Theory of Computer Games: Selected Advanced Topics

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

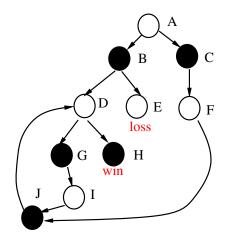
http://www.iis.sinica.edu.tw/~tshsu

Abstract

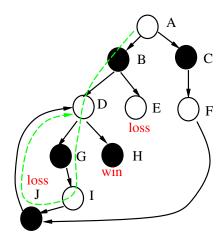
- Some advanced research issues.
 - The graph history interaction (GHI) problem.
 - Opponent models.
 - Searching chance nodes.
 - Proof-number search.

Graph history interaction problem

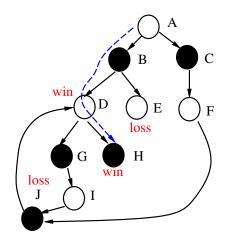
- The graph history interaction (GHI) problem [Campbell 1985]:
 - In a game graph, a position can be visited by more than one paths from a starting position.
 - The value of the position depends on the path visiting it.
 - ▶ It can be win, loss or draw for Chinese chess.
 - ▶ It can only be draw for Western chess and Chinese dark chess.
 - ▶ It can only be loss for Go.
- In the transposition table, you record the value of a position, but not the path leading to it.
 - Values computed from rules on repetition cannot be used later on.
 - It takes a huge amount of storage to store all the paths visiting it.
- This is a very difficult problem to be solved in real time [Wu et al '05].



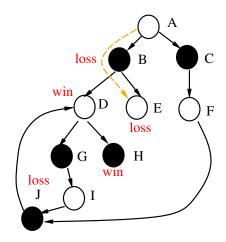
• Assume the one causes loops wins the game.



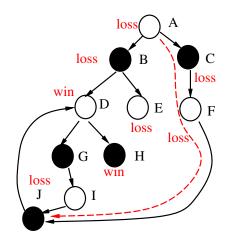
- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition.
 - \triangleright Memorized J as a loss position (for the root).



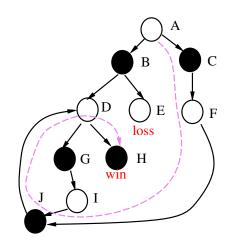
- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.



- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.



- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.



- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.
- However, $A \to C \to F \to J \to D \to H$ is a win (for the root).

Comments

- Using DFS to search the above game graph from left first or from right first produces two different results.
- Position A is actually a win position.
 - ullet Problem: memorize J is a loss is only valid when the path leading to it causes a loop.
- Storing the path leading to a position in a transposition table requires too much memory.
 - Maybe we can store some forms of hash code to verify it.
- It is still a research problem to use a more efficient data structure.

Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a NegaMax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluating functions f_1 and f_2 so that
 - for some positions p, $f_1(p)$ is better than $f_2(p)$
 - \triangleright "better" means closer to the real value f(p)
 - for some positions q, $f_2(q)$ is better than $f_1(q)$
- If you are using f_1 and you know your opponent is using f_2 , what can be done to take advantage of this information.
 - This is called OM (opponent model) search [Carmel and Markovitch 1996].
 - ightharpoonup In a MAX node, use f_1 .
 - ightharpoonup In a MIN node, use f_2 .

Opponent models – comments

Comments:

- Need to know your opponent's model precisely or to have some knowledge about your opponent.
- How to learn the opponent model on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.

Search with chance nodes

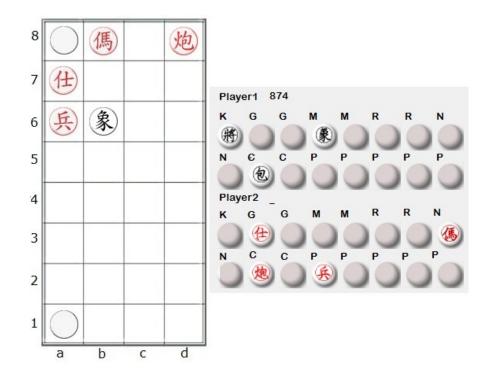
- Chinese dark chess
 - Two-player, zero sum
 - Complete information
 - Perfect information
 - Stochastic
 - There is a chance node during searching [Ballard 1983].
 - ▶ The value of a chance node is a distribution, not a fixed value.
- Previous work
 - Alpha-beta based [Ballard 1983]
 - Monte-Carlo based [Lancoto et al 2013]

Example (1/4)

It's BLACK turn and BLACK has 6 different possible legal moves including 4 of them being moving its elephant and two flipping moves at a1 or a8.
 It is difficult for BLACK to secure a win by moving its elephant along

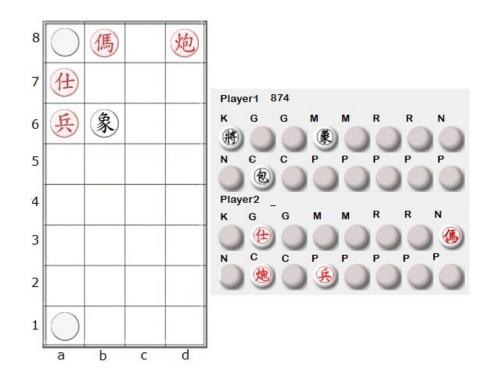
It is difficult for BLACK to secure a win by moving its elephant along any of the 3 possible directions, namely up, right or left, or by capturing

the RED pawn at the left hand side.



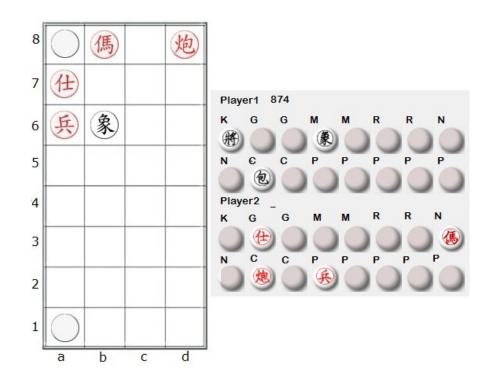
Example (2/4)

- If BLACK flips a1, then there are 2 possible cases.
 - If a1 is BLACK cannon, then it is difficult for RED to win.
 - If a1 is BLACK king, then it is difficult for BLACK to lose.



Example (3/4)

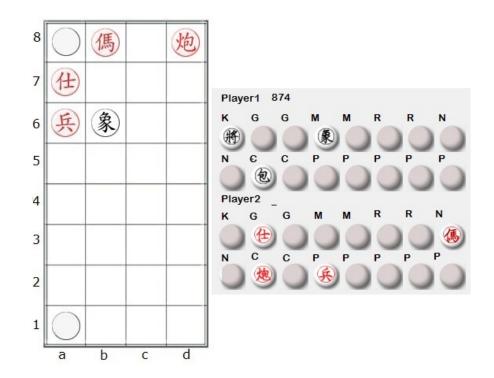
- If BLACK flips a8, then there are 2 following cases.
 - If a8 is BLACK cannon, then RED cannon captures it immediately and results in a BLACK lose eventually.
 - If a8 is BLACK king, then RED cannon captures it immediately and results in a BLACK lose eventually.



Example (4/4)

Conclusion:

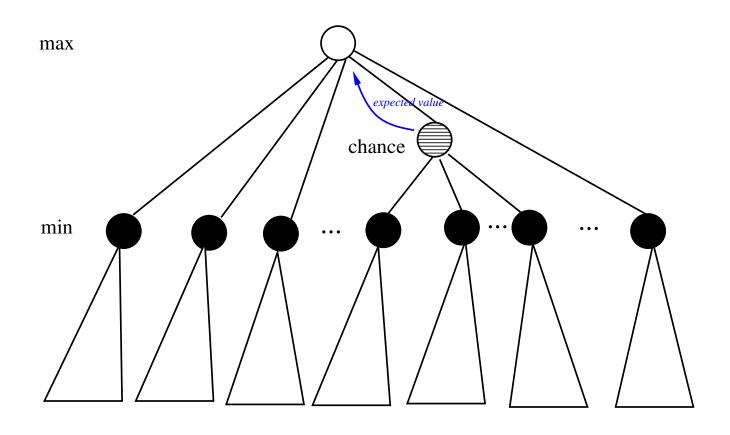
- It is vary bad for BLACK to flip a8.
- It is bad for BLACK to move its elephant.
- It is better for BLACK to flip a1.



Basic ideas for searching chance nodes

- Assume a chance node x has a score probability distribution function Pr(*) with the range of possible outcomes from 1 to N where N is a positive integer.
 - For each possible outcome i, we need to compute score(i).
 - The expected value $E = \sum_{i=1}^{N} score(i) * Pr(x = i)$.
 - The minimum value is $m = \min_{i=1}^{N} \{score(i) \mid Pr(x=i) > 0\}$.
 - The maximum value is $M = \max_{i=1}^{N} \{score(i) \mid Pr(x=i) > 0\}$.
- Example: open game in Chinese dark chess.
 - For the first ply, N = 14 * 32.
 - \triangleright Using symmetry, we can reduce it to 7*8.
 - We now consider the chance node of flipping the piece at the cell a1.
 - N = 14.
 - ▶ Assume x = 1 means a BLACK King is revealed and x = 8 means a RED King is revealed.
 - ▶ Then score(1) = score(8) since the first player owns the revealed king no matter its color is.
 - ightharpoonup Pr(x=1) = Pr(x=8) = 1/14.

Illustration



Algorithm: Chance_Search

- Algorithm F3.0' (position p, value alpha, value beta) // max node
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0, then return f(p) else begin

- end;
- return m

Algorithm: Chance_Search

- Algorithm $Star0_F3.0'$ (position p, node n, value alpha, value beta)
 - // a chance node n with equal probability choices k_1 , ..., k_c
 - determine the possible values of the chance node n to be k_1, \ldots, k_c
 - vsum = 0; // current sum of expected values
 - for i=1 to c do
 - begin
 - \triangleright let p_i be the position of assigning k_i to n in p_i
 - $\triangleright vsum += G3.0'(p_i,alpha,beta);$
 - end
- \blacksquare return vsum/c;

Comments

- During a chance search, an exhaustive search method is used without any chance of pruning.
- Ideas for further improvements
 - When some of the best possible cases turn out very bad results, we know bound of the real value.
 - Examples:
 - ▶ Upper bound: The average of 2 drawings of a dice cannot be more than 3.5 if the first drawing is 1.
 - ▶ Lower bound: The average of 2 drawings of a dice cannot be less than 3 if the first drawing is 5.

Bounds in a chance node

- Assume the various possibilities of a chance node is evaluated one by one in the order that at the end of phase i, the ith choice is evaluated.
 - Assume $v_{min} \leq score(i) \leq v_{max}$.
- What are the lower and upper bounds, namely m_i and M_i , of the expected value of the chance node immediately after the end of phase i?
 - i = 0.

 $m_0 = v_{min}$ $M_0 = v_{max}$
 - i = 1, we first compute score(1), and then know

```
ho m_1 \ge score(1) * Pr(x = 1) + v_{min} * (1 - Pr(x = 1)),  and 
ho M_1 \le score(1) * Pr(x = 1) + v_{max} * (1 - Pr(x = 1)).
```

• • • •

- $i = i^*$, we have computed $score(1), \ldots, score(i^*)$, and then know

 - $M_{i^*} \leq \sum_{i=1}^{i^*} score(i) * Pr(x=i) + v_{max} * (1 \sum_{i=1}^{i^*} Pr(x=i)).$

Changes of bounds: uniform case (1/2)

- Assume the search window entering a chance node with N=c choices is [alpha,beta].
 - For simplicity, let's assume $Pr_i = \frac{1}{c}$, for all i, and the evaluated value of the ith choice is v_i .
- The value of a chance node after the first i choices are explored can be expressed as
 - an expected value $E_i = vsum_i/i$;
 - $\triangleright vsum_i = \sum_{j=1}^i v_j$
 - ▶ This value is returned only when all choices are explored.

 ⇒ The expected value of an un-explored child shouldn't be $\frac{v_{min}+v_{max}}{2}$.
 - a range of possible values $[m_i, M_i]$.
 - $ightharpoonup m_i = (\sum_{j=1}^i v_j + v_{min} \cdot (c-i))/c$
 - $M_i = (\sum_{j=1}^{i} v_j + v_{max} \cdot (c-i))/c$
 - Invariants:
 - $\triangleright E_i \in [m_i, M_i]$
 - $\triangleright E_N = m_N = M_N$

Changes of bounds: uniform case (2/2)

• Let m_i and M_i be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the ith node.

•
$$m_i = (\sum_{j=1}^{i-1} v_j + v_i + v_{min} \cdot (c-i))/c$$

•
$$M_i = (\sum_{j=1}^{i-1} v_j + v_i + v_{max} \cdot (c-i))/c$$

- How to incrementally update m_i and M_i :
 - $m_0 = v_{min}$
 - $M_0 = v_{max}$
 - $m_i = m_{i-1} + (v_i v_{min})/c$
 - $M_i = M_{i-1} + (v_i v_{max})/c$
- The current search window is [alpha, beta].
 - No more searching is needed when
 - $\triangleright m_i \ge beta$, chance node cut off I;
 - \Rightarrow The lower bound found so far is good enough.
 - \Rightarrow Similar to a beta cutoff.
 - \Rightarrow The returned value is m_i .
 - $\triangleright M_i \leq alpha$, chance node cut off II.
 - \Rightarrow The upper bound found so far is bad enough.
 - \Rightarrow Similar to an alpha cutoff.
 - \Rightarrow The returned value is M_i .

Chance node cut off

- When $m_i \geq beta$, chance node cut off I,
 - which means $(\sum_{j=1}^{i-1} v_j + v_i + v_{min} \cdot (c-i))/c \ge beta$
 - $\Rightarrow v_i \ge B_{i-1} = c \cdot beta (\sum_{j=1}^{i-1} v_j v_{min} * (c-i))$
- When $M_i \leq alpha$, chance node cut off II,
 - which means $(\sum_{j=1}^{i-1} v_j + v_i + v_{max} \cdot (c-i))/c \leq alpha$
 - $\Rightarrow v_i \leq A_{i-1} = c \cdot alpha (\sum_{j=1}^{i-1} v_j v_{max} * (c-i))$
- Hence set the window for searching the ith choice to be $[A_{i-1}, B_{i-1}]$ which means no further search is needed if the result is not within this window.
- How to incrementally update A_i and B_i ?
 - $A_0 = c \cdot (alpha v_{max}) + v_{max}$
 - $B_0 = c \cdot (beta v_{min}) + v_{min}$
 - $\bullet \ A_i = A_{i-1} + v_{max} v_i$
 - $\bullet \ B_i = B_{i-1} + v_{min} v_i$

Algorithm: Chance_Search

- Algorithm F3.1' (position p, value alpha, value beta) // max node
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0, then return f(p) else begin

- end;
- return m

Algorithm: Chance_Search

- Algorithm $Star1_F3.1'$ (position p, node n, value alpha, value beta)
 - // a chance node n with equal probability choices k_1 , ..., k_c
 - determine the possible values of the chance node n to be k_1, \ldots, k_c
 - ullet $A_0=c\cdot(alpha-v_{max})+v_{max}$, $B_0=c\cdot(beta-v_{min})+v_{min}$;
 - $m_0 = v_{min}$, $M_0 = v_{max}$ // current lower and upper bounds
 - vsum = 0; // current sum of expected values
 - for i=1 to c do
 - begin
 - \triangleright let p_i be the position of assigning k_i to n in p;
 - $\triangleright t := G3.1'(p_i, \max\{A_{i-1}, v_{min}\}, \min\{B_{i-1}, v_{max}\})$
 - $ightharpoonup m_i = m_{i-1} + (t v_{min})/c$, $M_i = M_{i-1} + (t v_{max})/c$;
 - \triangleright if $t \geq B_{i-1}$ then return m_i ; // failed high, chance node cut off I
 - \triangleright if $t \leq A_{i-1}$ then return M_i ; // failed low, chance node cut off II
 - $\triangleright vsum += t$:
 - $\triangleright A_i = A_{i-1} + v_{max} t, B_i = B_{i-1} + v_{min} t;$
 - end
- lacktriangledown return vsum/c;

Example: Chinese dark chess

Assumption:

- The range of the scores of Chinese dark chess is [-10, 10] inclusive, alpha = -10 and beta = 10.
- N = 7.
- Pr(x=i) = 1/N = 1/7.

Calculation:

- i = 0,
 - $\rightarrow m_0 = -10.$
 - $M_0 = 10.$
- i = 1 and if score(1) = -2, then
 - $m_1 = -2 * 1/7 + -10 * 6/7 = -62/7 \simeq -8.86$.
 - $M_1 = -2 * 1/7 + 10 * 6/7 = 58/7 \simeq 8.26.$
- i = 1 and if score(1) = 3, then
 - $m_1 = 3 * 1/7 + -10 * 6/7 = -57/7 \simeq -8.14$.
 - $M_1 = 3 * 1/7 + 10 * 6/7 = 63/7 = 9.$

General case

- Assume the ith choice happens with a chance w_i/c where $c=\sum_{i=1}^N w_i$ and N is the total number of choices.
 - $m_0 = v_{min}$
 - $M_0 = v_{max}$
 - $m_i = (\sum_{j=1}^{n-1} w_j \cdot v_j + w_i \cdot v_i + v_{min} \cdot (c \sum_{j=1}^{i} w_j))/c$
 - $> m_i = m_{i-1} + (w_i/c) \cdot (v_i v_{min})$
 - $M_i = (\sum_{j=1}^{i-1} w_j \cdot v_j + w_i \cdot v_i + v_{max} \cdot (c \sum_{j=1}^{i} w_j))/c$ $M_i = M_{i-1} + (w_i/c) \cdot (v_i v_{max})$
 - $A_0 = (c/w_1) \cdot (alpha v_{max}) + v_{max}$
 - $B_0 = (c/w_1) \cdot (beta v_{min}) + v_{min}$
 - $A_{i-1} = (c \cdot alpha (\sum_{j=1}^{i-1} w_j \cdot v_j v_{max} \cdot (c \sum_{j=1}^{i} w_j)))/w_i$ • $A_i = (w_i/w_{i+1}) \cdot (A_{i-1} - v_i) + v_{max}$
 - $B_{i-1} = (c \cdot beta (\sum_{j=1}^{i-1} w_j \cdot v_j v_{min} \cdot (c \sum_{j=1}^{i} w_j)))/w_i$ • $B_i = (w_i/w_{i+1}) \cdot (B_{i-1} - v_i) + v_{min}$

Comments

- We illustrate the ideas using a fail soft version of the alpha-beta algorithm.
 - Original and fail hard version have a simpler logic in maintaining the search interval.
 - The semantic of comparing an exact returning value with an expected returning value is something that needs careful thinking.
 - May want to pick a chance node with a lower expected value but having a hope of winning, not one with a slightly higher expected value but having no hope of winning when you are in disadvantageous.
 - May want to pick a chance node with a lower expected value but having no chance of losing, not one with a slightly higher expected value but having a chance of losing when you are in advantage.
 - Do not always pick one with a slightly larger expected value. Give the second one some chance to be selected.
- Need to revise algorithms carefully when dealing with the original, fail hard or NegaScout version.
 - What does it mean to combine bounds from a fail hard version?
- Exist other improvements by considering better move orderings involving chance nodes.

How to use these bounds

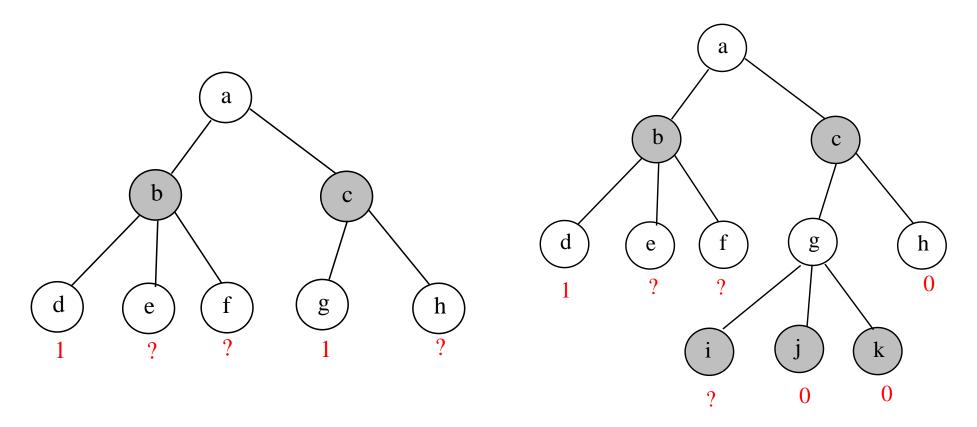
- The lower and upper bounds of the expected score can be used to do alpha-beta pruning.
 - Nicely fit into the alpha-beta search algorithm.
- Can do better by not searching the DFS order.
 - It is not necessary to search completely the subtree of x=1 first, and then start to look at the subtree of x=2.
 - Assume it is a MIN chance node, e.g., the opponent takes a flip.
 - ▶ Knowing some value v_1' of a MAX subtree for x = 1 gives an upper bound, i.e., $score(1) \ge v_1'$.
 - ▶ Knowing some value v_2' of a MAX subtree for x=2 gives another upper bound, i.e., $score(2) \ge v_2'$.
 - ▶ These bounds can be used to make the search window further narrower.
- For Monte-Carlo based algorithm, we need to use a sparse sampling algorithm to efficiently estimate the expected value of a chance node [Kearn et al 2002].

Proof number search

- Consider the case of a 2-player game tree with either 0 or 1 on the leaves.
 - win, or not win which is lose or draw;
 - lose, or not lose which is win or draw;
 - Call this a binary valued game tree.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
 - The value of the root is either 0 or 1.
 - If a branch of the root returns 1, then we know for sure the value of the root is 1.
 - The value of the root is 0 only when all branches of the root returns 0.
 - An AND-OR game tree search.

Which node to search next?

- A most proving node for a node u: a descendent node if its value is 1, then the value of u is 1.
- A most disproving node for a node u: a descendent node if its value is 0, then the value of u is 0.



Proof or Disproof Number

- ullet Assign a proof number and a disproof number to each node u in a binary valued game tree.
 - proof(u): the minimum number of leaves needed to visited in order for the value of u to be 1.
 - disproof(u): the minimum number of leaves needed to visited in order for the value of u to be 0.
- The definition implies a bottom-up ordering.

Proof Number: Definition

- u is a leaf:
 - If value(u) is unknown, then proof(u) is the cost of evaluating u.
 - If value(u) is 1, then proof(u) = 0.
 - If value(u) is 0, then $proof(u) = \infty$.
- u is an internal node with all of the children u_1, \ldots, u_b :
 - if u is a MAX node,

$$proof(u) = \min_{i=1}^{i=b} proof(u_i);$$

• if u is a MIN node,

$$proof(u) = \sum_{i=1}^{i=b} proof(u_i).$$

Disproof Number: Definition

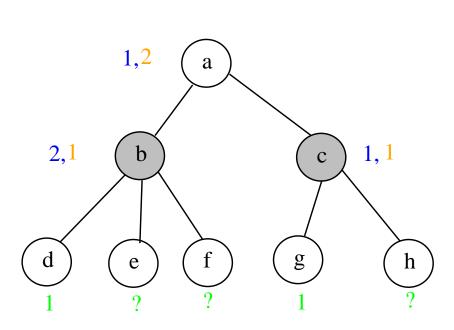
- u is a leaf:
 - If value(u) is unknown, then disproof(u) is cost of evaluating u.
 - If value(u) is 1, then $disproof(u) = \infty$.
 - If value(u) is 0, then disproof(u) = 0.
- u is an internal node with all of the children u_1, \ldots, u_b :
 - if u is a MAX node,

$$disproof(u) = \sum_{i=1}^{i=b} disproof(u_i);$$

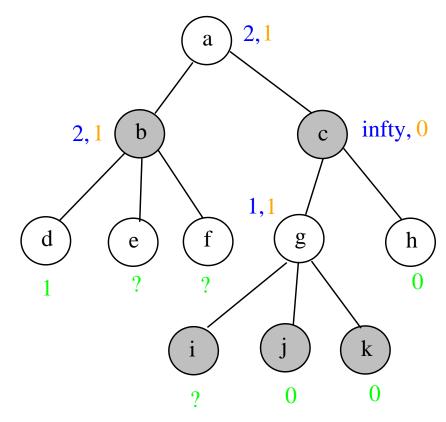
• if u is a MIN node,

$$disproof(u) = \min_{i=1}^{i=b} disproof(u_i).$$

Illustrations



proof number, disproof number



proof number, disproof number

How these numbers are used (1/2)

Scenario:

- ullet For example, the tree T represents an open game tree or an endgame tree.
 - ▶ If *T* is an open game tree, then maybe it is asked to prove or disprove a certain open game is win.
 - ▶ If T is an endgame tree, then maybe it is asked to prove or disprove a certain endgame is win o loss.
 - ▶ Each leaf takes a lot of time to evaluate.
 - ▶ We need to prove or disprove the tree using as few time as possible.
- Depend on the results we have so far, pick a leaf to prove or disprove.
- Goal: solve as few leaves as possible so that in the resulting tree, either proof(root) or disproof(root) becomes 0.
 - If proof(root) = 0, then the tree is proved.
 - If disproof(root) = 0, then the tree is disproved.
- Need to be able to update these numbers on the fly.

How these numbers are used (2/2)

- Let $GV = \min\{proof(root), disproof(root)\}$.
 - GT is "prove" if GV = proof(root), which means we try to prove it.
 - ullet GT is "disprove" if GV = disproof(root), which means we try to disprove it.
 - In the case of proof(root) = disproof(root), we set GT to "prove" for convenience.
- From the root, we search for a leaf whose value is unknown.
 - The leaf found is a most proving node if GT is "prove", or a most disproving node if GT is "disprove".
 - To find such a leaf, we start from the root downwards recursively as follows.
 - ▶ If we have reached a leaf, then stop.
 - ▶ If GT is "prove", then pick a child with the least proof number for a MAX node, and any node that has a chance to be proved for a MIN node.
 - ▶ If GT is "disprove", then pick a child with the least disproof number for a MIN node, and any node that has a chance to be disproved for a MAX node.

PN-search: algorithm (1/2)

- {* Compute and update proof and disproof numbers of the root in a bottom up fashion until it is proved or disproved. *}
- loop:
 - If proof(root) = 0 or disproof(root) = 0, then we are done, otherwise
 - $\triangleright proof(root) \leq disproof(root)$: we try to prove it.
 - $\triangleright proof(root) > disproof(root)$: we try to disprove it.
 - $u \leftarrow root$; {* find a leaf to prove or disprove *}
 - if we try to prove, then
 - \triangleright while u is not a leaf do

 - else if u is a MIN node, then $u \leftarrow \text{leftmost child of } u \text{ with a non-zero proof number};$
 - else if we try to disprove, then
 - ▶ while u is not a leaf do

 - else if u is a MIN node, then $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero disproof number;}$

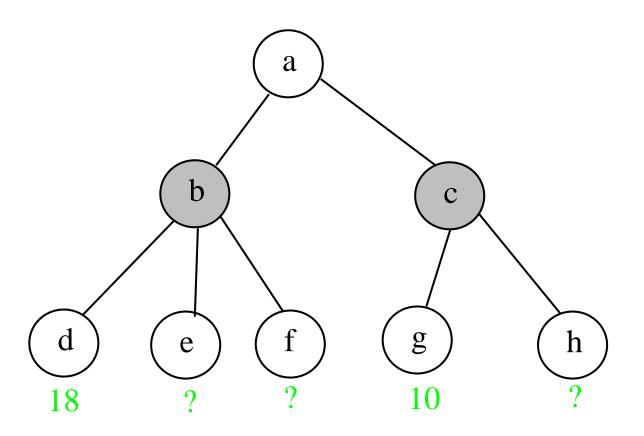
PN-search: algorithm (2/2)

{* Continued from the last page *}
• solve u;
• repeat {* bottom up updating the values *}
▶ update proof(u) and disproof(u)
▶ u ← u's parent
until u is the root
• go to loop;

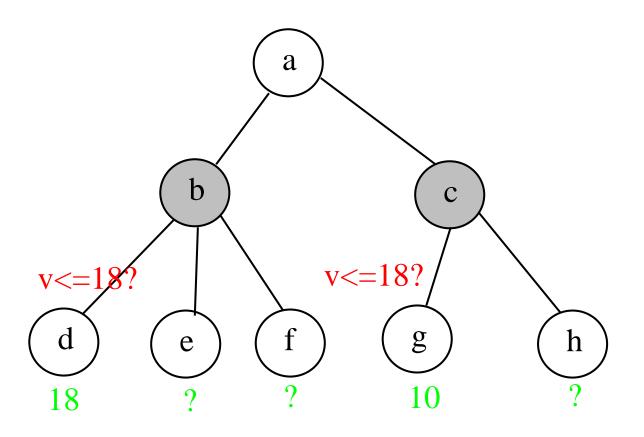
Multi-Valued game Tree

- The values of the leaves may not be binary.
 - Assume the values are non-negative integers.
 - Note: it can be in any finite countable domain.
- Revision of the proof and disproof numbers.
 - $proof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.
 - $ightharpoonup proof(u) \equiv proof_1(u).$
 - $disproof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to < v.
 - $ightharpoonup disproof_1(u) \equiv disproof_1(u)$.

Illustration



Illustration



Multi-Valued proof number

- u is a leaf:
 - If value(u) is unknown, then $proof_v(u)$ is cost of evaluating u.
 - If $value(u) \ge v$, then $proof_v(u) = 0$.
 - If value(u) < v, then $proof_v(u) = \infty$.
- u is an internal node with all of the children u_1, \ldots, u_b :
 - if u is a MAX node,

$$proof_v(u) = \min_{i=1}^{i=b} proof_v(u_i);$$

• if u is a MIN node,

$$proof_v(u) = \sum_{i=1}^{i=b} proof_v(u_i).$$

Multi-Valued disproof number

- u is a leaf:
 - If value(u) is unknown, then $disproof_v(u)$ is cost of evaluating u.
 - If $value(u) \geq v$, then $disproof_v(u) = \infty$.
 - If value(u) < v, then $disproof_v(u) = 0$.
- u is an internal node with all of the children u_1, \ldots, u_b :
 - if u is a MAX node,

$$disproof_v(u) = \sum_{i=1}^{i=b} disproof_v(u_i);$$

• if u is a MIN node,

$$disproof_v(u) = \min_{i=1}^{i=b} disproof_v(u_i).$$

Revised PN-search(v): algorithm (1/2)

- $\{*$ Compute and update proof $_v$ and disproof $_v$ numbers of the root in a bottom up fashion until it is proved or disproved. $*\}$
- loop:
 - If $proof_v(root) = 0$ or $disproof_v(root) = 0$, then we are done, otherwise
 - $\triangleright proof_v(root) \leq disproof_v(root)$: we try to prove it.
 - $ightharpoonup proof_v(root) > disproof_v(root)$: we try to disprove it.
 - $u \leftarrow root$; {* find a leaf to prove or disprove *}
 - if we try to prove, then
 - ▶ while *u* is not a leaf do
 - if u is a MAX node, then $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero proof}_v \text{ number};$
 - else if u is a MIN node, then $u \leftarrow \text{leftmost child of } u \text{ with a non-zero proof}_v \text{ number};$
 - else if we try to disprove, then
 - ▶ while u is not a leaf do
 - \triangleright if u is a MAX node, then $u \leftarrow$ leftmost child of u with a non-zero disproof, number;
 - else if u is a MIN node, then $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero disproof}_v \text{ number};$

PN-search: algorithm (2/2)

{* Continued from the last page *}
• solve u;
• repeat {* bottom up updating the values *}
▶ update proof_v(u) and disproof_v(u)
▶ u ← u's parent
until u is the root
• go to loop;

Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
 - Set the initial value of v to be 1.
 - loop: PN-search(v)
 - \triangleright Prove the value of the search tree is $\geq v$ or disprove it by showing it is < v.
 - If it is proved, then double the value of v and go to loop again.
 - If it is disproved, then the true value of the tree is between $\lfloor v/2 \rfloor$ and v-1.
 - {* Use a binary search to find the exact returned value of the tree. *}
 - $low \leftarrow \lfloor v/2 \rfloor$; $high \leftarrow v-1$;
 - while $low \leq high$ do
 - ightharpoonup if low = high, then return low as the tree value
 - $ightharpoonup mid \leftarrow \lfloor (low + high)/2 \rfloor$
 - ▶ PN-search(mid)
 - \triangleright if it is disproved, then $high \leftarrow mid 1$
 - \triangleright else if it is proved, then $low \leftarrow mid$

Comments

- Can be used to construct opening books.
- Appear to be good for searching certain types of game trees.
 - Find the easiest way to prove or disprove a conjecture.
 - A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
 - Performances of most previous algorithms depend heavily on whether good move orderings can be found.
- Searching the "easiest" branch may not give you the best performance.
 - Performance depends on the value of each internal node.
- Commonly used in verifying conjectures, e.g., first-player win.
 - Partition the opening moves in a tree-like fashion.
 - Try to the "easiest" way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.

References and further readings (1/2)

- L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. $Artificial\ Intelligence,\ 66(1):91-124,\ 1994.$
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing: mid-80's perspective, pages 278–280. ACM Press, 1985.

References and further readings (2/2)

- Bruce W. Ballard The *-minimax search procedure for trees containing chance nodes Artificial Intelligence, Volume 21, Issue 3, September 1983, Pages 327-350
- Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald, Mark H. M. Winands Monte-Carlo *-MiniMax Search Proceedings IJCAI, pages 580–586, 2013.
- Kearns, Michael; Mansour, Yishay; Ng, Andrew Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning, 2002, 49.2-3: 193-208.
- Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu "The Graph History Interaction Problem in Chinese Chess," Proceedings of the 11th Advances in Computer Games Conference, (ACG), Springer-Verlag LNCS# 4250, pages 165–179, 2005.