Linguistic Template Extraction for Recognizing Reader-Emotion and Emotional Resonance Writing Assistance

Yung-Chun Chang1,2, Cen-Chieh Chen1,3, Yu-Lun Hsieh1,3, Chien Chin Chen2 and Wen-Lian Hsu1

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
2 Department of Information Management, National Taiwan University, Taipei, Taiwan
3 Department of Computer Science National Chengchi University, Taipei, Taiwan

{changyc, can, morphe, hsu} @iis.sinica.edu.tw, 2 patonchen@ntu.edu.tw

Abstract

In this paper, we propose a flexible principle-based approach (PBA) for reader-emotion classification and writing assistance. PBA is a highly automated process that learns emotion templates from raw texts to characterize an emotion and is comprehensible for humans. These templates are adapted to predict reader-emotion, and may further assist in emotional resonance writing. Results demonstrate that PBA can effectively detect reader-emotions by exploiting the syntactic structures and semantic associations in the context, thus outperforming well-known statistical text classification methods and the state-of-the-art reader-emotion classification method. Moreover, writers are able to create more emotional resonance in articles under the assistance of the generated emotion templates. These templates have been proven to be highly interpretable, which is an attribute that is difficult to accomplish in traditional statistical methods.

Extracting Emotion Templates

We employ a three-layered approach to label those crucial elements in the text and then extract templates. Crucial elements include: 1. Keywords ranked by LLR. 2. Semantic class label of NEs. 3. E-HowNet sense. [1]

Dimension Reduction: These elements are generalized using the dominating set algorithm [2] to find the top 20% representative templates. Then, we preserve the top 100 templates from approximately 55,000 sequences based on the dominating rate.

A clause C_i in an article:

Obama, representing the Democratic Party, won the U.S. Presidential election.

Domain
Keyword
Semantic Class
Lexical Database
Filtering

We collected a corpus of Chinese news articles from Yahoo! Kimo News, in which each article is given votes from readers with emotion tags: angry, worried, boring, happy, odd, depressing, warm.

Results: Our system achieves the best overall accuracy.

Experiment II: Emotion Templates Suggestion in Emotional Resonance Writing

Here, we only consider coarse-grained emotion categories (i.e., positive and negative). We generated 30 and 40 templates for positive and negative emotions respectively. Seven writers were asked to compose two articles that they think will trigger positive and negative emotions on their own (denoted as NT). Then, we presented these templates to them and asked them to compose two more articles (denoted as WT). The subjects are required to perform two tasks: 1) answer ‘positive’, ‘neutral’, or ‘negative’ 2) give a score according to the 5-point Likert scale for a given emotion.

Results: emotion templates can improve the authors’ ability to create more emotional resonance in the readers.

Template Matching for Inference

PBA uses an alignment algorithm [3] to measure the similarity between templates and texts. It enables a single template to match multiple semantically related expressions with appropriate scores.

\[\text{Emotion}(d_j) = \arg \max_{\varepsilon \in \mathcal{E}} \sum_{e \in E_{\varepsilon} \cap e \in CE_{d_j}} \Delta(e_n, ce_m) = \sum_{k} \sum_{l} \Delta(e_n, s l_k) c e_m \cdot c e_l \]

A sequence of crucial elements

\[DS(ce) = \log \frac{1}{\sum_{n} P(ce)} \]

A semantic template

Acknowledgement

We are grateful to the anonymous reviewers for their insightful comments. This research was supported by the Ministry of Science and Technology of Taiwan under grant MOST 103-3111-Y-001-027, 103-2221-E-002-106-MY2, and NSC102- 3113-P-001-006.