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Abstract

Some advanced research issues.
• The graph history interaction (GHI) problem.
• Opponent models.
• Searching chance nodes.
• Proof-number search.

More research topics.
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Graph history interaction problem

The graph history interaction (GHI) problem [Campbell 1985]:
• In a game graph, a position can be visited by more than one paths

from a starting position.
• The value of the position depends on the path visiting it.

. It can be win, loss or draw for Chinese chess.

. It can only be draw for Western chess and Chinese dark chess.

. It can only be loss for Go.

In the transposition table, you record the value of a position,
but not the path leading to it.
• Values computed from rules on repetition cannot be used later on.
• It takes a huge amount of storage to store all the paths visiting it.

This is a very difficult problem to be solved in real time [Wu et
al ’05] [Kishimoto and Müller ’04].
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GHI: when loop draws
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• Assume if the game falls into a loop, then it is a draw.
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GHI: when loop draws
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• Assume if the game falls into a loop, then it is a draw.

• A→ B → D → G→ I → J → D is draw by rules of repetition.
. Memorized J as a draw position.
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GHI: when loop draws
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• Assume if the game falls into a loop, then it is a draw.

• A→ B → D → G→ I → J → D is draw by rules of repetition.
. Memorized J as a draw position.

• A→ B → D → H is a win. Hence D is win.
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GHI: when loop draws
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• Assume if the game falls into a loop, then it is a draw.

• A→ B → D → G→ I → J → D is draw by rules of repetition.
. Memorized J as a draw position.

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.
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GHI: when loop draws
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• Assume if the game falls into a loop, then it is a draw.

• A→ B → D → G→ I → J → D is draw by rules of repetition.
. Memorized J as a draw position.

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

• A→ C → F → J is draw because J is recorded as draw.

• A is draw because one child is loss and the other chile is draw.
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GHI: when loop draws
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• Assume if the game falls into a loop, then it is a draw.

• A→ B → D → G→ I → J → D is draw by rules of repetition.
. Memorized J as a draw position.

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

• A→ C → F → J is draw because J is recorded as draw.

• A is draw because one child is loss and the other chile is draw.

• However, A→ C → F → J → D → H is a win (for the root).
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GHI: when loop wins
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• Assume the one causes loops wins the game.
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GHI: when loop wins
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• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
. Memorized J as a loss position (for the root).
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GHI: when loop wins
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• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
. Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.
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GHI: when loop wins
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• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
. Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.
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GHI: when loop wins
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• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
. Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

• A→ C → F → J is loss because J is recorded as loss.

• A is loss because both branches lead to loss.
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GHI: when loop wins
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• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
. Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

• A→ C → F → J is loss because J is recorded as loss.

• A is loss because both branches lead to loss.

• However, A→ C → F → J → D → H is a win (for the root).
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Comments

Using DFS to search the above game graph from left first or
from right first produces two different results.
Position A is actually a win position.
• Problem: memorize J being draw is only valid when the path leading

to it causes a loop.

Storing the path leading to a position in a transposition table
requires too much memory.
• Maybe we can store some forms of hash code to verify it.

It is still a research problem to use a more efficient data
structure.
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Opponent models

In a normal alpha-beta search, it is assumed that you and the
opponent use the same strategy.
• What is good to you is bad to the opponent and vice versa!
• Hence we can reduce a minimax search to a NegaMax search.
• This is normally true when the game ends, but may not be true in the

middle of the game.

What will happen when there are two strategies or evaluating
functions f1 and f2 so that
• for some positions p, f1(p) is better than f2(p)

. “better” means closer to the real value f(p)

• for some positions q, f2(q) is better than f1(q)

If you are using f1 and you know your opponent is using f2,
what can be done to take advantage of this information.
• This is called OM (opponent model) search [Carmel and Markovitch

1996].
. In a MAX node, use f1.
. In a MIN node, use f2.
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Other usage of the opponent model

Depend on strength of your opponent, decide whether to force
an easy draw or not.
• This is called the contempt factor.

Example in CDC:
• It is easy to chase the king of your opponent using your pawn.
• Drawing a weaker opponent is a waste.
• Drawing a stronger opponent is a gain.

It is feasible to use a learning model to “guess” the level of
your opponent as the game goes and then adapt to its model
in CDC [Chang et al 2021].
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Opponent models – comments

Comments:
• Need to know your opponent’s model precisely or to have some

knowledge about your opponent.
• How to learn the opponent model on-line or off-line?
• When there are more than 2 possible opponent strategies, use a

probability model (PrOM search) to form a strategy.

Remark: A common misconception is if your opponent uses a
worse strategy f3 than the one, namely f2, used in your model,
then he may get advantage.
• This is impossible if f2 is truly better than f3.
• If f1 can beat f2, then f1 can sure beat f3.
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Search with chance nodes

Many stochastic games have nodes whose outcome cannot be
decided ahead of time in the game tree.
• A priori chance node: you make a decision first and then followed by a

random toss.
. EinStein Wrfelt Nicht (EWN): you make a random toss to decide what

pieces that you can move, and then you make a move.

• A posteriori chance node: a random toss is made first and then you
make a decision.

. Chinese dark chess: you pick a dark piece to flip, and then the piece is
revealed decided by a random toss

Example: Chinese dark chess (CDC)
• Two-player, zero sum
• Complete information
• Perfect information
• Stochastic
• There is a chance node during searching [Ballard 1983].

Previous work
• Alpha-beta based [Ballard 1983]
• Monte-Carlo based [Lancoto et al 2013]
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Example (1/4)

It’s BLACK turn and BLACK has 6 different possible legal
moves which includes the four different moving made by its
elephant and the two flipping moves at a1 or a8.
• It is difficult for BLACK to secure a win by moving its elephant along

any of the 3 possible directions, namely up, right or left, or by capturing
the RED pawn at the left hand side.
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Example (2/4)

If BLACK flips a1, then there are 2 possible cases.
• If a1 is BLACK cannon, then it is difficult for RED to win.

. RED guard is in danger.

• If a1 is BLACK king, then it is difficult for BLACK to lose.
. BLACK king can go up through the right.
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Example (3/4)

If BLACK flips a8, then there are 2 possible cases.
• If a8 is BLACK cannon, then it is easy for RED to win.

. RED cannon captures it immediately.

• If a8 is BLACK king, then it is also easy for RED to win.
. RED cannon captures it immediately.
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Example (4/4)

Conclusion:
• It is vary bad for BLACK to flip a8.
• It is bad for BLACK to move its elephant.
• It is better for BLACK to flip a1.
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Basic ideas for searching chance nodes

Assume a chance node x has a score probability distribution
function Pr(∗) with the range of possible outcomes from 1 to
N where N is a positive integer.
• For each possible outcome i, we need to compute score(i).

• The expected value E =
∑N
i=1 score(i) ∗ Pr(x = i).

• The minimum value is m = minNi=1{score(i) | Pr(x = i) > 0}.
• The maximum value is M = maxNi=1{score(i) | Pr(x = i) > 0}.

Example: open game in Chinese dark chess.
• For the first ply, N = 14 ∗ 32.

. Using symmetry, we can reduce it to 7*8.

• We now consider the chance node of flipping the piece at the cell a1.
. N = 14.
. Assume x = 1 means a BLACK King is revealed and x = 8 means a

RED King is revealed.
. Then score(1) = score(8) since the first player owns the revealed king

no matter its color is.
. Pr(x = 1) = Pr(x = 8) = 1/14.
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Illustration

... ......

max

min

chance

expected value

TCG: Selected advanced topics, 20220125, Tsan-sheng Hsu c© 26



Algorithm: Chance Search (MAX node)

Algorithm F3.0′(position p, value alpha, value beta, integer
depth)
• // max node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else begin
. m := −∞
. for i := 1 to b do
. begin
. if pi is to play a chance node x

then t := Star0 F3.0′(pi,x,max{alpha,m}, beta, depth− 1)

. else t := G3.0′(pi,max{alpha,m}, beta, depth− 1)

. if t > m then m := t

. if m ≥ beta then return(m) // beta cut off

. end

• end;
• return m
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Algorithm: Chance Search (MIN node)

Algorithm G3.0′(position p, value alpha, value beta, integer
depth)
• // min node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else begin
. m :=∞
. for i := 1 to b do
. begin
. if pi is to play a chance node x

then t := Star0 G3.0′(pi,x,alpha, min{beta,m}, depth− 1)

. else t := F3.0′(pi, alpha,min{beta,m}, depth− 1)

. if t < m then m := t

. if m ≤ alpha then return(m) // alpha cut off

. end

• end;
• return m
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Algorithm: Star0, uniform case (MAX)

version when all choices have equal probabilities
max node
Algorithm Star0 EQU F3.0′(position p, node x, value alpha,
value beta, integer depth)
• // a chance node x with c equal probability choices k1, . . ., kc
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vsum = 0; // current sum of expected value
• for i = 1 to c do
• begin

. let pi be the position of assigning ki to x in p;

. vsum += G3.0′(pi,−∞, +∞,depth);

• end

return vsum/c; // return the expected score
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Algorithm: Star0, uniform case (MIN)

version when all choices have equal probabilities
min node
Algorithm Star0 EQU G3.0′(position p, node x, value alpha,
value beta, integer depth)
• // a chance node x with c equal probability choices k1, . . ., kc
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vsum = 0; // current sum of expected value
• for i = 1 to c do
• begin

. let pi be the position of assigning ki to x in p;

. vsum += F3.0′(pi,−∞, +∞,depth);

• end

return vsum/c; // return the expected score
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Star0: note

depth stays the same since we are unwrapping a chance node.
The search window from normal alpha-beta pruning cannot be
applied in a chance node search since we are looking at the
average of the outcome.
• It is okay for one choice to have a very large or small value because it

may be evened out by values from other choices.
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With a probability distribution: MAX node

MAX node
Algorithm Star0 F3.0′(position p, node x, value alpha, value
beta,integer depth)
• // a chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vexp = 0; // current sum of expected value
• for i = 1 to c do
• begin

. let pi be the position of assigning ki to x in p;

. vexp += Pri ∗ G3.0′(pi,−∞, +∞,depth);

• end

return vexp; // return the expected score
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With a probability distribution: MIN node

MIN node
Algorithm Star0 G3.0′(position p, node x, value alpha, value
beta,integer depth)
• // a chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vexp = 0; // current sum of expected value
• for i = 1 to c do
• begin

. let pi be the position of assigning ki to x in p;

. vexp += Pri ∗ F3.0′(pi,−∞, +∞,depth);

• end

return vexp; // return the expected score
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Ideas for improvements

During a chance search, an exhaustive search method is used
without any pruning.
Ideas for further improvements
• When some of the best possible cases turn out very bad results, we

know lower/upper bounds of the final value.
• When you are in advantage, search for a bad choice first.

. If the worst choice cannot is not too bad, then you can take this chance.

• When you are in disadvantage, search for a good choice first.
. If the best choice cannot is not good enough, then there is not need to

take this chance.

Examples: the average of 2 drawings of a dice is similar to a
position with 2 possible moves with scores in [1..6].
• The first drawing is 5. Then bounds of the average:

. lower bound is 3

. upper bound is 5.5.

• The first drawing is 1. Then bounds of the average:
. lower bound is 1
. upper bound is 3.5.
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Bounds in a chance node

Assume the various possibilities of a chance node is evaluated
one by one in the order that at the end of phase i, the ith
choice is evaluated.
• Assume vmin ≤ score(i) ≤ vmax.

What are the lower and upper bounds, namely mi and Mi, of
the expected value of the chance node immediately after the
end of phase i?
• i = 0.

. m0 = vmin

. M0 = vmax

• i = 1, we first compute score(1), and then know
. m1 ≥ score(1) ∗ Pr(x = 1) + vmin ∗ (1− Pr(x = 1)), and
. M1 ≤ score(1) ∗ Pr(x = 1) + vmax ∗ (1− Pr(x = 1)).

• · · ·
• i = i∗, we have computed score(1), . . . , score(i∗), and then know

. mi∗ ≥
∑i∗

i=1 score(i) ∗ Pr(x = i) + vmin ∗ (1−
∑i∗

i=1 Pr(x = i)), and

. Mi∗ ≤
∑i∗

i=1 score(i) ∗ Pr(x = i) + vmax ∗ (1−
∑i∗

i=1 Pr(x = i)).
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Changes of bounds: uniform case (1/2)

For simplicity, let’s assume Pr(x = i) = 1
c.

For all i, and the evaluated value of the ith choice is vi.
Assume the search window entering a chance node with N = c
choices is (alpha, beta).
The value of a chance node after the first i choices are explored
can be expressed as
• an expected value Ei = vsumi/i;

. vsumi =
∑i

j=1 vj
. This value is returned only when all choices are explored.
⇒ The expected value of an un-explored child shouldn’t be

vmin+vmax
2 .

• a range of possible values [mi,Mi].

. mi = (
∑i

j=1 vj + vmin · (c− i))/c
. Mi = (

∑i
j=1 vj + vmax · (c− i))/c

• Invariants:
. Ei ∈ [mi,Mi]
. Ec = mc = Mc
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Changes of bounds: uniform case (2/2)

Let mi and Mi be the current lower and upper bounds,
respectively, of the expected value of this chance node
immediately after the evaluation of the ith node.
• mi = (

∑i−1
j=1 vj + vi + vmin · (c− i))/c

• Mi = (
∑i−1
j=1 vj + vi + vmax · (c− i))/c

How to incrementally update mi and Mi:
• m0 = vmin
• M0 = vmax
• mi = mi−1 + (vi − vmin)/c
• Mi =Mi−1 + (vi − vmax)/c

The current search window is (alpha, beta).
• No more searching is needed when

. mi ≥ beta, chance node cut off I;
⇒ The lower bound found so far is good enough.
⇒ Similar to a beta cut off.
⇒ The returned value is mi.

. Mi ≤ alpha, chance node cut off II.
⇒ The upper bound found so far is bad enough.
⇒ Similar to an alpha cut off.
⇒ The returned value is Mi.
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Chance node cut off: uniform case (1/3)

The above two cut offs comes from each time a choice is
completely searched.
• When mi ≥ beta, chance node cut off I,

. which means (
∑i−1

j=1 vj + vi + vmin · (c− i))/c ≥ beta.

• When Mi ≤ alpha, chance node cut off II,
. which means (

∑i−1
j=1 vj + vi + vmax · (c− i))/c ≤ alpha.

Further cut off can be obtained before when that choice is in
searching.
• Assume after searching the first i− 1 choices, no chance node cut off

happens.
• Before searching the ith choice, we know that if vi is large enough,

then it will raise the lower bound of the chance node and it will have
a chance of getting a chance node cut off I.

• How large should vi be for this to happen?
. chance node cut off I:

(
∑i−1

j=1 vj + vi + vmin · (c− i))/c ≥ beta
. ⇒ vi ≥ Bi−1 = c · beta− (

∑i−1
j=1 vj − vmin ∗ (c− i))

. Bi−1 is the threshold for cut off I to happen.
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Chance node cut off: uniform case (2/3)

Similarly,
• Assume after searching the first i− 1 choices, no chance node cut off

happens.
• Before searching the ith choice, we know that if vi is small enough,

then it will lower the upper bound of the chance node and it will have
a chance of getting a chance node cut off II.

• How small should vi be for this to happen?
. chance node cut off II:

(
∑i−1

j=1 vj + vi + vmax · (c− i))/c ≤ alpha
. ⇒ vi ≤ Ai−1 = c · alpha− (

∑i−1
j=1 vj − vmax ∗ (c− i))

. Ai−1 is the threshold for cut off II to happen.
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Chance node cut off: uniform case (3/3)

Hence set the window for searching the ith choice to be
(Ai−1, Bi−1) which means no further search is needed if the
result is not within this window.
• (Ai−1, Bi−1) is the window for searching the ith choice instead of using
(alpha, beta).

How to incrementally update Ai and Bi?
• A0 = c · (alpha− vmax) + vmax
• B0 = c · (beta− vmin) + vmin
• Ai = Ai−1 + vmax − vi
• Bi = Bi−1 + vmin − vi

Comment:
• May want to use zero-window search to test first.
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Changes of bounds: non-uniform case (1/3)

Assume the search window entering a chance node with N = c
choices is (alpha, beta).
The ith choice happens with the probability Pr(x = i) = Pri.
For all i, the evaluated value of the ith choice is vi.
The value of a chance node after the first i choices are explored
can be expressed as
• an expected value Ei = vexpi;

. vexpi =
∑i

j=1 Prj ∗ vj
. This value is returned only when all choices are explored.
⇒ The expected value of an un-explored child shouldn’t be

vmin+vmax
2 .

• a range of possible values [mi,Mi].
. mi = vexpi +

∑c
j=i+1 Prj ∗ vmin

. Mi = vexpi +
∑c

j=i+1 Prj ∗ vmax
• Invariants:

. Ei ∈ [mi,Mi]

. Ec = mc = Mc
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Changes of bounds: non-uniform case (2/3)

Let mi and Mi be the current lower and upper bounds,
respectively, of the expected value of this chance node
immediately after the evaluation of the ith node.
• mi = vexpi−1 + Pri ∗ vi +

∑c
j=i+1Prj ∗ vmin

• Mi = vexpi−1 + Pri ∗ vi +
∑c
j=i+1Prj ∗ vmax

How to incrementally update mi and Mi:
• m0 = vmin
• M0 = vmax
•

mi = mi−1 + Pri ∗ (vi − vmin) (1)

•
Mi =Mi−1 + Pri ∗ (vi − vmax) (2)
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Changes of bounds: non-uniform case (3/3)

The current search window is (alpha, beta).
No more searching is needed when
• mi ≥ beta, chance node cut off I;
⇒ The lower bound found so far is good enough.
⇒ Similar to a beta cut off.
⇒ The returned value is mi.

• Mi ≤ alpha, chance node cut off II.
⇒ The upper bound found so far is bad enough.
⇒ Similar to an alpha cut off.
⇒ The returned value is Mi.
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Chance node cut off: non-uniform case (1/2)

When mi ≥ beta, chance node cut off I,
• which means vexpi−1 + Pri ∗ vi +

∑c
j=i+1Prj ∗ vmin ≥ beta

• ⇒ vi ≥ Bi−1 = 1
Pri
· (beta− (vexpi−1 +

∑c
j=i+1Prj ∗ vmin))

When Mi ≤ alpha, chance node cut off II,
• which means vexpi−1 + Pri ∗ vi +

∑c
j=i+1Prj ∗ vmax ≤ alpha

• ⇒ vi ≤ Ai−1 = 1
Pri
· (alpha− (vexpi−1 +

∑c
j=i+1Prj ∗ vmax))

Hence set the window for searching the ith choice to be
(Ai−1, Bi−1) which means no further search is needed if the
result is not within this window.
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Chance node cut off: non-uniform case (2/2)

How to incrementally update Ai and Bi?
•

A0 =
1

Pr1
· (alpha− vmax ∗

c∑
i=1

Pri) + vmax (3)

•

B0 =
1

Pr1
· (beta− vmin ∗

c∑
i=1

Pri) + vmin (4)

•
Ai =

1

Pri+1
∗ (Pri ∗Ai−1 + Pri+1 ∗ vmax − Pri ∗ vi) (5)

•
Bi =

1

Pri+1
∗ (Pri ∗Bi−1 + Pri+1 ∗ vmin − Pri ∗ vi) (6)
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Algorithm: Chance Search

Algorithm F3.1′(position p, value alpha, value beta, integer
depth)
• // max node
• determine the successor positions p1, . . . , pb;
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p); else begin
. m := −∞;
. for i := 1 to b do
. begin
. if pi is to play a chance node x

then t := Star1 F3.1′(pi,x,max{alpha,m}, beta, depth− 1);

. else t := G3.1′(pi,max{alpha,m}, beta, depth− 1);

. if t > m then m := t;

. if m ≥ beta then return(m); // beta cut off

. end;

• end;
• return m;
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Star1: uniform case

Algorithm Star1 EQU F3.1′(position p, node x, value alpha,
value beta, integer depth)
• // a chance node x with c equal probability choices k1, . . ., kc
• determine the possible values of the chance node x to be k1, . . . , kc
• A0 = c · (alpha− vmax) + vmax, B0 = c · (beta− vmin) + vmin;
• m0 = vmin, M0 = vmax // current lower and upper bounds
• vsum = 0; // current sum of expected values
• for i = 1 to c do
• begin

. let pi be the position of assigning ki to x in p;

. t := G3.1′(pi,max{Ai−1,vmin},min{Bi−1,vmax},depth)

. mi = mi−1 + (t− vmin)/c, Mi = Mi−1 + (t− vmax)/c;

. if t ≥ Bi−1 then return mi; // failed high, chance node cut off I

. if t ≤ Ai−1 then return Mi; // failed low, chance node cut off II

. vsum += t;

. Ai = Ai−1 + vmax − t, Bi = Bi−1 + vmin − t;
• end

return vsum/c;

TCG: Selected advanced topics, 20220125, Tsan-sheng Hsu c© 47



Illustration: Star1

... ......
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(A[i−1],B[i−1])
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Star1: non-uniform case

Algorithm Star1 F3.1′(position p, node x, value alpha, value
beta, integer depth)
• // a chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• determine the possible values of the chance node x to be k1, . . . , kc
• initialize A0 and B0 using formulas (3) and (4)
• m0 = vmin, M0 = vmax // current lower and upper bounds
• vexp = 0; // current weighted sum of expected values
• for i = 1 to c do
• begin

. let Pri be the position of assigning ki to x in p;

. t := G3.1′(pi,max{Ai−1,vmin},min{Bi−1,vmax},depth)

. incrementally update mi and Mi using formulas (1) and (2)

. if t ≥ Bi−1 then return mi; // failed high, chance node cut off I

. if t ≤ Ai−1 then return Mi; // failed low, chance node cut off II

. vexp += Pri ∗ t;

. incrementally update Ai and Bi using formulas (5) and (6)

• end
return vexp;
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Example: Chinese dark chess

Assumption:
• The range of the scores of Chinese dark chess is [−10, 10] inclusive,
alpha = −10 and beta = 10.

• N = 7.
• Pr(x = i) = 1/N = 1/7.

Calculation:
• i = 0,

. m0 = −10.

. M0 = 10.

• i = 1 and if score(1) = −2, then
. m1 = −2 ∗ 1/7 +−10 ∗ 6/7 = −62/7 ' −8.86.
. M1 = −2 ∗ 1/7 + 10 ∗ 6/7 = 58/7 ' 8.26.

• i = 1 and if score(1) = 3, then
. m1 = 3 ∗ 1/7 +−10 ∗ 6/7 = −57/7 ' −8.14.
. M1 = 3 ∗ 1/7 + 10 ∗ 6/7 = 63/7 = 9.
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General case

Assume the ith choice happens with a chance wi/c where
c =

∑N
i=1wi and N is the total number of choices.

• m0 = vmin
• M0 = vmax
• mi = (

∑i−1
j=1wj · vj + wi · vi + vmin · (c−

∑i
j=1wj))/c

. mi = mi−1 + (wi/c) · (vi − vmin)

• Mi = (
∑i−1
j=1wj · vj + wi · vi + vmax · (c−

∑i
j=1wj))/c

. Mi = Mi−1 + (wi/c) · (vi − vmax)
• A0 = (c/w1) · (alpha− vmax) + vmax
• B0 = (c/w1) · (beta− vmin) + vmin
• Ai−1 = (c · alpha− (

∑i−1
j=1wj · vj − vmax · (c−

∑i
j=1wj)))/wi

. Ai = (wi/wi+1) · (Ai−1 − vi) + vmax

• Bi−1 = (c · beta− (
∑i−1
j=1wj · vj − vmin · (c−

∑i
j=1wj)))/wi

. Bi = (wi/wi+1) · (Bi−1 − vi) + vmin
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The probability distribution

Assume a chance node x has c choices k1, . . . , kc.
The ith choice happens with the probability Pri and

∑c
i=1Pri =

1.
Special case 1, called uniform (EQU): Pri = 1/c.
• All choices happen with a equal chance.
• Example: EinStein Wrfelt Nicht (EWN) when all pieces are not

captured.

Special case 2, called GCD: Pri = wi/D where each wi is an
integer and

∑c
i=1wi = D.

• example: Chinese dark chess.

The above two special cases usually happen in game playing
and can use the characteristics to do some optimization in
number calculations.
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Algorithm: Star0, GCD case, MAX node

An GCD version for a MAX node.
Algorithm Star0 GCD F3.0′(position p, node x, value alpha,
value beta, integer depth)
• // a chance node x with c choices k1, . . ., kc
• // whose occurrence probability are w1/D, . . ., wc/D
• // and each wi is an integer
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vsum = 0; // current sum of weight values
• for i = 1 to c do
• begin

. let pi be the position of assigning ki to x in p;

. vsum += wi * G3.0′(pi,−∞, +∞,depth);

• end

return vsum/D; // return the expected score
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Algorithm: Star0, GCD case, MIN node

An GCD version for a MIN node.
Algorithm Star0 GCD G3.0′(position p, node x, value alpha,
value beta, integer depth)
• // a chance node x with c choices k1, . . ., kc
• // whose occurrence probability are w1/D, . . ., wc/D
• // and each wi is an integer
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vsum = 0; // current sum of weight values
• for i = 1 to c do
• begin

. let pi be the position of assigning ki to x in p;

. vsum += wi * F3.0′(pi,−∞, +∞,depth);

• end

return vsum/D; // return the expected score
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Comments (1/2)

We illustrate the ideas using a fail soft version of the alpha-beta
algorithm.
• Original and fail hard version have a simpler logic in maintaining the

search interval.
• The semantic of comparing an exact return value with an expected

returning value is something that needs careful thinking.
• May want to pick a chance node with a lower expected value but

having a hope of winning, not one with a slightly higher expected value
but having no hope of winning when you are in disadvantageous.

• May want to pick a chance node with a lower expected value but
having no chance of losing, not one with a slightly higher expected
value but having a chance of losing when you are in advantage.

• Do not always pick one with a slightly larger expected value. Give the
second one some chance to be selected.
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Comments (2/2)

Need to revise algorithms carefully when dealing with the
original, fail hard or NegaScout version.
• What does it mean to combine bounds from a fail hard version?

The lower and upper bounds of the expected score can be used
to do alpha-beta pruning.
• Nicely fit into the alpha-beta search algorithm.
• Not only we can terminate the searching of choices earlier, but also we

can terminate the searching of a particular choice earlier.

Exist other improvements by searching choices of a chance node
“in parallel”.
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Implementation hints (1/2)

Fully unwrap a chance node takes more time than that of a
non-chance node.
• If you set your depth limit to d for a game without chance nodes, then

the depth limit should be lower for that game when chance node is
introduced.

• Technically speaking, a chance node adds at least one level.
. Depending on the number of choices you have compared to the number

of non-chance children, you may need to reduce the search depth limit
by at least 3 or 5, and maybe 7.

. Estimate the complexity of a chance node by comparing the number of
choices of a chance node and the number of non-chance-node moves.

Without searching a chance node, it is easy to obtain not
enough progress by just searching a long sequence of non-chance
nodes.
• In CDC, when there are only a limited number of revealed pieces, there

is not much you can do by just moving around.
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Implementation hints (2/2)

Practical considerations, for example in Chinese Dark Chess
(CDC), are as follows.
• You normally do not need to consider the consequence of flipping more

than 2 dark pieces.
. Set a maximum number of chance node searching in any DFS search

path.

• It makes little sense to consider ending a search with exploring a chance
node.

. When depth limit left is less than 3 or 4, stop exploring chance nodes.

• It also makes little sense to consider the consequence of exploring 2
chance nodes back to back.

. Make sure two chance nodes in a DFS search path is separated by at
least 3 or 4 non-chance nodes.

• It is rarely the case that a chance node exploration is the first ply
to consider in move ordering unless it is recommended by a prior
knowledge or no other non-chance-node moves exists.
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Ideas for furthermore improvements (1/2)

Can do better by not searching the DFS order.
• It is not necessary to search completely the subtree of x = 1 first, and

then start to look at the subtree of x = 2, ... etc.
• partially search a subtree gives you some information about the possible

range of this chance node.

Assume p is a MAX chance node, e.g., root makes a flip.
• Ti is the tree of p when for the ith choice, namely, with the root pi

which is a MIN node.
• Ti,j is the jth branch of Ti, namely, with the root pi,j.
• vi is the evaluated value of Ti.
• vi,j is the evaluated value of Ti,j.

We have completely searched T1,s and obtained a value v1,s.
• Since pi is a MIN node, v1,s is an upper bound of v1 which is usually

lower than the maximum possible value.
• The upper bound of v1 is thus lowered.
• It is possible because of this probe, an alpha cut can be performed.

The above process is called an exact probe.
• We can first probe each Ti.
• It is better to probe the worse possible branch of Ti first.
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Ideas for furthermore improvements (2/2)

Assume p is a MIN chance node, e.g., the opponent makes a
flip.
• Ti is the tree of p when for the ith choice, namely, with the root pi

which is a MAX node.
• Ti,j is the jth branch of Ti, namely, with the root pi,j.
• vi is the evaluated value of Ti.
• vi,j is the evaluated value of Ti,j.

We have completely searched T1,s and obtained a value v1,s.
• Since pi is a MAX node, v1,s is a lower bound of v1 which is usually

larger than the minimum possible value.
• The lower bound of v1 is thus raised.
• It is possible because of this probe, a beta cut can be performed.

The above process is called an exact probe.
• We can first probe each Ti.
• It is better to probe the best possible branch of Ti first.
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Illustration: Probe
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The first child of Ti is probed.
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Star2

Algorithm Star2 F3.2′(position p, node x, value alpha, value
beta) // MAX node
• // a chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• determine the possible values of the chance node x to be k1, . . . , kc
• // Do some probings to decide whether some cut off can be performed.
• for each choice i from 1 to c do

. Let pi be the position obtained from p by making x the choice ki.

. do an exact probe on the first child of pi

. If p is a MAX chance node, then pi is a MIN node and you may get an
alpha cut off for pi since the probe returns an upper bound for pi.

. If p is a MIN chance node, then pi is a MAX node and you may get an
beta cut off for pi since the probe returns a lower bound for pi.

• // normal exhaustive search phase
• If no cut off is found in the above, do the normal Star1 search.

. Additional alpha/beta cut off from searching a particular choice.

. Chance node cut off I that is similar to beta cut off.

. Chance node cut off II that is similar to alpha cut off.

• return vexp;
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More ideas for probes

Move ordering in exploring the choices is critical in performance.
Picking which child to do the probe is also critical.
Can do exact probes on h children, called probing factor h > 1,
of a choice instead of fixing the number of probings to be
exactly one.
• When h = 0, star2 == star1.
• Sequential probing

. Probe h children of a choice at one time.

. for i = 1 to c do
probe h children of the ith choice

• Cyclic probing
. Probe 1 child of a choice at one time for all choices, and do this for h

rounds.
. for j = 1 to h do

for i = 1 to c do
probe the jth child of the ith choice

• When h = 1, cyclic probing == sequential probing.
May decide to probe different number of children for each
choice.
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Star2.5: cyclic probing

Using a cyclic probing order in Star2 with a probing factor h.
Algorithm Star2.5 F3.2′(position p, node x, value alpha, value
beta, integer h) // MAX node, h is the probing factor
• // a chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• determine the possible values of the chance node x to be k1, . . . , kc
• // Do a cyclic probing to decide whether some cut off can be performed.
• for j from 1 to h do

for each choice i from 1 to c do
. Let pi be the position obtained from p by making x the choice ki.
. do an exact probe on the jth child of pi
. If p is a MAX chance node, then pi is a MIN node and you may get an

alpha cut off for pi since the probe returns an upper bound for pi.
. If p is a MIN chance node, then pi is a MAX node and you may get an

beta cut off for pi since the probe returns a lower bound for pi.

• If no cut off is found in the above, do the normal Star1 search.
. Additional alpha/beta cut off from searching a particular choice.
. Chance node cut off I that is similar to beta cut off.
. Chance node cut off II that is similar to alpha cut off.
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Comments

Experimental results provided in [Ballard ’83] on artificial game
trees.
Star1 may not be able to cut more than 20% of the leaves.
Star2.5 with h = 1 cuts more than 59% of the nodes and is
about twice better than Star1.
Sequential probing is best when h = 3 which cuts more than
65% of the nodes and roughly cut about the same nodes as
Star2.5 using the same probing factor.
Sequential probing gets worse when h > 4. For example, it only
cut 20% of the leaves when h = 20.
Star2.5 continues to cut more nodes when h gets larger, though
the gain is not that great. At h = 3, about 70% of the nodes
are cut. At h = 20, about 72% of the nodes are cut.
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Approximated Probes

We can also have heuristics for issuing approximated probes
which returns approximated values.
Strategy I: random probing of some promising choices
• Do a move ordering heuristic to pick one or some promising choices to

expand first.
• These promising choices can improve the lower or upper bounds and

can cause beta or alpha cut off.

Strategy II: fast probing of all choices
• Possible implementations

. do a static evaluation on all choices

. do a shallow alpha-beta searching on each choice

. do a MCTS-like simulation on the choices

• Use these information to decide whether you have enough confidence
to do a cut off.
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Using MCTS with chance nodes (1/2)

Assume a chance node x has c choices k1, . . . , kc and the ith
choice happens with the probability Pri
Selection
• If x is picked in the PV during selection, then a random coin tossing

according to the probability distribution of the choices is needed to
pick which choice to descent.

. It is better to even the number of simulations done on each choice.

. Use random sampling without replacement. When every one is picked
once, then start another round of picking.

Expansion
• If the last node in the PV is x, then expand all choices and simulate

each choice some number of times.
. Watch out the discuss on maxing chance nodes in a searching path such

as whether it is desirable to have 2 chance nodes in sequence ... etc.
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Using MCTS with chance nodes (2/2)

Simulation
• When a chance node is to be simulated, then be sure to randomly,

according to the probability distribution, pick a choice.
. Use some techniques to make sure you are doing an effective sampling

when the number of choices is huge
. Watch out what are “reasonable” in a simulated plyout on the mixing

of chance nodes.

Back propagation
• The UCB score of x is wi+c

√
(lnN/Ni) where wi is the weighted winning

rate, or score, of the children, Ni is the total number of simulations
done on all choices. and N is the total number of simulations done on
the parent of x.
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Sparse sampling (1/2)

Assume in searching the number of possible outcomes in a,
maybe chance, node is too large. A technique called sparse
sampling can be used [Kearn et al 2002].
• Can also be used in the expansion phase of MCTS.

Ideas:
• The number of choices, a = |A|, considered is enlarged as the number

of visits to the node increases.
• Use the current choice set as an estimation of its goodness.
• Only consider kt randomly selected choices, called St, in the first t

visits where kt = dc ∗ tαe, and c and α are constants.
Algorithm SS for sparse sampling
• t := 1
• Initial kt to be a small constant, say 1.
• Initial the candidate set S to be an empty set.
• Randomly pick kt children from A into S
• loop: Performs some t′ samplings from S.

. Add randomly kt+t′ − kt new children from A into S

. t += t′

• goto loop
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Sparse sampling (2/2)

The estimated value is accurate with a high probability [Kearns
et al 2002] [Lanctot et al 2013]
Theorem:

Pr(|Ṽ − V | ≤ λ · d) ≥ 1− (2 · kt · c)dexp{
−λ2 · kt
2 · v2max

},

where
. kt is the number of choices considered with t samplings,

. Ṽ is the estimation considering only kt choices,

. V is the value considering all choices,

. c is the actual number of choices,

. d is the depth simulated,

. λ ∈ (0, 2 · vmax] is a parameter chosen, and

. vmax is the maximum possible value.

Note: the proof is done by making sampling with replacement,
while the algorithm asks for sampling without replacement.
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Proof number search

Consider the case of a 2-player game tree with either 0 or 1 on
the leaves.
• win, or not win which is lose or draw;
• lose, or not lose which is win or draw;
• Call this a binary valued game tree.

If the game tree is known as well as the values of some leaves
are known, can you make use of this information to search this
game tree faster?
• The value of the root is either 0 or 1.
• If a branch of the root returns 1, then we know for sure the value of

the root is 1.
• The value of the root is 0 only when all branches of the root returns 0.
• An AND-OR game tree search.
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Which node to search next?

A most proving node for a node u: a descendent node if its
value is 1, then the value of u is 1.
A most disproving node for a node u: a descendent node if its
value is 0, then the value of u is 0.
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Most proving node

Node h is a most proving node for a.
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b c
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Most disproving node

Node e or f is a most disproving node for a.
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Proof or Disproof Number

Assign a proof number and a disproof number to each node u
in a binary valued game tree.
• proof(u): the minimum number of leaves needed to visited in order for

the value of u to be 1.
• disproof(u): the minimum number of leaves needed to visited in order

for the value of u to be 0.

The definition implies a bottom-up ordering.
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Proof number

Proof number for the root a is 2.
. Need to at least prove e and f .
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Disproof number

Disproof number for the root a is 2.
. Need to at least disprove i, and either e or f .

a

b c

d e f g h

1 ? ?

? 00

0

i j k

TCG: Selected advanced topics, 20220125, Tsan-sheng Hsu c© 77



Proof Number: Definition

u is a leaf:
• If value(u) is unknown, then proof(u) is the cost of evaluating u.
• If value(u) is 1, then proof(u) = 0.
• If value(u) is 0, then proof(u) =∞.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

proof(u) =
i=b
min
i=1

proof(ui);

• if u is a MIN node,

proof(u) =

i=b∑
i=1

proof(ui).
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Disproof Number: Definition

u is a leaf:
• If value(u) is unknown, then disproof(u) is cost of evaluating u.
• If value(u) is 1, then disproof(u) =∞.
• If value(u) is 0, then disproof(u) = 0.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

disproof(u) =

i=b∑
i=1

disproof(ui);

• if u is a MIN node,

disproof(u) =
i=b
min
i=1

disproof(ui).
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Illustrations
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How these numbers are used (1/2)

Scenario:
• For example, the tree T represents an open game tree or an endgame

tree.
. If T is an open game tree, then maybe it is asked to prove or disprove

a certain open game is win.
. If T is an endgame tree, then maybe it is asked to prove or disprove a

certain endgame is win o loss.
. Each leaf takes a lot of time to evaluate.
. We need to prove or disprove the tree using as few time as possible.

• Depend on the results we have so far, pick a leaf to prove or disprove.

Goal: solve as few leaves as possible so that in the resulting
tree, either proof(root) or disproof(root) becomes 0.
• If proof(root) = 0, then the tree is proved.
• If disproof(root) = 0, then the tree is disproved.

Need to be able to update these numbers on the fly.

TCG: Selected advanced topics, 20220125, Tsan-sheng Hsu c© 81



How these numbers are used (2/2)

Let GV = min{proof(root), disproof(root)}.
• GT is “prove” if GV = proof(root), which means we try to prove it.
• GT is “disprove” if GV = disproof(root), which means we try to

disprove it.
• In the case of proof(root) = disproof(root), we set GT to “prove” for

convenience.

From the root, we search for a leaf whose value is unknown.
• The leaf found is a most proving node if GT is “prove”, or a most

disproving node if GT is “disprove”.
• To find such a leaf, we start from the root downwards recursively as

follows.
. If we have reached a leaf, then stop.
. If GT is “prove”, then pick

a child with the least proof number for a MAX node, and
any node that has a chance to be proved for a MIN node.

. If GT is “disprove”, then pick
a child with the least disproof number for a MIN node, and
any node that has a chance to be disproved for a MAX node.
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PN-search: algorithm (1/2)

{∗ Compute and update proof and disproof numbers of the root
in a bottom up fashion until it is proved or disproved. ∗}
loop:
• If proof(root) = 0 or disproof(root) = 0, then we are done, otherwise

. proof(root) ≤ disproof(root): we try to prove it.

. proof(root) > disproof(root): we try to disprove it.

• u← root; {∗ find a leaf to prove or disprove ∗}
• if we try to prove, then

. while u is not a leaf do

. if u is a MAX node, then
u← leftmost child of u with the smallest non-zero proof number;

. else if u is a MIN node, then
u← leftmost child of u with a non-zero proof number;

• else if we try to disprove, then
. while u is not a leaf do
. if u is a MAX node, then

u← leftmost child of u with a non-zero disproof number;
. else if u is a MIN node, then

u← leftmost child of u with the smallest non-zero disproof number;

TCG: Selected advanced topics, 20220125, Tsan-sheng Hsu c© 83



PN-search: algorithm (2/2)

{∗ Continued from the last page ∗}
• solve u;
• repeat {∗ bottom up updating the values ∗}

. update proof(u) and disproof(u)

. u← u′s parent

until u is the root
• go to loop;
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Multi-Valued game Tree

The values of the leaves may not be binary.
• Assume the values are non-negative integers.
• Note: it can be in any finite countable domain.

Revision of the proof and disproof numbers.
• proofv(u): the minimum number of leaves needed to visited in order

for the value of u to ≥ v.
. proof(u) ≡ proof1(u).

• disproofv(u): the minimum number of leaves needed to visited in order
for the value of u to < v.

. disproof(u) ≡ disproof1(u).
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Illustration

a

b c

d e f g h

?? ?18 10
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Illustration

a

b c

d e f g h

?? ?18 10

v<=18? v<=18?
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Multi-Valued proof number

u is a leaf:
• If value(u) is unknown, then proofv(u) is cost of evaluating u.
• If value(u) ≥ v, then proofv(u) = 0.
• If value(u) < v, then proofv(u) =∞.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

proofv(u) =
i=b
min
i=1

proofv(ui);

• if u is a MIN node,

proofv(u) =

i=b∑
i=1

proofv(ui).
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Multi-Valued disproof number

u is a leaf:
• If value(u) is unknown, then disproofv(u) is cost of evaluating u.
• If value(u) ≥ v, then disproofv(u) =∞.
• If value(u) < v, then disproofv(u) = 0.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

disproofv(u) =

i=b∑
i=1

disproofv(ui);

• if u is a MIN node,

disproofv(u) =
i=b
min
i=1

disproofv(ui).
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Revised PN-search(v): algorithm (1/2)

{∗ Compute and update proofv and disproofv numbers of the
root in a bottom up fashion until it is proved or disproved. ∗}
loop:
• If proofv(root) = 0 or disproofv(root) = 0, then we are done, otherwise

. proofv(root) ≤ disproofv(root): we try to prove it.

. proofv(root) > disproofv(root): we try to disprove it.

• u← root; {∗ find a leaf to prove or disprove ∗}
• if we try to prove, then

. while u is not a leaf do

. if u is a MAX node, then
u← leftmost child of u with the smallest non-zero proofv number;

. else if u is a MIN node, then
u← leftmost child of u with a non-zero proofv number;

• else if we try to disprove, then
. while u is not a leaf do
. if u is a MAX node, then

u← leftmost child of u with a non-zero disproofv number;
. else if u is a MIN node, then

u← leftmost child of u with the smallest non-zero disproofv number;
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PN-search: algorithm (2/2)

{∗ Continued from the last page ∗}
• solve u;
• repeat {∗ bottom up updating the values ∗}

. update proofv(u) and disproofv(u)

. u← u′s parent

until u is the root
• go to loop;
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Multi-valued PN-search: algorithm

When the values of the leaves are not binary, use an open value
binary search to find an upper bound of the value.
• Set the initial value of v to be 1.
• loop: PN-search(v)

. Prove the value of the search tree is ≥ v or
disprove it by showing it is < v.

• If it is proved, then double the value of v and go to loop again.
• If it is disproved, then the true value of the tree is between bv/2c and
v − 1.

• {∗ Use a binary search to find the exact returned value of the tree. ∗}
• low ← bv/2c; high← v − 1;
• while low ≤ high do

. if low = high, then return low as the tree value

. mid← b(low + high)/2c

. PN-search(mid)

. if it is disproved, then high← mid− 1

. else if it is proved, then low ← mid

TCG: Selected advanced topics, 20220125, Tsan-sheng Hsu c© 92



Comments

Can be used to construct opening books.
Appear to be good for searching certain types of game trees.
• Find the easiest way to prove or disprove a conjecture.
• A dynamic strategy depends on work has been done so far.

Performance has nothing to do with move ordering.
• Performances of most previous algorithms depend heavily on whether

good move orderings can be found.

Searching the “easiest” branch may not give you the best
performance.
• Performance depends on the value of each internal node.

Commonly used in verifying conjectures, e.g., first-player win.
• Partition the opening moves in a tree-like fashion.
• Try to the “easiest” way to prove or disprove the given conjecture.

Take into consideration the fact that some nodes may need
more time to process than the other nodes.
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More research topics

Do variations of a game make it different?
• Whether Stalemate is draw or win in chess.
• Japanese and Chinese rules in Go.
• Chinese and Asia rules in Chinese chess.
• ...

Why a position is easy or difficult to human players?
• Can be used in tutoring or better understanding of the game.
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Unique features in games

Games are used to model real-life problems.
Do unique properties shown in games help modeling real
applications?
• Chinese chess

. Very complicated rules for loops: can be draw, win or loss.

. The usage of cannons for attacking pieces that are blocked.

• Go: the rule of Ko to avoid short cycles, and the right to pass.
• Chinese dark chess: a chance node that makes a deterministic ply first,

and then followed by a random toss.
• EWN: a chance node that makes a random toss first, and then followed

with a deterministic ply later.
• Shogi: the ability to capture an opponent’s piece and turn it into your

own.
• Chess: stalemate is draw.
• Promotion: a piece may turn into a more/less powerful one once it

satisfies some pre-conditions.
. Chess
. Shogi
. Chinese chess: the mobility of a pawn is increased once it advances

twice, but is decreased once it reaches the end of a column.
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