Previous [1] [2] [3] [4] [5] [6] [7] [8]

Journal of Inforamtion Science and Engineering, Vol.13 No.2, pp.355-365 (June 1997)
A New SCHMM/MNN Hybrid Model
for Mandarin Speech Recognition

Shin-Lun Tung and Yau-Tarng Juang
Department of Electrical Engineering
National Central University
Chung Li, Taiwan 32054, R.O.C.

In this paper, we propose a new scheme that combines the semi-continuous hidden Markov model (SCHMM) and modular neural networks (MNN) to recognize isolated Mandarin syllables. The SCHMM formulation has been proven successful in modeling the temporal arrangement of speech signals, and MNN is also suitable for performing static pattern classification. In the scheme described here, SCHMM outputs establish the sequence of observation vectors to be inputs of the MNN. Experimental results show that by combining both the discriminative power of MNN and the capability of modeling the temporal variations of an SCHMM into a hybrid model, speech recognition performance is significantly improved.

Keywords: Mandarin speech recognition, semi-continuous hidden Markov model, parallel distribution processing, fine classification

Received September 20, 1996; revised December 20, 1996.
Communicated by Sin-Horng Chen.
* This work has been supported by National Science Council of the Republic of China.