TMUNSW System for Risk Factor Recognition and Progression Tracking

Nai-Wen Chang1,2, Hong-Jie Dai, PhD3*, Chih-Wei Chen, MD3, Jitendra Jonnagaddala4, Chou-Yang Chien5, Manish Kumar4, Richard Tzong-Han Tsai, PhD5, Wen-Lian Hsu, PhD1

1Institution of Information Science, Academia Sinica, Taiwan; 2Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan; 3Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taiwan; 4Translational Cancer Research Network, University of New South Wales, Australia; 5Computer Science and Information Engineering, National Central University, Taiwan
Heart disease is the number one cause of death for both men and women in the United States.

- 600,000 people/year die of heart disease
- More than 50% of the deaths were in men in 2009
- 380,000 people are also Coronary heart disease
- 720,000 Americans have a heart attack
- Coronary heart disease alone costs the United States $108.9 billion each year

http://www.cdc.gov/heartdisease/facts.htm
TMUNSW:
A context-aware approach to assign the time attributes for all recognized medical concepts
Distribution of data type

- medication: 55%
- mention: 37%
- Other indicators: 4%

Data types:
- amount
- mention
- medication
- A1C
- BMI
- event
- symptom
- test
- high bp
- high LDL
- high chol.
- glucose
- family_hist
Methods

Pre-processor
- Split sentence
- Tokenization
- Stemming
- Removing stop words

Concept recognizers
- Disease mentions
- Corresponding risk factors
- Medications
- ...etc

Status Classifier/Time-attribute Assigner
- Section Recognizer
- Status classifier
- Time-attribute assigner
Concept recognizers

1. The mention concept recognizer
2. The risk factors recognizer
3. The medication recognizer
Concept Recognition

EMRs

Baseline

Dictionary-based
1. Keyword collection from training data
2. Pattern match and rule-based approach

CRF-based
1. Word
2. POS
3. Chunk
4. Orthogonal variance
5. ...

Pipeline-based
1. cTAKES v3.1.1 with UMLS 2014AA
2. Apache Ruta

- Mention
- Medication
- Risk factors
- Family History
- Smoking status
- Mention
- Medication
- Risk factors
- Family History
- Smoking status
- Mention
- Medication
- Risk factors
- Family History
- Smoking status
The mention concept recognizers

• Dictionary-based recognizer
 • All texts tagged as the “mention” concept within the training dataset were collected and normalized by removing stop words
 • 220 terms were collected for all five mention types

• Machine learning-based recognizer
 • The training dataset annotated with the mention concepts were selected as the training set for the machine learning-based recognizer.
 • **Conditional random field (CRF)** algorithm was used to build a model to recognize mention concepts.
The risk factors recognizer

1. For each risk factor category, a set of keywords was collected.
2. The list was then used as a dictionary by our system to tag the given medical record.
3. The factor was then reserved for the assignment of time attribute in the later stage.

Table 1. Summary of the targeted diseases and their corresponding risk factor definitions

<table>
<thead>
<tr>
<th>Category</th>
<th>Risk Factor</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>High A1C</td>
<td>>=6.5</td>
</tr>
<tr>
<td>Diabetes</td>
<td>High glucose</td>
<td>>126</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>High cholesterol</td>
<td>>=240</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>High LDL</td>
<td>>=100 mg/dL</td>
</tr>
<tr>
<td>Hypertension</td>
<td>High blood pressure</td>
<td>>=140/90 mm/hg</td>
</tr>
<tr>
<td>Obesity</td>
<td>BMI</td>
<td>>30</td>
</tr>
<tr>
<td>Obesity</td>
<td>Waist circumference</td>
<td>Men: >= 40 inches; Women: >= 35 inches</td>
</tr>
</tbody>
</table>
The medication recognizers

• Dictionary-based and CRF-based approach

• All recognized medications were then matched with a medication name-category mapping file to determine the corresponding medication categories.

• The medication terms collected from Wikipedia
 • Generic names
 • Classes of all drugs

• The final dictionary file contains 21 categories and a total of 474 names
Pipeline-based Medical Concept Recognizers

• A separate clinical document pipeline
 • Apache clinical Text Analysis and Knowledge Extraction System (cTAKES)
 • The Aggregate Plaintext UMLS Processor analysis engine of cTAKES v3.1.1 with UMLS 2014AA as the underline dictionary was employed to recognize medications and the mention concepts.
 • Apache Ruta was used to define patterns that can capture other risk factors, such as blood pressure and HbA1C.
Time-attribute Assigners

1. Context-aware time attribute assignment
2. Machine learning-based time-attribute assignment
Time-attribute assignment

EMRs

Baseline

Dictionary-based
- Mention
- Medication
- Risk factors
- Family History
- Smoking status

CRF-based
- Mention
- Medication
- Risk factors
- Family History
- Smoking status

Pipeline-based
- Mention
- Medication
- Risk factors
- Family History
- Smoking status

Context-aware approach
1. Section recognition
 a) Format check
 b) Section Recognition
2. Time-attribute assignment/status assignment

Machine learning-based
1. Naïve Bayes classifier
2. Feature: bag-of-words and the section title
Electronic medical records (EMRs)

• EMRs facilitate the storage, retrieval, and exchange of the health information of an individual patient.
• Information are stored in the form of **free text** within the EMR.
• Two data format: Email and Section

Email format

Dear Dr. Taylor:

Mrs. Joshi returns after a one year hiatus. She continues to complain of rare retrosternal chest discomfort only occasionally... not take Nitroglycerin for it. **A stress test performed last January showed Mrs. Joshi exercising for 4 minutes and 30 seconds of a Bruce protocol stopping at a peak heart rate of 119, peak blood pressure of 150/70 secondary to dyspnea. She had no ischemic...**
Electronic medical records (EMRs)

Record date: 2017-02-27
CARDIOLOGY
PACIFIC COAST HOSPITAL
Reason for visit: transfer from Colorow, chest pain in setting of known CAD
Interval History:
63-year-old woman with multiple medical problems, notably CAD, s/p RCA and LCx PCI in the context of NSTEMI in March, 2136, with return to PCH in July, 2136 with recurrent chest discomfort. Cardiac catheterization during that visit revealed in-stent stenosis in LCx stent, successfully addressed with bare metal stent placement. Most recent nuc. stress 10/03/36 showed no definite ischemia, mild apical and mild inferolateral thinning not clearly outside normal per report.
...
Past medical history:
1. CAD, s/p NSTEMI in March, 2136 with BM stent placement to LCx and RCA
2. Coronary angiogram in July, 2136:
3. Hyperlipidemia
4. Hypertension
5. MAC, previous treatment course terminated due to hepatitis in 2128
6. Bronchiectasis, s/p right middle lobectomy in 2128
Context-aware time attribute assignment

Medical Records

Preprocessing

Concept Recognizers

Diseases, Risk factors, Medications

Section Recognizer

Format Check

Discharge Summary

Email

Section-based Strategy

Smoking status classifier

Family History

Time-attribute assigner

Paragraph-based Strategy

Smoking status classifier

Family History

Time-attribute assigner
Paragraph-based strategy

Email format

Preprocessing

Time-attribute assignment

Concept Recognize

Dear Dr. Taylor:

Mrs. Joshi returns after a one year hiatus. She continues to complain of rare retrosternal chest pain, ... not take Nitroglycerin for it. A stress test performed last January showed Mrs. Joshi experiencing symptoms of a Bruce protocol stopping at a peak heart rate of 119, peak blood pressure of 150/70 secondary to dyspnea. She had no ischemic ...

2.4 Hypertension

<table>
<thead>
<tr>
<th>indicator</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mention</td>
<td>a diagnosis of Hypertension or a mention of a pre-existing condition</td>
</tr>
<tr>
<td>high blood pressure</td>
<td>BP measurement of over 140/90 mm/hg (if either value is high, the patient has hypertension)</td>
</tr>
</tbody>
</table>

Table 4: indicators and descriptions for the Hypertension tag

Before DCT

Sentence re-combination

A stress test performed last January showed Mrs. Joshi, peak blood pressure of 150/70 secondary to dyspnea.
Section-based strategy

Record date: 2137-02-27
CARDIOLOGY
PACIFIC COAST HOSPITAL
Reason for visit:
transfer from Colorow, chest pain in setting of known CAD
Interval History:
63-year-old woman with multiple medical problems, notably CAD, s/p RCA and LCx PCI in the context of NSTEMI in March, 2136, with return to PCH in July, 2136 with recurrent chest discomfort.
Cardiac catheterization during that visit revealed in-stent stenosis in LCx stent, successfully addressed with bare metal stent placement.
Most recent nuc.
stress 10/03/36 showed no definite ischemia, mild apical and mild inferolateral thinning not clearly outside normal per report.
Machine learning-based time-attribute assignment

• A machine learning model based on the naïve Bayes classifier was build to assign the time-attribute of mentions and integrated it into the developed UIMA pipeline.

• The employed features included bag-of-words and the section title information.

• The three time attributes, including “during DCT”, “before DCT”, and “after DCT” were used as class labels.
Family History Status Classifier

- Dictionary-based tagger
- The family history status ("present" or "not present")
- **First**-degree relative (parents, siblings, or children)
- diagnosed prematurely
 - Age > 55 for male relatives with CAD
 - Age > 65 for female relatives with CAD
- “Present”
 - The sentence contains a male/female first-degree relative name, along with specific age-related information
 - The sentence contains CAD-related terms and even numbers of negation terms.
Smoking Status Classifier

• Dictionary-based tagger
 • Smoking-related keywords (“smoking”, “cigarette”… etc)

• The text containing the listed terms was regarded as the context of the smoking status, and several weighted rules developed for different smoking statuses were applied on the context to decide the smoking status of the patient.

• If the context did not provide sufficient information to determine the smoking status
 • Context-aware approach
Result

• For the **machine learning-based** system, a **10-fold cross validation** on the same dataset was applied to select efficient features for mention concept and medication recognition.

• Run 1 = 1+2+4

• Run 2 = 2+3+4

• Run 3 = pipeline-based method that is entirely based on the machine learning approach, including the recognition of mention and medication and the assignment of time attribute.

Table. The performance of each submitted run of the TMUNSW system and the aggregated results of all runs.

<table>
<thead>
<tr>
<th></th>
<th>Run1</th>
<th>Run2</th>
<th>Run3</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro Precision</td>
<td>0.8594</td>
<td>0.8384</td>
<td>0.621</td>
<td>0.808</td>
<td>0.852</td>
</tr>
<tr>
<td>Micro Recall</td>
<td>0.9387</td>
<td>0.9404</td>
<td>0.6562</td>
<td>0.835</td>
<td>0.908</td>
</tr>
<tr>
<td>Micro F1</td>
<td>0.8973</td>
<td>0.8865</td>
<td>0.6381</td>
<td>0.815</td>
<td>0.872</td>
</tr>
</tbody>
</table>
Conclusion

• TMUNSW is a system that can recognize the concepts such as medication, risk factors and diseases and track the progression with time-attribute assigner.

• We have released our tool: tmuClinical.NET for researchers and users as the link: https://sites.google.com/site/hongjiedai/projects/tmuclinicalnet

• The context-aware assignment approach outperforms machine learning-based and rule-based w/o awareness of context.
tmuClinical.NET

https://sites.google.com/site/hongjiedai/projects/tmuclinicalnet

About

tmuClinical.NET was built using Microsoft .NET Framework 4. Its components were developed based on the data set of the i2b2 2014 shared task track 2.

tmuClinical.NET employs a number of rule-based and machine learning methods. It also integrates several state-of-the-art natural language processing components available on the NuGet Gallery.

tmuClinical.NET components include:

- Section heading recognition
- Risk factor recognition and time attribute assignment
- Smoking status classification
- Record format detection
- Tokenization, part-of-speech tagging and sentence boundary detection through MedPost
Any Questions?

Contact: nwchang@iis.sinica.edu.tw

Nai-Wen Chang
Thank you