Theory of Computer Games： Selected Advanced Topics

Tsan－sheng Hsu

徐讚昇

tshsu＠iis．sinica．edu．tw
http：／／www．iis．sinica．edu．tw／～tshsu

Abstract

- Some advanced research issues.
- The graph history interaction (GHI) problem.
- Opponent models.
- Searching chance nodes.
- Proof-number search.

Graph history interaction problem

- The graph history interaction (GHI) problem [Campbell 1985]:
- In a game graph, a position can be visited by more than one paths from a starting position.
- The value of the position depends on the path visiting it.
\triangleright It can be win, loss or draw for Chinese chess.
\triangleright It can only be draw for Western chess and Chinese dark chess.
\triangleright It can only be loss for Go.
- In the transposition table, you record the value of a position, but not the path leading to it.
- Values computed from rules on repetition cannot be used later on.
- It takes a huge amount of storage to store all the paths visiting it.
- This is a very difficult problem to be solved in real time [Wu et al '05].

GHI problem - example

- Assume the one causes loops wins the game.

GHI problem - example

- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. \triangleright Memorized J as a loss position (for the root).

GHI problem - example

- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. \triangleright Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.

GHI problem - example

- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. \triangleright Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.

GHI problem - example

- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. \triangleright Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.

GHI problem - example

- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition.
\triangleright Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.
- However, $A \rightarrow C \rightarrow F \rightarrow J \rightarrow D \rightarrow H$ is a win (for the root).

Comments

- Using DFS to search the above game graph from left first or from right first produces two different results.
- Position A is actually a win position.
- Problem: memorize J is a loss is only valid when the path leading to it causes a loop.
- Storing the path leading to a position in a transposition table requires too much memory.
- Maybe we can store some forms of hash code to verify it.
- It is still a research problem to use a more efficient data structure.

Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
- What is good to you is bad to the opponent and vice versa!
- Hence we can reduce a minimax search to a NegaMax search.
- This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluating functions f_{1} and f_{2} so that
- for some positions $p, f_{1}(p)$ is better than $f_{2}(p)$
\triangleright "better" means closer to the real value $f(p)$
- for some positions $q, f_{2}(q)$ is better than $f_{1}(q)$
- If you are using f_{1} and you know your opponent is using f_{2}, what can be done to take advantage of this information.
- This is called OM (opponent model) search [Carmel and Markovitch 1996].
\triangleright In a MAX node, use f_{1}.
\triangleright In a MIN node, use f_{2}.

Opponent models - comments

- Comments:
- Need to know your opponent's model precisely or to have some knowledge about your opponent.
- How to learn the opponent model on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.

Search with chance nodes

- Chinese dark chess
- Two-player, zero sum
- Complete information
- Perfect information
- Stochastic
- There is a chance node during searching [Ballard 1983].
\triangleright The value of a chance node is a distribution, not a fixed value.
- Previous work
- Alpha-beta based [Ballard 1983]
- Monte-Carlo based [Lancoto et al 2013]

Example (1/4)

- It's BLACK turn and BLACK has 6 different possible legal moves including 4 of them being moving its elephant and two flipping moves at a1 or a8.
- It is difficult for BLACK to secure a win by moving its elephant along any of the 3 possible directions, namely up, right or left, or by capturing the RED pawn at the left hand side.

Example (2/4)

- If BLACK flips a1, then there are 2 possible cases.
- If a1 is BLACK cannon, then it is difficult for RED to win.
- If a1 is BLACK king, then it is difficult for BLACK to lose.

Example (3/4)

- If BLACK flips a8, then there are 2 following cases.
- If a8 is BLACK cannon, then RED cannon captures it immediately and results in a BLACK lose eventually.
- If a8 is BLACK king, then RED cannon captures it immediately and results in a BLACK lose eventually.

Example (4/4)

Conclusion:

- It is vary bad for BLACK to flip a8.
- It is bad for BLACK to move its elephant.
- It is better for BLACK to flip a1.

Basic ideas for searching chance nodes

- Assume a chance node x has a score probability distribution function $\operatorname{Pr}(*)$ with the range of possible outcomes from 1 to N where N is a positive integer.
- For each possible outcome i, we need to compute $\operatorname{score}(i)$.
- The expected value $E=\sum_{i=1}^{N} \operatorname{score}(i) * \operatorname{Pr}(x=i)$.
- The minimum value is $m=\min _{i=1}^{N}\{\operatorname{score}(i) \mid \operatorname{Pr}(x=i)>0\}$.
- The maximum value is $M=\max _{i=1}^{N}\{\operatorname{score}(i) \mid \operatorname{Pr}(x=i)>0\}$.
- Example: open game in Chinese dark chess.
- For the first ply, $N=14 * 32$.
\triangleright Using symmetry, we can reduce it to $7^{*} 8$.
- We now consider the chance node of flipping the piece at the cell a1.
$\triangleright N=14$.
\triangleright Assume $x=1$ means a BLACK King is revealed and $x=8$ means a RED King is revealed.
\triangleright Then score $(1)=\operatorname{score}(8)$ since the first player owns the revealed king no matter its color is.
$\triangleright \operatorname{Pr}(x=1)=\operatorname{Pr}(x=8)=1 / 14$.

Illustration

Algorithm: Chance_Search

- Algorithm $F 3.0^{\prime}$ (position p, value alpha, value beta) // max node
- determine the successor positions p_{1}, \ldots, p_{b}
- if $b=0$, then return $f(p)$ else begin

```
    \triangleright m:=-\infty
    \triangleright ~ f o r ~ i : = ~ 1 ~ t o ~ b ~ d o
    \triangleright ~ b e g i n
    \triangleright if pi is to play a chance node n
        then t:= Star0_F3.0'(pi,n,max{alpha,m}, beta)
    \triangleright ~ e l s e ~ t : = G 3 . 0 ' ( p _ { i } , \operatorname { m a x } \{ a l p h a , m \} , \text { beta)}
    \triangleright \quad \text { if } t > m \text { then } m : = t
    | if m}\geq\mathrm{ beta then return(m) // beta cut off
    end
```

- end;
- return m

Algorithm: Chance_Search

- Algorithm Star $0 _F 3.0^{\prime}$ (position p, node n, value alpha, value beta)
- // a chance node n with equal probability choices k_{1}, \ldots, k_{c}
- determine the possible values of the chance node n to be k_{1}, \ldots, k_{c}
- vsum = 0; // current sum of expected values
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to n in p;
\triangleright vsum $+=G 3.0^{\prime}\left(p_{i}\right.$, alpha,beta $)$;
- end
- return vsum/c;

Comments

- During a chance search, an exhaustive search method is used without any chance of pruning.
- Ideas for further improvements
- When some of the best possible cases turn out very bad results, we know bound of the real value.
- Examples:
\triangleright Upper bound: The average of 2 drawings of a dice cannot be more than 3.5 if the first drawing is 1.
\triangleright Lower bound: The average of 2 drawings of a dice cannot be less than 3 if the first drawing is 5.

Bounds in a chance node

- Assume the various possibilities of a chance node is evaluated one by one in the order that at the end of phase i, the i th choice is evaluated.
- Assume $v_{\min } \leq \operatorname{score}(i) \leq v_{\max }$.
- What are the lower and upper bounds, namely m_{i} and M_{i}, of the expected value of the chance node immediately after the end of phase i ?
- $i=0$.

$$
\begin{aligned}
& \triangleright m_{0}=v_{\min } \\
& \triangleright M_{0}=v_{\max }
\end{aligned}
$$

- $i=1$, we first compute $\operatorname{score}(1)$, and then know

$$
\begin{aligned}
& \triangleright m_{1} \geq \operatorname{score}(1) * \operatorname{Pr}(x=1)+v_{\min } *(1-\operatorname{Pr}(x=1)), \text { and } \\
& \triangleright M_{1} \leq \operatorname{score}(1) * \operatorname{Pr}(x=1)+v_{\max } *(1-\operatorname{Pr}(x=1))
\end{aligned}
$$

- $i=i^{*}$, we have computed $\operatorname{score}(1), \ldots, \operatorname{score}\left(i^{*}\right)$, and then know

$$
\begin{aligned}
& \triangleright m_{i^{*}} \geq \sum_{i=1}^{i^{*}} \operatorname{score}(i) * \operatorname{Pr}(x=i)+v_{\min } *\left(1-\sum_{i=1}^{i^{*}} \operatorname{Pr}(x=i)\right), \text { and } \\
& \triangleright M_{i^{*}} \leq \sum_{i=1}^{i^{*}} \operatorname{score}(i) * \operatorname{Pr}(x=i)+v_{\max } *\left(1-\sum_{i=1}^{i^{*}} \operatorname{Pr}(x=i)\right) .
\end{aligned}
$$

Changes of bounds: uniform case $(1 / 2)$

- Assume the search window entering a chance node with $N=c$ choices is [alpha, beta].
- For simplicity, let's assume $P r_{i}=\frac{1}{c}$, for all i, and the evaluated value of the i th choice is v_{i}.
- The value of a chance node after the first i choices are explored can be expressed as
- an expected value $E_{i}=v s u m_{i} / i$;

$$
\triangleright \operatorname{vsum}_{i}=\sum_{j=1}^{i} v_{j}
$$

\triangleright This value is returned only when all choices are explored. \Rightarrow The expected value of an un-explored child shouldn't be $\frac{v_{\min }+v_{\max }}{2}$.

- a range of possible values $\left[m_{i}, M_{i}\right]$.

$$
\begin{aligned}
& \triangleright m_{i}=\left(\sum_{j=1}^{i} v_{j}+v_{\min } \cdot(c-i)\right) / c \\
& \triangleright M_{i}=\left(\sum_{j=1}^{i} v_{j}+v_{\max } \cdot(c-i)\right) / c
\end{aligned}
$$

- Invariants:

$$
\begin{aligned}
& \triangleright E_{i} \in\left[m_{i}, M_{i}\right] \\
& \triangleright E_{N}=m_{N}=M_{N}
\end{aligned}
$$

Changes of bounds: uniform case (2/2)

- Let m_{i} and M_{i} be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the i th node.
- $m_{i}=\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\min } \cdot(c-i)\right) / c$
- $M_{i}=\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\max } \cdot(c-i)\right) / c$
- How to incrementally update m_{i} and M_{i} :
- $m_{0}=v_{\text {min }}$
- $M_{0}=v_{\text {max }}$
- $m_{i}=m_{i-1}+\left(v_{i}-v_{\text {min }}\right) / c$
- $M_{i}=M_{i-1}+\left(v_{i}-v_{\text {max }}\right) / c$
- The current search window is [alpha, beta].
- No more searching is needed when
$\triangleright m_{i} \geq$ beta, chance node cut off I;
\Rightarrow The lower bound found so far is good enough.
\Rightarrow Similar to a beta cutoff.
\Rightarrow The returned value is m_{i}.
$\triangleright M_{i} \leq$ alpha, chance node cut off II.
\Rightarrow The upper bound found so far is bad enough.
\Rightarrow Similar to an alpha cutoff.
\Rightarrow The returned value is M_{i}.

Chance node cut off

- When $m_{i} \geq$ beta, chance node cut off I,
- which means $\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\text {min }} \cdot(c-i)\right) / c \geq$ beta
- $\Rightarrow v_{i} \geq B_{i-1}=c \cdot b e t a-\left(\sum_{j=1}^{i-1} v_{j}-v_{\text {min }} *(c-i)\right)$
- When $M_{i} \leq a l p h a$, chance node cut off II,
- which means $\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\text {max }} \cdot(c-i)\right) / c \leq$ alpha
- $\Rightarrow v_{i} \leq A_{i-1}=c \cdot a l p h a-\left(\sum_{j=1}^{i-1} v_{j}-v_{\max } *(c-i)\right)$
- Hence set the window for searching the i th choice to be $\left[A_{i-1}, B_{i-1}\right]$ which means no further search is needed if the result is not within this window.
- How to incrementally update A_{i} and B_{i} ?
- $A_{0}=c \cdot\left(\right.$ alpha $\left.-v_{\max }\right)+v_{\max }$
- $B_{0}=c \cdot\left(\right.$ beta $\left.-v_{\text {min }}\right)+v_{\text {min }}$
- $A_{i}=A_{i-1}+v_{\max }-v_{i}$
- $B_{i}=B_{i-1}+v_{\text {min }}-v_{i}$

Algorithm: Chance_Search

- Algorithm $F 3.1^{\prime}$ (position p, value alpha, value beta) // max node
- determine the successor positions p_{1}, \ldots, p_{b}
- if $b=0$, then return $f(p)$ else begin

```
    \triangleright m:=-\infty
    \triangleright ~ f o r ~ i : = ~ 1 ~ t o ~ b ~ d o
    \triangleright ~ b e g i n
    \triangleright if pi is to play a chance node n
        then t:=Star1_F3.1'(pi,n,max{alpha,m}, beta)
    \triangleright ~ e l s e ~ t : = G 3 . 1 ' ( p _ { i } , \operatorname { m a x } \{ a l p h a , m \} , \text { beta)}
    \triangleright \quad \text { if } t > m \text { then } m : = t
    | if m}\geq\mathrm{ beta then return(m) // beta cut off
    end
```

- end;
- return m

Algorithm: Chance_Search

- Algorithm Star $1 _F 3.1^{\prime}$ (position p, node n, value alpha, value beta)
- // a chance node n with equal probability choices k_{1}, \ldots, k_{c}
- determine the possible values of the chance node n to be k_{1}, \ldots, k_{c}
- $A_{0}=c \cdot\left(\right.$ alpha $\left.-v_{\max }\right)+v_{\max }, B_{0}=c \cdot\left(\right.$ beta $\left.-v_{\min }\right)+v_{\text {min }}$;
- $m_{0}=v_{\text {min }}, M_{0}=v_{\max } / /$ current lower and upper bounds
- vsum $=0$; // current sum of expected values
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to n in p;
$\triangleright t:=G 3.1^{\prime}\left(p_{i}, \max \left\{A_{i-1}, v_{\min }\right\}, \min \left\{B_{i-1}, v_{\max }\right\}\right)$
$\triangleright m_{i}=m_{i-1}+\left(t-v_{\min }\right) / c, M_{i}=M_{i-1}+\left(t-v_{\max }\right) / c$;
\triangleright if $t \geq B_{i-1}$ then return $m_{i} ; / /$ failed high, chance node cut off I
\triangleright if $t \leq A_{i-1}$ then return $M_{i} ; / /$ failed low, chance node cut off II
\triangleright vsum $+=t$;
$\triangleright A_{i}=A_{i-1}+v_{\max }-t, B_{i}=B_{i-1}+v_{\min }-t ;$
- end
- return $v s u m / c$;

Example: Chinese dark chess

- Assumption:
- The range of the scores of Chinese dark chess is $[-10,10]$ inclusive, alpha $=-10$ and beta $=10$.
- $N=7$.
- $\operatorname{Pr}(x=i)=1 / N=1 / 7$.
- Calculation:
- $i=0$,

$$
\begin{aligned}
& \triangleright m_{0}=-10 . \\
& \triangleright M_{0}=10 .
\end{aligned}
$$

- $i=1$ and if $\operatorname{score}(1)=-2$, then

$$
\begin{aligned}
& \triangleright m_{1}=-2 * 1 / 7+-10 * 6 / 7=-62 / 7 \simeq-8.86 . \\
& \triangleright M_{1}=-2 * 1 / 7+10 * 6 / 7=58 / 7 \simeq 8.26 .
\end{aligned}
$$

- $i=1$ and if $\operatorname{score}(1)=3$, then

$$
\begin{aligned}
& \triangleright m_{1}=3 * 1 / 7+-10 * 6 / 7=-57 / 7 \simeq-8.14 . \\
& \triangleright M_{1}=3 * 1 / 7+10 * 6 / 7=63 / 7=9 .
\end{aligned}
$$

General case

- Assume the i th choice happens with a chance w_{i} / c where $c=\sum_{i=1}^{N} w_{i}$ and N is the total number of choices.
- $m_{0}=v_{\text {min }}$
- $M_{0}=v_{\max }$
- $m_{i}=\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}+w_{i} \cdot v_{i}+v_{\text {min }} \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right) / c$

$$
\triangleright m_{i}=m_{i-1}+\left(w_{i} / c\right) \cdot\left(v_{i}-v_{m i n}\right)
$$

- $M_{i}=\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}+w_{i} \cdot v_{i}+v_{\max } \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right) / c$
$\triangleright M_{i}=M_{i-1}+\left(w_{i} / c\right) \cdot\left(v_{i}-v_{\max }\right)$
- $A_{0}=\left(c / w_{1}\right) \cdot\left(a l p h a-v_{\max }\right)+v_{\max }$
- $B_{0}=\left(c / w_{1}\right) \cdot\left(\right.$ beta $\left.-v_{\text {min }}\right)+v_{\text {min }}$
- $A_{i-1}=\left(c \cdot a l p h a-\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}-v_{\max } \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right)\right) / w_{i}$

$$
\triangleright A_{i}=\left(w_{i} / w_{i+1}\right) \cdot\left(A_{i-1}-v_{i}\right)+v_{\max }
$$

- $B_{i-1}=\left(c \cdot\right.$ beta $\left.-\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}-v_{\min } \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right)\right) / w_{i}$

$$
\triangleright B_{i}=\left(w_{i} / w_{i+1}\right) \cdot\left(B_{i-1}-v_{i}\right)+v_{\min }
$$

Comments

- We illustrate the ideas using a fail soft version of the alpha-beta algorithm.
- Original and fail hard version have a simpler logic in maintaining the search interval.
- The semantic of comparing an exact returning value with an expected returning value is something that needs careful thinking.
- May want to pick a chance node with a lower expected value but having a hope of winning, not one with a slightly higher expected value but having no hope of winning when you are in disadvantageous.
- May want to pick a chance node with a lower expected value but having no chance of losing, not one with a slightly higher expected value but having a chance of losing when you are in advantage.
- Do not always pick one with a slightly larger expected value. Give the second one some chance to be selected.
- Need to revise algorithms carefully when dealing with the original, fail hard or NegaScout version.
- What does it mean to combine bounds from a fail hard version?
- Exist other improvements by considering better move orderings involving chance nodes.

How to use these bounds

- The lower and upper bounds of the expected score can be used to do alpha-beta pruning.
- Nicely fit into the alpha-beta search algorithm.
- Can do better by not searching the DFS order.
- It is not necessary to search completely the subtree of $x=1$ first, and then start to look at the subtree of $x=2$.
- Assume it is a MIN chance node, e.g., the opponent takes a flip.
\triangleright Knowing some value v_{1}^{\prime} of a MAX subtree for $x=1$ gives an upper bound, i.e., $\operatorname{score}(1) \geq v_{1}^{\prime}$.
\triangleright Knowing some value v_{2}^{\prime} of a MAX subtree for $x=2$ gives another upper bound, i.e., score(2) $\geq v_{2}^{\prime}$.
\triangleright These bounds can be used to make the search window further narrower.
- For Monte-Carlo based algorithm, we need to use a sparse sampling algorithm to efficiently estimate the expected value of a chance node [Kearn et al 2002].

Proof number search

- Consider the case of a 2 -player game tree with either 0 or 1 on the leaves.
- win, or not win which is lose or draw;
- lose, or not lose which is win or draw;
- Call this a binary valued game tree.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
- The value of the root is either 0 or 1 .
- If a branch of the root returns 1 , then we know for sure the value of the root is 1 .
- The value of the root is $\mathbf{0}$ only when all branches of the root returns 0 .
- An AND-OR game tree search.

Which node to search next?

- A most proving node for a node u : a descendent node if its value is 1 , then the value of u is 1 .
- A most disproving node for a node u : a descendent node if its value is 0 , then the value of u is 0 .

Proof or Disproof Number

- Assign a proof number and a disproof number to each node u in a binary valued game tree.
- $\operatorname{proof}(u)$: the minimum number of leaves needed to visited in order for the value of u to be 1 .
- disproof (u) : the minimum number of leaves needed to visited in order for the value of u to be 0 .
- The definition implies a bottom-up ordering.

Proof Number: Definition

- u is a leaf:
- If value (u) is unknown, then $\operatorname{proof}(u)$ is the cost of evaluating u.
- If $\operatorname{value}(u)$ is $\mathbf{1}$, then $\operatorname{proof}(u)=0$.
- If $\operatorname{value}(u)$ is $\mathbf{0}$, then $\operatorname{proof}(u)=\infty$.
- u is an internal node with all of the children u_{1}, \ldots, u_{b} :
- if u is a MAX node,

$$
\operatorname{proof}(u)=\min _{i=1}^{i=b} \operatorname{proof}\left(u_{i}\right) ;
$$

- if u is a MIN node,

$$
\operatorname{proof}(u)=\sum_{i=1}^{i=b} \operatorname{proof}\left(u_{i}\right)
$$

Disproof Number: Definition

- u is a leaf:
- If value (u) is unknown, then $\operatorname{disproof}(u)$ is cost of evaluating u.
- If $\operatorname{value}(u)$ is $\mathbf{1}$, then $\operatorname{disproof}(u)=\infty$.
- If value (u) is $\mathbf{0}$, then $\operatorname{disproof}(u)=0$.
- u is an internal node with all of the children u_{1}, \ldots, u_{b} :
- if u is a MAX node,

$$
\operatorname{disproof}(u)=\sum_{i=1}^{i=b} \operatorname{disproof}\left(u_{i}\right)
$$

- if u is a MIN node,

$$
\operatorname{disproof}(u)=\min _{i=1}^{i=b} \operatorname{disproof}\left(u_{i}\right) .
$$

Illustrations

proof number, disproof number

proof number, disproof number

How these numbers are used (1/2)

- Scenario:
- For example, the tree T represents an open game tree or an endgame tree.
\triangleright If T is an open game tree, then maybe it is asked to prove or disprove a certain open game is win.
\triangleright If T is an endgame tree, then maybe it is asked to prove or disprove a certain endgame is win o loss.
\triangleright Each leaf takes a lot of time to evaluate.
\triangleright We need to prove or disprove the tree using as few time as possible.
- Depend on the results we have so far, pick a leaf to prove or disprove.
- Goal: solve as few leaves as possible so that in the resulting tree, either proof(root) or disproof(root) becomes 0 .
- If $\operatorname{proof}(r o o t)=0$, then the tree is proved.
- If disproof (root) $=0$, then the tree is disproved.
- Need to be able to update these numbers on the fly.

How these numbers are used (2/2)

- Let $G V=\min \{p r o o f(r o o t), \operatorname{disproof}($ root $)\}$.
- $G T$ is "prove" if $G V=\operatorname{proof}($ root $)$, which means we try to prove it.
- $G T$ is "disprove" if $G V=\operatorname{disproof}$ (root), which means we try to disprove it.
- In the case of $\operatorname{proof}($ root $)=\operatorname{disproof}($ root $)$, we set $G T$ to "prove" for convenience.
- From the root, we search for a leaf whose value is unknown.
- The leaf found is a most proving node if $G T$ is "prove", or a most disproving node if $G T$ is "disprove".
- To find such a leaf, we start from the root downwards recursively as follows.
\triangleright If we have reached a leaf, then stop.
\triangleright If $G T$ is "prove", then pick a child with the least proof number for a MAX node, and any node that has a chance to be proved for a MIN node.
\triangleright If GT is "disprove", then pick a child with the least disproof number for a MIN node, and any node that has a chance to be disproved for a MAX node.

PN-search: algorithm (1/2)

- $\{*$ Compute and update proof and disproof numbers of the root in a bottom up fashion until it is proved or disproved. *\}
- loop:
- If $\operatorname{proof}($ root $)=0$ or disproof $($ root $)=0$, then we are done, otherwise
$\triangleright \operatorname{proof}($ root $) \leq d i s p r o o f(r o o t)$: we try to prove it.
$\triangleright \operatorname{proof}($ root $)>\operatorname{disproof}($ root $)$: we try to disprove it.
- $u \leftarrow \operatorname{root} ;\{*$ find a leaf to prove or disprove $*\}$
- if we try to prove, then
\triangleright while u is not a leaf do
$\triangleright \quad$ if u is a MAX node, then
$u \leftarrow$ leftmost child of u with the smallest non-zero proof number;
$\triangleright \quad$ else if u is a MIN node, then $u \leftarrow$ leftmost child of u with a non-zero proof number;
- else if we try to disprove, then
\triangleright while u is not a leaf do
\triangleright if u is a MAX node, then
$u \leftarrow$ leftmost child of u with a non-zero disproof number;
$\triangleright \quad$ else if u is a MIN node, then
$u \leftarrow$ leftmost child of u with the smallest non-zero disproof number;

PN-search: algorithm (2/2)

- $\{*$ Continued from the last page $*\}$
- solve u;
- repeat $\{*$ bottom up updating the values $*\}$
\triangleright update proof (u) and disproof (u)
$\triangleright u \leftarrow u^{\prime}$ s parent
until u is the root
- go to loop;

Multi-Valued game Tree

- The values of the leaves may not be binary.
- Assume the values are non-negative integers.
- Note: it can be in any finite countable domain.
- Revision of the proof and disproof numbers.
- $\operatorname{proof}_{v}(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.
$\triangleright \operatorname{proof}(u) \equiv \operatorname{proof}_{1}(u)$.
- disproof $f_{v}(u)$: the minimum number of leaves needed to visited in order for the value of u to $<v$.
$\triangleright \operatorname{disproof}(u) \equiv \operatorname{disproof}_{1}(u)$.

Illustration

Illustration

Multi-Valued proof number

- u is a leaf:
- If value (u) is unknown, then $\operatorname{proo}_{v}(u)$ is cost of evaluating u.
- If value $(u) \geq v$, then $\operatorname{proof}_{v}(u)=0$.
- If $\operatorname{value}(u)<v$, then $\operatorname{proof}_{v}(u)=\infty$.
- u is an internal node with all of the children u_{1}, \ldots, u_{b} :
- if u is a MAX node,

$$
\operatorname{proof}_{v}(u)=\min _{i=1}^{i=b} \operatorname{proo}_{v}\left(u_{i}\right)
$$

- if u is a MIN node,

$$
\operatorname{proo}_{v}(u)=\sum_{i=1}^{i=b} \operatorname{proo}_{v}\left(u_{i}\right)
$$

Multi-Valued disproof number

- u is a leaf:
- If value (u) is unknown, then $\operatorname{disproof} f_{v}(u)$ is cost of evaluating u.
- If $\operatorname{value}(u) \geq v$, then $\operatorname{disproof}_{v}(u)=\infty$.
- If $\operatorname{value}(u)<v$, then $\operatorname{disproof~}_{v}(u)=0$.
- u is an internal node with all of the children u_{1}, \ldots, u_{b} :
- if u is a MAX node,

$$
\operatorname{disproof}_{v}(u)=\sum_{i=1}^{i=b} \operatorname{disproof}_{v}\left(u_{i}\right)
$$

- if u is a MIN node,

$$
\operatorname{disproo}_{v}(u)=\min _{i=1}^{i=b} \operatorname{disproo}_{v}\left(u_{i}\right)
$$

Revised PN-search(v): algorithm (1/2)

- $\left\{*\right.$ Compute and update proof_{v} and disproof ${ }_{v}$ numbers of the root in a bottom up fashion until it is proved or disproved. $*\}$
- loop:
- If $\operatorname{proo} f_{v}($ root $)=0$ or $\operatorname{disproof~}_{v}($ root $)=0$, then we are done, otherwise
$\triangleright \operatorname{proof}_{v}($ root $) \leq d i s p r o o f_{v}($ root $)$: we try to prove it.
$\triangleright \operatorname{proof}_{v}($ root $)>\operatorname{disproof} v($ root $)$: we try to disprove it.
- $u \leftarrow$ root; $\{*$ find a leaf to prove or disprove $*\}$
- if we try to prove, then
\triangleright while u is not a leaf do
$\triangleright \quad$ if u is a MAX node, then
$u \leftarrow$ leftmost child of u with the smallest non-zero proof f_{v} number;
$\triangleright \quad$ else if u is a MIN node, then $u \leftarrow$ leftmost child of u with a non-zero proof f_{v} number;
- else if we try to disprove, then
\triangleright while u is not a leaf do
$\triangleright \quad$ if u is a MAX node, then
$u \leftarrow$ leftmost child of u with a non-zero disproof ${ }_{v}$ number;
$\triangleright \quad$ else if u is a MIN node, then
$u \leftarrow$ leftmost child of u with the smallest non-zero disproof ${ }_{v}$ number;

PN-search: algorithm (2/2)

- $\{*$ Continued from the last page $*\}$
- solve u;
- repeat $\{*$ bottom up updating the values $*$ \}
\triangleright update $\operatorname{proo}_{v}(u)$ and $\operatorname{disproof}_{v}(u)$
$\triangleright u \leftarrow u^{\prime}$ s parent
until u is the root
- go to loop;

Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
- Set the initial value of v to be 1 .
- loop: PN-search(v)
\triangleright Prove the value of the search tree is $\geq v$ or disprove it by showing it is $<v$.
- If it is proved, then double the value of v and go to loop again.
- If it is disproved, then the true value of the tree is between $\lfloor v / 2\rfloor$ and $v-1$.
- $\{*$ Use a binary search to find the exact returned value of the tree. $*\}$
- low $\leftarrow\lfloor v / 2\rfloor$; high $\leftarrow v-1$;
- while low \leq high do
\triangleright if low $=$ high, then return low as the tree value
\triangleright mid $\leftarrow\lfloor($ low $+h i g h) / 2\rfloor$
$\triangleright P N$-search (mid)
\triangleright if it is disproved, then high \leftarrow mid -1
\triangleright else if it is proved, then low \leftarrow mid

Comments

- Can be used to construct opening books.
- Appear to be good for searching certain types of game trees.
- Find the easiest way to prove or disprove a conjecture.
- A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
- Performances of most previous algorithms depend heavily on whether good move orderings can be found.
- Searching the "easiest" branch may not give you the best performance.
- Performance depends on the value of each internal node.
- Commonly used in verifying conjectures, e.g., first-player win.
- Partition the opening moves in a tree-like fashion.
- Try to the "easiest" way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.

References and further readings (1/2)

- L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. Artificial Intelligence, 66(1):91-124, 1994.
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing : mid-80's perspective, pages 278-280. ACM Press, 1985.

References and further readings (2/2)

- Bruce W. Ballard The *-minimax search procedure for trees containing chance nodes Artificial Intelligence, Volume 21, Issue 3, September 1983, Pages 327-350
- Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald, Mark H. M. Winands Monte-Carlo *-MiniMax Search Proceedings IJCAI, pages 580-586, 2013.
- Kearns, Michael; Mansour, Yishay; Ng, Andrew Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning, 2002, 49.2-3: 193-208.
- Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu "The Graph History Interaction Problem in Chinese Chess," Proceedings of the 11th Advances in Computer Games Conference, (ACG), Springer-Verlag LNCS\# 4250, pages 165-179, 2005.

