#### Theory of Computer Games: Selected Advanced Topics

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

#### **Abstract**

- Some advanced research issues.
  - The graph history interaction (GHI) problem.
  - Opponent models.
  - Searching chance nodes.
  - Proof-number search.

## **Graph history interaction problem**

- The graph history interaction (GHI) problem [Campbell 1985]:
  - In a game graph, a position can be visited by more than one paths from a starting position.
  - The value of the position depends on the path visiting it.
    - ▶ It can be win, loss or draw for Chinese chess.
    - ▶ It can only be draw for Western chess and Chinese dark chess.
    - ▶ It can only be loss for Go.
- In the transposition table, you record the value of a position, but not the path leading to it.
  - Values computed from rules on repetition cannot be used later on.
  - It takes a huge amount of storage to store all the paths visiting it.
- This is a very difficult problem to be solved in real time [Wu et al '05].



• Assume the one causes loops wins the game.



- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$  is loss because of rules of repetition.
  - $\triangleright$  Memorized J as a loss position (for the root).



- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$  is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$  is a win. Hence D is win.



- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$  is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$  is a win. Hence D is win.
- $A \to B \to E$  is a loss. Hence B is loss.



- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$  is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$  is a win. Hence D is win.
- $A \to B \to E$  is a loss. Hence B is loss.
- $A \to C \to F \to J$  is loss because J is recorded as loss.
- A is loss because both branches lead to loss.



- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$  is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$  is a win. Hence D is win.
- $A \to B \to E$  is a loss. Hence B is loss.
- $A \to C \to F \to J$  is loss because J is recorded as loss.
- A is loss because both branches lead to loss.
- However,  $A \to C \to F \to J \to D \to H$  is a win (for the root).

#### **Comments**

- Using DFS to search the above game graph from left first or from right first produces two different results.
- Position A is actually a win position.
  - ullet Problem: memorize J is a loss is only valid when the path leading to it causes a loop.
- Storing the path leading to a position in a transposition table requires too much memory.
  - Maybe we can store some forms of hash code to verify it.
- It is still a research problem to use a more efficient data structure.

#### Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
  - What is good to you is bad to the opponent and vice versa!
  - Hence we can reduce a minimax search to a NegaMax search.
  - This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluating functions  $f_1$  and  $f_2$  so that
  - for some positions p,  $f_1(p)$  is better than  $f_2(p)$ 
    - $\triangleright$  "better" means closer to the real value f(p)
  - for some positions q,  $f_2(q)$  is better than  $f_1(q)$
- If you are using  $f_1$  and you know your opponent is using  $f_2$ , what can be done to take advantage of this information.
  - This is called OM (opponent model) search [Carmel and Markovitch 1996].
    - ightharpoonup In a MAX node, use  $f_1$ .
    - ightharpoonup In a MIN node, use  $f_2$ .

#### **Opponent models – comments**

#### Comments:

- Need to know your opponent's model precisely or to have some knowledge about your opponent.
- How to learn the opponent model on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.

#### Search with chance nodes

- Chinese dark chess
  - Two-player, zero sum
  - Complete information
  - Perfect information
  - Stochastic
  - There is a chance node during searching [Ballard 1983].
    - ▶ The value of a chance node is a distribution, not a fixed value.
- Previous work
  - Alpha-beta based [Ballard 1983]
  - Monte-Carlo based [Lancoto et al 2013]

## Example (1/4)

It's BLACK turn and BLACK has 6 different possible legal moves including 4 of them being moving its elephant and two flipping moves at a1 or a8.
 It is difficult for BLACK to secure a win by moving its elephant along

It is difficult for BLACK to secure a win by moving its elephant along any of the 3 possible directions, namely up, right or left, or by capturing

the RED pawn at the left hand side.



## Example (2/4)

- If BLACK flips a1, then there are 2 possible cases.
  - If a1 is BLACK cannon, then it is difficult for RED to win.
  - If a1 is BLACK king, then it is difficult for BLACK to lose.



## Example (3/4)

- If BLACK flips a8, then there are 2 following cases.
  - If a8 is BLACK cannon, then RED cannon captures it immediately and results in a BLACK lose eventually.
  - If a8 is BLACK king, then RED cannon captures it immediately and results in a BLACK lose eventually.



# Example (4/4)

#### Conclusion:

- It is vary bad for BLACK to flip a8.
- It is bad for BLACK to move its elephant.
- It is better for BLACK to flip a1.



## Basic ideas for searching chance nodes

- Assume a chance node x has a score probability distribution function Pr(\*) with the range of possible outcomes from 1 to N where N is a positive integer.
  - For each possible outcome i, we need to compute score(i).
  - The expected value  $E = \sum_{i=1}^{N} score(i) * Pr(x = i)$ .
  - The minimum value is  $m = \min_{i=1}^{N} \{score(i) \mid Pr(x=i) > 0\}$ .
  - The maximum value is  $M = \max_{i=1}^{N} \{score(i) \mid Pr(x=i) > 0\}$ .
- Example: open game in Chinese dark chess.
  - For the first ply, N = 14 \* 32.
    - $\triangleright$  Using symmetry, we can reduce it to 7\*8.
  - We now consider the chance node of flipping the piece at the cell a1.
    - N = 14.
    - ▶ Assume x = 1 means a BLACK King is revealed and x = 8 means a RED King is revealed.
    - ▶ Then score(1) = score(8) since the first player owns the revealed king no matter its color is.
    - ightharpoonup Pr(x=1) = Pr(x=8) = 1/14.

## Illustration



## Algorithm: Chance\_Search

- Algorithm F3.0' (position p, value alpha, value beta) // max node
  - determine the successor positions  $p_1, \ldots, p_b$
  - if b = 0, then return f(p) else begin

- end;
- return m

## Algorithm: Chance\_Search

- Algorithm  $Star0\_F3.0'$  (position p, node n, value alpha, value beta)
  - // a chance node n with equal probability choices  $k_1$ , ...,  $k_c$
  - determine the possible values of the chance node n to be  $k_1, \ldots, k_c$
  - vsum = 0; // current sum of expected values
  - for i=1 to c do
  - begin
    - $\triangleright$  let  $p_i$  be the position of assigning  $k_i$  to n in  $p_i$
    - $\triangleright vsum += G3.0'(p_i,alpha,beta);$
  - end
- $\blacksquare$  return vsum/c;

#### **Comments**

- During a chance search, an exhaustive search method is used without any chance of pruning.
- Ideas for further improvements
  - When some of the best possible cases turn out very bad results, we know bound of the real value.
  - Examples:
    - ▶ Upper bound: The average of 2 drawings of a dice cannot be more than 3.5 if the first drawing is 1.
    - ▶ Lower bound: The average of 2 drawings of a dice cannot be less than 3 if the first drawing is 5.

#### Bounds in a chance node

- Assume the various possibilities of a chance node is evaluated one by one in the order that at the end of phase i, the ith choice is evaluated.
  - Assume  $v_{min} \leq score(i) \leq v_{max}$ .
- What are the lower and upper bounds, namely  $m_i$  and  $M_i$ , of the expected value of the chance node immediately after the end of phase i?
  - i = 0.

      $m_0 = v_{min}$   $M_0 = v_{max}$
  - i = 1, we first compute score(1), and then know

```
ho m_1 \ge score(1) * Pr(x = 1) + v_{min} * (1 - Pr(x = 1)),  and 
ho M_1 \le score(1) * Pr(x = 1) + v_{max} * (1 - Pr(x = 1)).
```

• • • •

- $i = i^*$ , we have computed  $score(1), \ldots, score(i^*)$ , and then know

  - $M_{i^*} \leq \sum_{i=1}^{i^*} score(i) * Pr(x=i) + v_{max} * (1 \sum_{i=1}^{i^*} Pr(x=i)).$

# Changes of bounds: uniform case (1/2)

- Assume the search window entering a chance node with N=c choices is [alpha,beta].
  - For simplicity, let's assume  $Pr_i = \frac{1}{c}$ , for all i, and the evaluated value of the ith choice is  $v_i$ .
- The value of a chance node after the first i choices are explored can be expressed as
  - an expected value  $E_i = vsum_i/i$ ;
    - $\triangleright vsum_i = \sum_{j=1}^i v_j$
    - ▶ This value is returned only when all choices are explored.

      ⇒ The expected value of an un-explored child shouldn't be  $\frac{v_{min}+v_{max}}{2}$ .
  - a range of possible values  $[m_i, M_i]$ .
    - $ightharpoonup m_i = (\sum_{j=1}^i v_j + v_{min} \cdot (c-i))/c$
    - $M_i = (\sum_{j=1}^{i} v_j + v_{max} \cdot (c-i))/c$
  - Invariants:
    - $\triangleright E_i \in [m_i, M_i]$
    - $\triangleright E_N = m_N = M_N$

# Changes of bounds: uniform case (2/2)

• Let  $m_i$  and  $M_i$  be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the ith node.

• 
$$m_i = (\sum_{j=1}^{i-1} v_j + v_i + v_{min} \cdot (c-i))/c$$

• 
$$M_i = (\sum_{j=1}^{i-1} v_j + v_i + v_{max} \cdot (c-i))/c$$

- How to incrementally update  $m_i$  and  $M_i$ :
  - $m_0 = v_{min}$
  - $M_0 = v_{max}$
  - $m_i = m_{i-1} + (v_i v_{min})/c$
  - $M_i = M_{i-1} + (v_i v_{max})/c$
- The current search window is [alpha, beta].
  - No more searching is needed when
    - $\triangleright m_i \ge beta$ , chance node cut off I;
      - $\Rightarrow$  The lower bound found so far is good enough.
      - $\Rightarrow$  Similar to a beta cutoff.
      - $\Rightarrow$  The returned value is  $m_i$ .
    - $\triangleright M_i \leq alpha$ , chance node cut off II.
      - $\Rightarrow$  The upper bound found so far is bad enough.
      - $\Rightarrow$  Similar to an alpha cutoff.
      - $\Rightarrow$  The returned value is  $M_i$ .

#### Chance node cut off

- When  $m_i \geq beta$ , chance node cut off I,
  - which means  $(\sum_{j=1}^{i-1} v_j + v_i + v_{min} \cdot (c-i))/c \ge beta$
  - $\Rightarrow v_i \ge B_{i-1} = c \cdot beta (\sum_{j=1}^{i-1} v_j v_{min} * (c-i))$
- When  $M_i \leq alpha$ , chance node cut off II,
  - which means  $(\sum_{j=1}^{i-1} v_j + v_i + v_{max} \cdot (c-i))/c \leq alpha$
  - $\Rightarrow v_i \leq A_{i-1} = c \cdot alpha (\sum_{j=1}^{i-1} v_j v_{max} * (c-i))$
- Hence set the window for searching the ith choice to be  $[A_{i-1}, B_{i-1}]$  which means no further search is needed if the result is not within this window.
- How to incrementally update  $A_i$  and  $B_i$ ?
  - $A_0 = c \cdot (alpha v_{max}) + v_{max}$
  - $B_0 = c \cdot (beta v_{min}) + v_{min}$
  - $\bullet \ A_i = A_{i-1} + v_{max} v_i$
  - $\bullet \ B_i = B_{i-1} + v_{min} v_i$

## Algorithm: Chance\_Search

- Algorithm F3.1' (position p, value alpha, value beta) // max node
  - determine the successor positions  $p_1, \ldots, p_b$
  - if b = 0, then return f(p) else begin

- end;
- return m

## Algorithm: Chance\_Search

- Algorithm  $Star1\_F3.1'$  (position p, node n, value alpha, value beta)
  - // a chance node n with equal probability choices  $k_1$ , ...,  $k_c$
  - determine the possible values of the chance node n to be  $k_1, \ldots, k_c$
  - ullet  $A_0=c\cdot(alpha-v_{max})+v_{max}$ ,  $B_0=c\cdot(beta-v_{min})+v_{min}$ ;
  - $m_0 = v_{min}$ ,  $M_0 = v_{max}$  // current lower and upper bounds
  - vsum = 0; // current sum of expected values
  - for i=1 to c do
  - begin
    - $\triangleright$  let  $p_i$  be the position of assigning  $k_i$  to n in p;
    - $\triangleright t := G3.1'(p_i, \max\{A_{i-1}, v_{min}\}, \min\{B_{i-1}, v_{max}\})$
    - $ightharpoonup m_i = m_{i-1} + (t v_{min})/c$ ,  $M_i = M_{i-1} + (t v_{max})/c$ ;
    - $\triangleright$  if  $t \geq B_{i-1}$  then return  $m_i$ ; // failed high, chance node cut off I
    - $\triangleright$  if  $t \leq A_{i-1}$  then return  $M_i$ ; // failed low, chance node cut off II
    - $\triangleright vsum += t$ :
    - $\triangleright A_i = A_{i-1} + v_{max} t, B_i = B_{i-1} + v_{min} t;$
  - end
- lacktriangledown return vsum/c;

## **Example: Chinese dark chess**

#### Assumption:

- The range of the scores of Chinese dark chess is [-10, 10] inclusive, alpha = -10 and beta = 10.
- N = 7.
- Pr(x=i) = 1/N = 1/7.

#### Calculation:

- i = 0,
  - $\rightarrow m_0 = -10.$
  - $M_0 = 10.$
- i = 1 and if score(1) = -2, then
  - $m_1 = -2 * 1/7 + -10 * 6/7 = -62/7 \simeq -8.86$ .
  - $M_1 = -2 * 1/7 + 10 * 6/7 = 58/7 \simeq 8.26.$
- i = 1 and if score(1) = 3, then
  - $m_1 = 3 * 1/7 + -10 * 6/7 = -57/7 \simeq -8.14$ .
  - $M_1 = 3 * 1/7 + 10 * 6/7 = 63/7 = 9.$

#### **General** case

- Assume the ith choice happens with a chance  $w_i/c$  where  $c=\sum_{i=1}^N w_i$  and N is the total number of choices.
  - $m_0 = v_{min}$
  - $M_0 = v_{max}$
  - $m_i = (\sum_{j=1}^{n-1} w_j \cdot v_j + w_i \cdot v_i + v_{min} \cdot (c \sum_{j=1}^{i} w_j))/c$ 
    - $> m_i = m_{i-1} + (w_i/c) \cdot (v_i v_{min})$
  - $M_i = (\sum_{j=1}^{i-1} w_j \cdot v_j + w_i \cdot v_i + v_{max} \cdot (c \sum_{j=1}^{i} w_j))/c$   $M_i = M_{i-1} + (w_i/c) \cdot (v_i v_{max})$
  - $A_0 = (c/w_1) \cdot (alpha v_{max}) + v_{max}$
  - $B_0 = (c/w_1) \cdot (beta v_{min}) + v_{min}$
  - $A_{i-1} = (c \cdot alpha (\sum_{j=1}^{i-1} w_j \cdot v_j v_{max} \cdot (c \sum_{j=1}^{i} w_j)))/w_i$ •  $A_i = (w_i/w_{i+1}) \cdot (A_{i-1} - v_i) + v_{max}$
  - $B_{i-1} = (c \cdot beta (\sum_{j=1}^{i-1} w_j \cdot v_j v_{min} \cdot (c \sum_{j=1}^{i} w_j)))/w_i$ •  $B_i = (w_i/w_{i+1}) \cdot (B_{i-1} - v_i) + v_{min}$

#### **Comments**

- We illustrate the ideas using a fail soft version of the alpha-beta algorithm.
  - Original and fail hard version have a simpler logic in maintaining the search interval.
  - The semantic of comparing an exact returning value with an expected returning value is something that needs careful thinking.
  - May want to pick a chance node with a lower expected value but having a hope of winning, not one with a slightly higher expected value but having no hope of winning when you are in disadvantageous.
  - May want to pick a chance node with a lower expected value but having no chance of losing, not one with a slightly higher expected value but having a chance of losing when you are in advantage.
  - Do not always pick one with a slightly larger expected value. Give the second one some chance to be selected.
- Need to revise algorithms carefully when dealing with the original, fail hard or NegaScout version.
  - What does it mean to combine bounds from a fail hard version?
- Exist other improvements by considering better move orderings involving chance nodes.

#### How to use these bounds

- The lower and upper bounds of the expected score can be used to do alpha-beta pruning.
  - Nicely fit into the alpha-beta search algorithm.
- Can do better by not searching the DFS order.
  - It is not necessary to search completely the subtree of x=1 first, and then start to look at the subtree of x=2.
  - Assume it is a MIN chance node, e.g., the opponent takes a flip.
    - ▶ Knowing some value  $v_1'$  of a MAX subtree for x = 1 gives an upper bound, i.e.,  $score(1) \ge v_1'$ .
    - ▶ Knowing some value  $v_2'$  of a MAX subtree for x=2 gives another upper bound, i.e.,  $score(2) \ge v_2'$ .
    - ▶ These bounds can be used to make the search window further narrower.
- For Monte-Carlo based algorithm, we need to use a sparse sampling algorithm to efficiently estimate the expected value of a chance node [Kearn et al 2002].

#### **Proof number search**

- Consider the case of a 2-player game tree with either 0 or 1 on the leaves.
  - win, or not win which is lose or draw;
  - lose, or not lose which is win or draw;
  - Call this a binary valued game tree.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
  - The value of the root is either 0 or 1.
  - If a branch of the root returns 1, then we know for sure the value of the root is 1.
  - The value of the root is 0 only when all branches of the root returns 0.
  - An AND-OR game tree search.

#### Which node to search next?

- A most proving node for a node u: a descendent node if its value is 1, then the value of u is 1.
- A most disproving node for a node u: a descendent node if its value is 0, then the value of u is 0.



## **Proof or Disproof Number**

- ullet Assign a proof number and a disproof number to each node u in a binary valued game tree.
  - proof(u): the minimum number of leaves needed to visited in order for the value of u to be 1.
  - disproof(u): the minimum number of leaves needed to visited in order for the value of u to be 0.
- The definition implies a bottom-up ordering.

#### **Proof Number: Definition**

- u is a leaf:
  - If value(u) is unknown, then proof(u) is the cost of evaluating u.
  - If value(u) is 1, then proof(u) = 0.
  - If value(u) is 0, then  $proof(u) = \infty$ .
- u is an internal node with all of the children  $u_1, \ldots, u_b$ :
  - if u is a MAX node,

$$proof(u) = \min_{i=1}^{i=b} proof(u_i);$$

• if u is a MIN node,

$$proof(u) = \sum_{i=1}^{i=b} proof(u_i).$$

### **Disproof Number: Definition**

- u is a leaf:
  - If value(u) is unknown, then disproof(u) is cost of evaluating u.
  - If value(u) is 1, then  $disproof(u) = \infty$ .
  - If value(u) is 0, then disproof(u) = 0.
- u is an internal node with all of the children  $u_1, \ldots, u_b$ :
  - if u is a MAX node,

$$disproof(u) = \sum_{i=1}^{i=b} disproof(u_i);$$

• if u is a MIN node,

$$disproof(u) = \min_{i=1}^{i=b} disproof(u_i).$$

#### Illustrations



proof number, disproof number



proof number, disproof number

### How these numbers are used (1/2)

#### Scenario:

- ullet For example, the tree T represents an open game tree or an endgame tree.
  - ▶ If *T* is an open game tree, then maybe it is asked to prove or disprove a certain open game is win.
  - ▶ If T is an endgame tree, then maybe it is asked to prove or disprove a certain endgame is win o loss.
  - ▶ Each leaf takes a lot of time to evaluate.
  - ▶ We need to prove or disprove the tree using as few time as possible.
- Depend on the results we have so far, pick a leaf to prove or disprove.
- Goal: solve as few leaves as possible so that in the resulting tree, either proof(root) or disproof(root) becomes 0.
  - If proof(root) = 0, then the tree is proved.
  - If disproof(root) = 0, then the tree is disproved.
- Need to be able to update these numbers on the fly.

### How these numbers are used (2/2)

- Let  $GV = \min\{proof(root), disproof(root)\}$ .
  - GT is "prove" if GV = proof(root), which means we try to prove it.
  - ullet GT is "disprove" if GV = disproof(root), which means we try to disprove it.
  - In the case of proof(root) = disproof(root), we set GT to "prove" for convenience.
- From the root, we search for a leaf whose value is unknown.
  - The leaf found is a most proving node if GT is "prove", or a most disproving node if GT is "disprove".
  - To find such a leaf, we start from the root downwards recursively as follows.
    - ▶ If we have reached a leaf, then stop.
    - ▶ If GT is "prove", then pick a child with the least proof number for a MAX node, and any node that has a chance to be proved for a MIN node.
    - ▶ If GT is "disprove", then pick a child with the least disproof number for a MIN node, and any node that has a chance to be disproved for a MAX node.

# PN-search: algorithm (1/2)

- {\* Compute and update proof and disproof numbers of the root in a bottom up fashion until it is proved or disproved. \*}
- loop:
  - If proof(root) = 0 or disproof(root) = 0, then we are done, otherwise
    - $\triangleright proof(root) \leq disproof(root)$ : we try to prove it.
    - $\triangleright proof(root) > disproof(root)$ : we try to disprove it.
  - $u \leftarrow root$ ; {\* find a leaf to prove or disprove \*}
  - if we try to prove, then
    - $\triangleright$  while u is not a leaf do

    - else if u is a MIN node, then  $u \leftarrow \text{leftmost child of } u \text{ with a non-zero proof number};$
  - else if we try to disprove, then
    - ▶ while u is not a leaf do

    - else if u is a MIN node, then  $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero disproof number;}$

# PN-search: algorithm (2/2)

{\* Continued from the last page \*}
• solve u;
• repeat {\* bottom up updating the values \*}
▶ update proof(u) and disproof(u)
▶ u ← u's parent
until u is the root
• go to loop;

### Multi-Valued game Tree

- The values of the leaves may not be binary.
  - Assume the values are non-negative integers.
  - Note: it can be in any finite countable domain.
- Revision of the proof and disproof numbers.
  - $proof_v(u)$ : the minimum number of leaves needed to visited in order for the value of u to  $\geq v$ .
    - $ightharpoonup proof(u) \equiv proof_1(u).$
  - $disproof_v(u)$ : the minimum number of leaves needed to visited in order for the value of u to < v.
    - $ightharpoonup disproof_1(u) \equiv disproof_1(u)$ .

### Illustration



#### Illustration



### Multi-Valued proof number

- u is a leaf:
  - If value(u) is unknown, then  $proof_v(u)$  is cost of evaluating u.
  - If  $value(u) \ge v$ , then  $proof_v(u) = 0$ .
  - If value(u) < v, then  $proof_v(u) = \infty$ .
- u is an internal node with all of the children  $u_1, \ldots, u_b$ :
  - if u is a MAX node,

$$proof_v(u) = \min_{i=1}^{i=b} proof_v(u_i);$$

• if u is a MIN node,

$$proof_v(u) = \sum_{i=1}^{i=b} proof_v(u_i).$$

### Multi-Valued disproof number

- u is a leaf:
  - If value(u) is unknown, then  $disproof_v(u)$  is cost of evaluating u.
  - If  $value(u) \geq v$ , then  $disproof_v(u) = \infty$ .
  - If value(u) < v, then  $disproof_v(u) = 0$ .
- u is an internal node with all of the children  $u_1, \ldots, u_b$ :
  - if u is a MAX node,

$$disproof_v(u) = \sum_{i=1}^{i=b} disproof_v(u_i);$$

• if u is a MIN node,

$$disproof_v(u) = \min_{i=1}^{i=b} disproof_v(u_i).$$

# Revised PN-search(v): algorithm (1/2)

- $\{*$  Compute and update proof $_v$  and disproof $_v$  numbers of the root in a bottom up fashion until it is proved or disproved.  $*\}$
- loop:
  - If  $proof_v(root) = 0$  or  $disproof_v(root) = 0$ , then we are done, otherwise
    - $\triangleright proof_v(root) \leq disproof_v(root)$ : we try to prove it.
    - $ightharpoonup proof_v(root) > disproof_v(root)$ : we try to disprove it.
  - $u \leftarrow root$ ; {\* find a leaf to prove or disprove \*}
  - if we try to prove, then
    - ▶ while *u* is not a leaf do
    - if u is a MAX node, then  $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero proof}_v \text{ number};$
    - else if u is a MIN node, then  $u \leftarrow \text{leftmost child of } u \text{ with a non-zero proof}_v \text{ number};$
  - else if we try to disprove, then
    - ▶ while u is not a leaf do
    - $\triangleright$  if u is a MAX node, then  $u \leftarrow$  leftmost child of u with a non-zero disproof, number;
    - else if u is a MIN node, then  $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero disproof}_v \text{ number};$

# PN-search: algorithm (2/2)

{\* Continued from the last page \*}
• solve u;
• repeat {\* bottom up updating the values \*}
▶ update proof<sub>v</sub>(u) and disproof<sub>v</sub>(u)
▶ u ← u's parent
until u is the root
• go to loop;

### Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
  - Set the initial value of v to be 1.
  - loop: PN-search(v)
    - $\triangleright$  Prove the value of the search tree is  $\geq v$  or disprove it by showing it is < v.
  - If it is proved, then double the value of v and go to loop again.
  - If it is disproved, then the true value of the tree is between  $\lfloor v/2 \rfloor$  and v-1.
  - {\* Use a binary search to find the exact returned value of the tree. \*}
  - $low \leftarrow \lfloor v/2 \rfloor$ ;  $high \leftarrow v-1$ ;
  - while  $low \leq high$  do
    - ightharpoonup if low = high, then return low as the tree value
    - $ightharpoonup mid \leftarrow \lfloor (low + high)/2 \rfloor$
    - ▶ PN-search(mid)
    - $\triangleright$  if it is disproved, then  $high \leftarrow mid 1$
    - $\triangleright$  else if it is proved, then  $low \leftarrow mid$

#### **Comments**

- Can be used to construct opening books.
- Appear to be good for searching certain types of game trees.
  - Find the easiest way to prove or disprove a conjecture.
  - A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
  - Performances of most previous algorithms depend heavily on whether good move orderings can be found.
- Searching the "easiest" branch may not give you the best performance.
  - Performance depends on the value of each internal node.
- Commonly used in verifying conjectures, e.g., first-player win.
  - Partition the opening moves in a tree-like fashion.
  - Try to the "easiest" way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.

### References and further readings (1/2)

- L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search.  $Artificial\ Intelligence,\ 66(1):91-124,\ 1994.$
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing: mid-80's perspective, pages 278–280. ACM Press, 1985.

### References and further readings (2/2)

- Bruce W. Ballard The \*-minimax search procedure for trees containing chance nodes Artificial Intelligence, Volume 21, Issue 3, September 1983, Pages 327-350
- Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald, Mark H. M. Winands Monte-Carlo \*-MiniMax Search Proceedings IJCAI, pages 580–586, 2013.
- Kearns, Michael; Mansour, Yishay; Ng, Andrew Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning, 2002, 49.2-3: 193-208.
- Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu "The Graph History Interaction Problem in Chinese Chess," Proceedings of the 11th Advances in Computer Games Conference, (ACG), Springer-Verlag LNCS# 4250, pages 165–179, 2005.