goal is found.
Most critical drawback: huge and unpredictable time complexity.
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DFS: when there is little memory

Difficult to implement a STACK on a DISK so far if the STACK
is too large to be fit into the main memory.
• The size of a stack (open list) won’t be too large normally.
• The size of the closed list can be huge.

We need to decide instantly whether a node has been visited
before or not.
• The decision of whether a node has been visited or not cannot be

delayed.
. Batch processing is not working here.
. It may take too much time to handle a disk based hash table.

Use data compression and/or bit-operation techniques to store
as many visited nodes as possible.
• Some nodes maybe visit again and again.
• Need a good heuristic to store the most frequently visited nodes.

. Avoid swapping too often.
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DFS with a depth limit

Do DFS from the starting state N0 without exceeding a given
depth limit.
• length(root, y): the number of edges visited from the root node root

to the node y during DFS searching.

Algorithm DFSdepth(N0, limit)
• Stack Init(S)
• Push(S,(null,N0)) where N0 is the initial state
• While Stack Empty(S) is FALSE do

. (current,N)← Pop(S)

. R← next(current,N)

. If R is a goal, then return success

. If R is null, then continue {∗ visited all N ’s children; backtrack!! ∗}

. Push(S,(R,N))

. If length(N0, R) > limit, then continue {∗ cut off ∗}

. If R is already in S, then continue {∗ to avoid loops ∗}

. Push(S,(null, R)) {∗ search deeper ∗}
• Return fail
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Depth-first iterative-deepening (DFID)

DFSdepth(N, current limit): DFS from the starting state N and
with a depth cut off at the depth current limit.
Algorithm DFID(N0,cut off depth) {∗ do DFID from the
starting state N0 with a depth limit cut off depth ∗}
• current limit← 0
• While current limit < cut off depth do

. If DFSdepth(N0, current limit) finds a goal state g,
then return g as the found goal state

. current limit← current limit + 1

• Return fail

Space complexity:
• O(d)
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DFID
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DFID

TCG: Basic Search, 20181004, Tsan-sheng Hsu c© 40



DFID
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DFID
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DFID: Illustration

T0
T1

T2

T3

T4

T5
T6
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Time complexity of DFID (1/2)

The branches at depth i are generated d− i+ 1 times.
• There are ei branches at depth i.

Total number of branches visited M(e, d) is
(d+ 1)e0 + de1 + (d− 1)e2 + · · ·+ 2ed−1 + ed

= ed(1 + 2e−1 + 3e−2 + · · ·+ (d+ 1)e−d)
≤ ed(1− 1/e)−2 if e > 1

Analysis:
. (1− x)−2 = 1/(1− 2x + x2) = 1 + 2x + 3x2 + · · ·+ kxk−1 + (k + 1)xk + · · · .
. if x ≥ 0, (k + 1)xk + (k + 2)xk+1 · · · ≥ 0.

. Hence 1 + 2x + 3x2 + · · ·+ kxk−1 ≤ (1− x)−2, if 0 ≤ x.
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Time complexity of DFID (2/2)

Let M(e, d) be the total number of branches visited by DFID
with an edge branching factor of e and depth d.
Examples:
• When e = 2, M(e, d) ≤ 4ed.
• When e = 3, M(e, d) ≤ 9/4ed.
• When e = 4, M(e, d) ≤ 16/9ed.
• When e = 5, M(e, d) ≤ 25/16ed < 1.57ed.
• · · ·
• When e = 30, M(e, d) ≤ 900/841ed < 1.071ed.

M(e, d) = O(ed) with a small constant factor when e is
sufficiently large.
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DFID: comments

No need to worry about a good cut-off depth as in DFS.
We can find length ≤ i states without storing any additional
information.
• However, it is really difficult to find length == i states.

Trade time with space.
May still need a mechanism to decide instantly whether a node
has been visited before or not.
Good for a tournament situation where each move needs to be
made in a limited amount of time.
Q:

. Does DFID always find an optimal solution?

. How about BFID?
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DFS with depth limit and direction (1/2)

Two refined service routines when direction of the search is
considered:
• DFSdir(B,G, successor, i): DFS with the set of starting states B, goal

states G, successor function and depth limit i.
• nextdir(current, successor,N): returns the state next to the state

“current” in successor(N).

In the above two routines:
• successor is deeper for forward searching
• successor is prev for backward searching

Note:
• Given a state N , prev(N) gives all states that can reach N in one step.
• Given a state N , deeper(N) gives the set of all possible states that N

can reach in one step.
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Search directions

deeper

prev
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DFS with depth limit and direction (2/2)

DFSdir(B,G, successor, i): DFS with the set of starting states
B, goal states G, successor function and depth limit i.
Algorithm DFSdir(B,G, successor, limit)
• Stack Init(S)
• For each possible starting state t in B do

. Push(S,(null, t))

• While Stack Empty(S) is FALSE do
. (current,N)← Pop(S)
. R← nextdir(current, successor,N)
. If R is a goal in G, then return success
. If R is null, then continue {∗ visited all N ’s children; backtrack!! ∗}
. Push(S,(R,N))
. If length(B,R) > limit, then continue {∗ cut off ∗}
. If R is already in S, then continue {∗ to avoid loops ∗}
. Push(S,(null, R)) {∗ search deeper ∗}

• Return fail

Note length(B, x) is the length of a shortest path between the
state x and a state in B.
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Bi-directional search

Combined with iterative-deepening.
DFSdir(B,G, successor, i): DFS with the set of starting states
B, goal states G, successor function and depth limit i.
• successor is deeper for forward searching
• successor is prev for backward searching

. Given a state Si, prev(Si) gives all states that can reach Si in one step.

Algorithm BDS(N0,cut off depth)
• current limit← 0
• while current limit < cut off depth do

. if DFSdir({N0}, G, deeper, current limit) returns success,
then return success {∗ forward searching ∗}
else store all states at depth = current limit in an area H

. if DFSdir(G,H, prev, current limit) returns success,
then return success {∗ backward searching ∗}

. if DFSdir(G,H, prev, current limit + 1) returns success,
then return success {∗ in case the optimal solution is odd-lengthed ∗}

. current limit← current limit + 1

• return fail
Backward searching at depth = current limit + 1 is needed to
find odd-lengthed optimal solutions.
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BDIR: Illustration
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Bi-directional search: Example

H

G
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Bi-directional search: analysis

Time complexity:
• O(ed/2)

Space complexity:
• O(ed/2): needed to store the half-way meeting points H.

Comments:
• Run well in practice.
• Depth of the solution is expected to be the same for a normal uni-

directional search, however the number of nodes visited is greatly
reduced.

• Pay the price of storing solutions at half depth.
• Need to know how to enumerate the set of goals.
• Trade off between time and space.

. What can be stored on DISK?

. What operations can be batched?

• Q:
. How about using BFS in forward searching?
. How about using BFS in backward searching?
. How about using BFS in both directions?
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Heuristic search

Heuristics: criteria, methods, or principles for deciding which
among several alternative courses of actions promises to be
the most effective in order to achieve some goal [Judea Pearl
1984].
• Need to be simple and effective in discriminate correctly between good

and bad choices.

A heuristic search is a search algorithm that uses information
about
• the initial state,
• operators on finding the states adjacent to a state,
• a test function whether a goal is reached, and
• heuristics to pick the next state to explore.

A “good” heuristic search algorithm:
• States that are not likely leading to the goals will not be explored

further.
. A state is cut or pruned.

• States are explored in an order that are according to their likelihood of
leading to the goals → good move ordering.
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Heuristic search: A∗

A∗ search: best first heuristic search with branch and bound,
and with a lower-bound estimation.
Algorithm A∗(N0)
• Priority Queue Init(PQ) to store partial paths with keys being the

costs of the paths.
. Paths in PQ are sorted according to their current costs plus a lower

bound on the remaining distances.

• EnPriority Queue(PQ,P0) where P0 is the path from N0 to N0.
• While Priority Queue Empty(PQ) is FALSE do

. P ← DePriority Queue(PQ)

. 11: If P reaches a goal, then return success

. 12: Find extended paths from P by extending one step

. for each path P ′ formed by adding a state N reachable from P do

. If N has not been visited before,
then EnPriority Queue(PQ,P ′)

. 15: else if N has been visited from a path P ′′ with a larger cost,
Priority Queue Remove(PQ,P ′′)
EnPriority Queue(PQ,P ′)

• Return fail
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A∗: Illustration

The current PQ contains P1, P2 and P3.
• Assume the cost of P2 is the smallest in the open list.

Explore the children, x, y and z, of P2 first.
Now the PQ has 5 items, P2 + x, P2 + y, P2 + z, P1 and P3.

P

x y z

P2

1

P3
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A∗ algorithm: discussions

When a path is inserted, namely at Line 15, check for whether
it has reached some nodes that have been visited before.
• It may take a huge space and a clever algorithm to implement an

efficient Priority Queue.
• It may need a clever data structure to efficiently check for possible

duplications.
. Open list: a PQ to store those partial paths, with costs, that can be

further explored.
. Closed list: a data structure to store all visited nodes with the least

cost leading to it from the starting state.
. Check for duplicated visits in the closed list only.
. A newly expanded node is inserted only if either it has never been

visited before, or being visited, but along a path of larger cost.

Checking of the termination condition:
• We need to check for whether a goal is found only when a path is

popped from the PQ, i.e., at Line 11.
• We cannot check for whether a goal is found when a path is generated

and inserted into the PQ, i.e., at Line 12.
. We will not be able find the optimal solution if we do the checking at

Line 12.
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Cost function (1/2)

Cost function:
• Given a path P ,

. let g(P ) be the current cost of P ;

. let h(P ) be the estimation of remaining, or heuristic cost of P ;

. f(P ) = g(P ) + h(P ) is the cost function.

• How to find a good h() is the key of an A∗ algorithm?
• It is known that if h() never overestimates the actual cost to the goal

(this is called admissible), then A∗ always finds an optimal solution.
. Q: How to prove this?

• Note: If h() is admissible and P reaches the goal, then h(P ) = 0 and
f(P ) = g(P ).

• Need an lower bound estimation that is as large as possible.
• Can design the cost function so that A∗ emulates the behavior of other

search routines.
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Cost function (2/2)

Assume all costs are positive, there is no need to check for
falling into a loop.
It consumes a lot of memory to record the set of visited nodes
(closed list) which is needed to improve the efficiency.
It also consume a lot of memory to store the PQ, namely open
list.
Q:

. What disk based techniques can be used?

. Why do we need a non-trivial h(P ) that is admissible?

. How to design an admissible cost function?

TCG: Basic Search, 20181004, Tsan-sheng Hsu c© 59



DFS with costs and a threshold

DFScost(N, f, threshold) is a version of DFS with a starting
state N and a cost function f that cuts off a path when its cost
is more than a given threshold.
• DFSdepth(N, cut off depth) is a special version of DFScost(N, f, threshold).

Algorithm DFScost(N0,f ,threshold)
• Stack Init(S)
• Push(S,(null,N0)) where N0 is the initial state
• While Stack Empty(S) is FALSE do

. (current,N)← Pop(S)

. R← next(current,N) {∗ pick a good move ordering here ∗}

. If R = null, then continue {∗ visited all N ’s children; backtrack!! ∗}

. Push(S,(R,N))

. Let P be the path from N0 to R

. If f(P ) > threshold, then continue {∗ cut off ∗}

. If R is a goal, then return success {∗ goal is found ∗}

. If R is already in S, then continue {∗ to avoid loops ∗}

. Push(S,(null, R)) {∗ search deeper ∗}
• Return fail
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How to pick a good move ordering ?

Instead of just using next(current,N) to find the next unvisited
neighbors of N with the information of the last visited node
being current, we do the followings.
• Use a routine to order the neighbors of N so that it is always the case

the neighbors are visited from low cost to high cost.
. Let this routine be next1(current,N).

• Note we still need dummy first and last elements which are represented
as null.

a b c b c a

next1() follows a sorted ordernext() follows an arbitrary, but fixed order
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DFS with a greedy move ordering

Algorithm DFS1cost(N0,f ,threshold)
• Stack Init(S)
• Push(S,(null,N0)) where N0 is the initial state
• While Stack Empty(S) is FALSE do

. (current,N)← Pop(S)

. R← next1(current,N)

. If R = null, then continue {∗ visited all N ’s children; backtrack!! ∗}

. Push(S,(R,N))

. Let P be the path from N0 to R

. If f(P ) > threshold, then continue {∗ cut off ∗}

. If R is a goal, then return success {∗ Goal is found! ∗}

. If R is already in S, then continue {∗ to avoid loops ∗}

. Push(S,(null, R)) {∗ search deeper ∗}
• Return fail
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How to in-cooperate ideas from A∗

Instead of using a stack in DFScost, use a priority queue.
Algorithm DFS2cost(N0,f ,threshold)
• Priority Queue Init(PQ) with keys f(P ) where P is the path from
N0 to the state stored

• EnPriority Queue(PQ,(null,N0))
• While Priority Queue Empty(PQ) is FALSE do

. (current,N)← DePriority Queue(PQ)

. R← next1(current,N)

. If R = null, then continue {∗ visited all N ’s children; backtrack!! ∗}

. EnPriority Queue(PQ,(R,N))

. Let P be the path from N0 to R

. If f(P ) > threshold, then continue {∗ cut off ∗}

. If R is a goal, then return success {∗ Goal is found! ∗}

. If R is already in PQ, then continue {∗ to avoid loops ∗}

. EnPriority Queue(PQ,(null, R)) {∗ search deeper ∗}
• Return fail
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DFS1 and DFS2

DFS1
• Using a locally best-first or greedy approach to pick the next child to

explore.

DFS2
• It may be costly to maintain a priority queue as in the case of A∗.
• Similar to A∗, globally pick the next path to explore.

. DFS2 extends one child at a time.

. A∗ expands all children at once.

• Similar to DFS1, using a locally best-first or greedy approach to pick
the next child to explore.

TCG: Basic Search, 20181004, Tsan-sheng Hsu c© 64



IDA∗ = DFID + A∗

DFScost(N, f, threshold) is a version of DFS with a starting
state N and a cost function f that cuts off a path when its cost
is more than a given threshold.
IDA∗: iterative-deepening A∗

Algorithm IDA∗(N0, threshold)
• threshold← h(null)
• While threshold is reasonable do

. DFScost(N0, g + h(), threshold)
{∗ Can also use DFS1cost or DFS2cost here ∗}

. If the goal is found,
then return success

. threshold← the least g(P ) + h(P ) cost among all paths P being cut

• Return fail
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IDA∗: comments

IDA∗ does not need to use a priority queue as in the case of A∗

if DFS2() is not used.
• IDA∗ without using DFS2() is optimal in terms of solution cost, time,

and space over the class of admissible best-first searches on a tree.

Issues in updating threshold.
• Increase too little: re-search too often.
• Increase too large: cut off too little.
• Q: How to guarantee optimal solutions are not cut?

. It can be proved, as in the case of A∗, that given an admissible cost
function, IDA∗ will find an optimal solution, i.e., one with the least
cost, if one exists.

Cost function is the knowledge used in searching.
Combine knowledge and search!
Need to balance the amount of time spent in realizing
knowledge and the time used in searching.

TCG: Basic Search, 20181004, Tsan-sheng Hsu c© 66



15 puzzle (1/2)

Introduction of the game:
• 15 tiles in a 4*4 square with numbers from 1 to 15.
• One empty cell.
• A tile can be slid horizontally or vertically into an empty cell.
• From an initial position, slide the tiles into a goal position.

Examples:

• Initial position:

10 8 12
3 7 6 2
1 14 4 11

15 13 9 5

• Goal position:

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15
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15 puzzle (2/2)

Total number of positions: 16! = 20, 922, 789, 888, 000 ≤ 2.1∗1013.

• It is feasible, in terms of computation time, to enumerate all possible
positions, since 2007.

. Can use DFS or DFID now.

. Need to avoid falling into loops or re-visit a node too many times.

• It is still too large to store all possible positions in the main memory
of a PC now (2018). However, some servers do have the capacity.

. Cannot use BFS efficiently even now.

. Maybe difficult to find an optimal solution.

. Maybe able to use disk based BFS.
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Solving 15 puzzles (1/2)

Using DEC 2060 a 1-MIPS machine (year 1985): solved the 15
puzzle problem within 30 CPU minutes for all testing positions,
generating over 1.5 million nodes per minute.
• Note:

. Intel Core i7 5960X has 8 cores (year 2014) and is rated at 238,310
MIPS,

. ARM Cortex A7 has upto 4 cores (year 2011) and is rated at 2,850
MIPS, and

. Apple A11 has 6 cores (year 2017) is at least 3.3 times more powerful
than A7 per core.

. Apple A12 has 8 cores (year 2018) is at least 15% more powerful than
A11 per core.

. More GPU and AI engines are seen in later CPU’s.
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Solving 15 puzzles (2/2)

Result:
• The average solution length was 53 moves.
• The maximum was 66 moves.
• IDA∗ generated more nodes than A∗, but ran faster due to less overhead

per node.

Heuristics used:
• g(P ): the number of moves made so far.
• h(P ): the Manhattan distance between the current and the goal

position.
. Suppose a tile is currently at (i, j) and its goal is at (i′, j′), then the

Manhattan distance for this tile is |i− i′|+ |j − j′|.
. The Manhattan distance between a position and a goal position is the

sum of the Manhattan distance of every tile.
. h(P ) is admissible.
. f(P ) = g(P ) + h(P ) may not be monotone.
. Q: What kinds of f() are monotone?
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What else can be done?

Bi-directional search and IDA∗?
• How to design a good and non-trivial heuristic function?

How to find an optimal solution?
How to get a better move ordering in DFS?
Balancing in resource allocation:
• The efforts to memorize past results versus the amount of efforts to

search again.
• The efforts to compute a better heuristic, i.e., the cost function.
• The amount of resources spent in implementing a better heuristic and

the amount of resources spent in searching.

Search in parallel.
More techniques for disk based algorithms.
Q: Can these techniques be applied to two-person games?
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