
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 22, 675-689 (2006)

675

Storage Efficient Key Management Technique
for Secure Multicasting

GANAPATHI PADMAVATHI AND SAMUKUTTY ANNADURAI*

Department of Computer Science
Avinashilingam Deemed University

Tamil Nadu, India
E-mail: mail_padma@yahoo.com

*Government College of Engineering
Tamil Nadu, India

E-mail: sannalaxmi@yahoo.co.in

Multicast communication will be the communication paradigm of future networks.

Secure multicasting is a challenging issue. The main objective of secure multicasting is
to distribute the group key to the current members of the group in a scalable manner with
minimum overheads. The key distribution methods can be either centralized or distrib-
uted. Of these, the centralized methods are simple and robust. In the centralized models,
the central controller is an important entity that takes care of key distribution and man-
agement. The burden on the central controller is very significant in the centralized mod-
els due to the overheads incurred by key distribution. To reduce the load on the central
controller, a grouping mechanism based on the behavior of members and a novel key
distribution pattern is employed. With this approach, the storage efficiency is improved
and the communication bounds are preserved. A comparison in terms of the performance
parameters, such as storage and communication updates of the proposed key tree, is
made here between our model and the existing architectures. Our model has been simu-
lated, and the results have been found to be optimal.

Keywords: multicast security, group key, communication efficiency, storage efficiency,
key distribution

1. INTRODUCTION

Multicast communication is gaining importance for the reason that it will be the pre-
ferred communication paradigm of future networks. Many web-based applications, like
real time and multimedia applications, are multicast applications. It is an ideal form of
communication when an identical message needs to be delivered to a group of receivers
[6, 9, 10]. It minimizes the sender overheads a lot, and it is bandwidth efficient. Many
important net-based applications, like teleconferencing, distance education, collaborative
work, distributed interactive games, stock quotes, software updates and shared white
boards, are multicast applications.

When identical data is delivered to the members of group, according to the central-
ized models, the Central Controller (CC) generates a common session key, encrypts the

Received April 26, 2004; revised March 10, 2005; accepted May 2, 2005.
Communicated by Shiuhpyng Shieh.

GANAPATHI PADMAVATHI AND SAMUKUTTY ANNADURAI

676

key and sends the key to the registered members. Every eligible member receives the key
for the session. This common key is also called the group key. Whenever the lifetimes of
the members expire or the group’s members change, the session key must be changed.
The new key must be sent to the eligible members for further decryption. This process is
called group rekeying. Thus group rekeying is done when a new member joins the group
and an existing member leaves the group. Moreover, it is done so that the new comers
will not be able to read the past communications and a leaving member will not be able
to read future communications. This is called Perfect Forward Secrecy (PFS), and Perfect
Backward Secrecy (PBS) respectively. This key change operation must be scalable, and
the key distribution must not increase the overheads, such as the storage and communica-
tion overheads. Therefore, multicast security is a key management and distribution prob-
lem [6, 9, 10].

The distribution of keys to members is done either in a centralized manner or dis-
tributed manner. Centralized schemes are widely used, and they are simple and robust.
Many centralized and distributed key management techniques have been proposed in the
literature. Of them, some of the important ones are the Group Key Management Protocol
(GKMP) proposed by Hugh Harney and Carl Muckenhirn [5], the One-way Function
Tree (OFT) of McGrew and Shermann [1], the Logical Key Hierarchy (LKH) developed
by Wallner et al. [11], the Key Graph (KG) of Wong et al. [4], Chang et al.’s Boolean
function minimization technique [3], Suman Banerjee’s Clustering method [2] and the
Logical Key Tree with Clusters proposed by Poovendran et al. [7]. Most of these models
deal with the problem by means of virtually rooted trees with members occupying the
leaf positions. The root node corresponds to the session key/group key. The intermediate
nodes of the tree store the sub-group keys. In virtual key tree models like LKH and KG,
the members occupying the leaf positions store all the node keys in the path from the root
node. Therefore, a logical tree of degree ‘n’ will store (nN − 1)/(n − 1) keys at the GC for
a group of size N. Consequently the storage efficiency is of order O(N). When a single
member in a leaf node leaves, this corresponds to n * log(N) – 1 update communications.
This is also due to the key change operations at the intermediate nodes. Thus, the com-
munication efficiency of a virtual key tree scheme is O(logN). Hence, storage and com-
munication are the important performance parameters of key distribution models. In all
of the above approaches, group members are treated alike, and key distribution takes
place without discriminating between or grouping members according to their behavior.
However, the behavior of the group members is an important criterion when key changes
are considered. The general virtual key arrangements are either star or tree arrangements.
In the proposed approach, a mixed organization called the crossbreed arrangement is
proposed. This structure optimizes the storage requirements while preserving the com-
munication constraints, compared with other methods. The main contributions of this
paper are:

• a discussion of the existing virtual key tree architectures;
• a proposed membership grouping and suitable key management architecture;
• a protocol steps for membership operations like join/leave and reconfiguration;
• a comparison of the proposed method with previous methods.

The paper is organized as follows: Section 2 presents the basic concepts in key

STORAGE EFFICIENT KEY MANAGEMENT TECHNIQUE

677

management and the existing approaches to centralized key tree organization. Section 3
explains the proposed approach. In section 4, we analyze the experimental and numerical
results obtained with the method. Section 5 gives conclusions.

2. EXISTING CENTRALIZED TREE BASED KEY MANAGEMENT
TECHNIQUES

Key management techniques are generally classified as centralized or distributed. In
this section, we will discuss the important centralized key management techniques. The
centralized models are further classified as node based models or key based models. Of
them, the centralized key based architectures are taken for study. These models have a
central entity, which is responsible for key generation and distribution. Centralized traffic
and failure of the central controller are unavoidable drawbacks. These models are suit-
able for small and moderate groups. In the node-based model, the entire group is divided
into various sub groups, and a sub group leader/controller controls each sub group. This
is generally done to minimize the centralized traffic and load. Each sub-group may em-
ploy different cryptographic techniques. Inter group management and extensive key
processing procedures are the major drawbacks of this model. Each method has its own
advantages and disadvantages, and they are application dependent. The proposed tech-
nique is a hybrid one that enjoys the advantages of both the centralized tree based
method and node based method. The functionalities of the central controller are distrib-
uted; thus, large group sizes can be handled without many overheads. Moreover, the ses-
sion key is common, and it follows the uniform key distribution pattern, which, unlike
the distributed technique, gives a single group opinion.

2.1 Logical Key Hierarchy (LKH)

Wallner et al. [11] proposed a logical structure called Logical Key Hierarchy (LKH).
The Central Controller or the Key Distribution Center (KDC) maintains a tree of keys.
The keys are arranged in a rooted tree form with the members occupying the leaf posi-
tions. Each leaf holds a Key Encryption Key (KEK) associated with one member. The
root of the tree is the group key.

Fig. 1 shows a rooted binary tree with eight members. Every member receives and
maintains all the keys from the root node to the parent node. The members are assigned a
set of encryption keys based on their positions. For a balanced binary tree, each member
stores at most log2N + 1 keys, where log2N is the height of the tree. For example, user u1
has the key set {k1, k12, k1-4, k1-8}. If a member leaves the group or a particular key is in-
validated, key update messages are sent by the KDC to the members, instructing them to
change the sub-group keys and root key. For a group of size N, the exact storage value
for an n-ary tree is (nN − 1)/(n − 1). The communication constraint is (n − 1)lognN.
Therefore, the storage performance scales to O(N), and the communication performance
scales to O(logN).

GANAPATHI PADMAVATHI AND SAMUKUTTY ANNADURAI

678

 k1-8 – Session Key

k1 k2 k3 k4 k5 k6 k7 k8

k14 k58

k12 k78

Fig. 1. Logical key hierarchy.

2.2 Key Graph (KG)

Wong et al.’s Key Graph [4] is as well based on the centralized approach. There is a
trusted server, called the key server, that is responsible for group access control and key
management. A hierarchical approach is employed to improve scalability. Instead of a
hierarchy of group security agents, covering each sub-group, the KG deals with a hierar-
chy of keys. The key server knows user group U and key set K, and it maintains a
user-key relation, R. Each user has a key, called an individual key, which is shared with
the key server and used for pair wise confidential communication. Every member has a
minimum of 3 keys, namely, an individual key, a sub-group key and the group key. Ac-
cording to this approach, the secure group is a triplet (U, K, R). All the members share
the group key. Therefore, the key management problem is actually a key-covering prob-
lem, which is generally NP-complete. Two special approaches are available to solve the
key-covering problem: the star and tree.

The star structure shown in Fig. 2 uses only two keys: an individual key and the
group key. The tree structure shown in Fig. 3 has three keys, namely, an individual key, a
sub-group key and the group key. For example, according to the star graph, the keys
stored by user u1 are k1 and k1234. In the tree graph, the keys stored by user u1 are k1, k12
and k1234.

k1 k2 k3 k4

Session Key − k1234

u1 u2 u3 u4

Session Key − k1234

u1 u2 u3 u4

k12 k34

k1 k2 k3 k4

Fig. 2. Star graph. Fig. 3. Tree graph.

The key graph method maintains the user-key relation and adopts three rekey strate-

gies, namely, the User-oriented, Key-oriented and Group-oriented strategies. The inter-
mediate nodes are the intermediate keys, which are necessary for sub-group key assign-
ment. To distribute the generated keys, the server needs to perform approximately d(log(N))

STORAGE EFFICIENT KEY MANAGEMENT TECHNIQUE

679

operations, where N is the number of users and d is the depth of the tree in a fully bal-
anced tree. Hence, the average computation cost per join/leave is log(N). Actually, there
is slight difference in the cost between a join operation and a leave operation. Generally,
a join operation is executed at the beginning of a session.

2.3 Logical Key Tree with Clusters

Poovendran et al. proposed a hybrid tree [7], where multiple members are assigned
to a leaf. The group members are divided into clusters of size M, with every cluster as-
signed to a unique leaf node. Therefore, for a group of size N, the number of clusters is
N/M. A tree is built with depth logn[N/M] and degree n. A binary tree with a cluster
size of 4 is shown in Fig. 4. In this case, within each cluster with M members, all the
members are assigned a cluster KEK, which is called a common cluster key. This com-
mon cluster key is used to update the Session Encryption Key (SEK) within a cluster
with a single encryption operation and decryption operation. In this way, the storage re-
quirement can be reduced from O(N) to O(N/logN).

Session Key

k1, k2, … member keys

Cluster members
Fig. 4. Logical key tree with clusters.

Generally, the CC performs a pair wise key exchange operation with the members

using the clustering method. The CC uses a random seed r as an index for the pseudo-
random function fr to generate the KEK for the individual members. Therefore, only the
seed needs to be exchanged and processed. Consequently, the specific design objectives
of the centralized secured multicast models become:

• minimization of the storage and communication overheads;
• reduction of the centralized traffic and the burden on the Central Controller so that fail-

ures can be graceful.

The above-mentioned objectives are met in this work with two different approaches.
First, to reduce the amount of centralized traffic, an efficient grouping mechanism is em-
ployed. As a result, the static members act as sub-group heads. The dynamic members
are classified under the static heads, using a classification mechanism. The static mem-
bers perform partial key control operations for their sub-group, thus reducing the burden
on the centralized controller. Second, a virtual key distribution technique is employed in
order to minimize the overheads.

GANAPATHI PADMAVATHI AND SAMUKUTTY ANNADURAI

680

3. PROPOSED TECHNIQUE

The three important components of the multicast security protocol are initial group
establishment, the key distribution protocol and the membership dynamism. In most ap-
plications, a sizable set of members are available throughout the communication session,
and most of them are about to join or leave during the session. Therefore, based on their
behavior, the members are classified as static or dynamic, respectively. The members are
generally arranged in three different layers with the source occupying the topmost layer,
the static members in the next layer and the dynamic members grouped in the bottom
layer.

3.1 Initial Group Establishment and Protocol Design

The proposed membership grouping is shown in Fig. 5. The important component
of the security protocol is the protocol for the virtual grouping of members. The grouping
protocol groups members in specific sub-groups based on a specific classification mecha-
nism.

Source/Host

Layer 2

Layer 3

Layer 1

S1

A

S4
S3

S2

B

C
D

E F

G

H

I

J

Key control

Dynamic Member
(A to I)

Static Member
(S1-S4)

Join operation

Leave operation

Top Layer Control

Bottom Layer Control

Fig. 5. Proposed grouping method.

Based on this idea, the dynamic members can be classified into particular sub-

groups based on distance. This can generally be done based on the distance in router
hopes from source. The proposed grouping algorithm is shown in Table 1.

The proposed method adopts an authentication mechanism that classifies the mem-
bers and groups them in layers. A token is issued based on the request following authen-
tication. The details of authentication and access control are beyond the scope of this
paper. The sub-group size can be fixed in order to avoid overloading subgroups. Here,
the distance function for any two members, x and y, may be denoted as d(x, y). The dis-
tance d(x, y) may correspond to the router hops between any two members, x and y,
along the multicast topology from the host or source S in the IP multicast model. The
notations used in this protocol are given in Table 2.

STORAGE EFFICIENT KEY MANAGEMENT TECHNIQUE

681

Table 1. Grouping algorithm.

The Dynamic members are attached to their heads (Static) based on the following condi-
tions:
A particular member X1 (Static) is a parent of A (Dynamic) iff
1. X1 ∈ {Static}.i.e. in layer 2.
2. For all Xi in layer 2 that satisfy condition (i),

d(X1, A) = min{d(Xi, A), for i = 2, 3, …, n.}, where n-number of Static members.
3. For every sub-group, the average size can be fixed to k. A particular member will be

classified into a sub-group Sr, provided that the sub-group size is within the bound.
Otherwise, the member will be classified into the next nearest sub-group, Sr-1 or Sr+1,
depending on their sizes.

Table 2. Notations used in this protocol.

S.No. Notation Used Meaning

1. → Unicast
2. ↔ Multicast
3. � Authentication
4. CK(0) Session key/Common key at instance 0
5. H Host/Source
6. Si Static Member i
7. KEKSi Key Encryption Key of the ith Static member
8. KEKSGi Key Encryption Key of the ith Sub-Group
9. SGi ith sub-group

10. SGKi(t)
Sub-group key for the ith group of Subscribers at the
tth instance/time

11. {X}Y Message X is encrypted with Y
12. x → y : z x sends message z to y

Table 3. Key types used in this protocol.

Key Types used Purpose
Owner of the

key
Receiver of the key

Common Key To encrypt the contents Host
Members (Static and

Dynamic)

Sub-Group Key
For secret communication

within a sub-group
Static Member Dynamic Members

Host Static Members Key Encryption
Keys

To encrypt the Common
key Static Members Dynamic Members

3.2 Key Distribution

The next important phase in the security protocol is key distribution. The key types
used and their purposes in the protocol are summarized in Table 3.

GANAPATHI PADMAVATHI AND SAMUKUTTY ANNADURAI

682

The Keys used in this approach are: the Common key (Session key), Sub-group key
and Individual key encryption key. The protocol steps for initial group establishment and
key distribution are given in Table 4.

Table 4. Protocol steps for initial group establishment.

H � {list of group members}
H ↔ {S1, S2, S3, S4} : {KEKS1(CK(0)), KEKS2(CK(0)), …, KEKSn(CK(0))}.

(For initial establishment)
Si ↔ SGi : {KEKSGi(SGKi(0))}, for all the sub-groups i = 1, 2, 3, 4 and sub-group members.

(For initial establishment)
Si ↔ SGi : {CK(0)}SGKi(0), for i = 1, 2, 3, 4.

3.3 Dynamic Membership Management

Members commonly join a multicast session and or leave in the middle of the ses-
sion in many IP Multicast applications. Therefore, the dynamic membership management
is an important component of any security architecture. A key change with each join/
leave ensures that a joining entity is not able to access previously multicast data, and that
a leaving entity is not able to continue to access data multicast after it leaves the group.
This is an application dependent policy decision. However, a multicast security protocol
must be prepared to change the keying material upon each and every join/ leave to pro-
tect the integrity of the current group. The dynamic membership management is a re-
quired because it is difficult to form static groups. A member wishing to leave in the
middle of a session must be allowed to do so. During a membership change, sub-group
keys are formed based on the current members of the group. The subscribers’ key en-
cryption keys make it possible to decrypt the sub-group keys. This prevents past mem-
bers or future members of the sub-groups from obtaining the sub-group keys. Member
join/leave operations will be explained with an example.

Member leave: As discussed earlier, membership changes are generally performed in
layer 1. As shown Fig. 5, if a subscriber ‘D’ leaves the session under S1, the common key
and the sub-group key need to be changed. The protocol steps are given in Table 5. It is
understood that the common key is sent only to the eligible static members and to those
who are currently connected to the host. Following are the required re-key operations:

1. Static member S1 makes a new common key request. Simultaneously, S1 sets up a new

sub-group key using a pair wise mechanism with each of the remaining members in
the sub-group (A, B, C).

2. The host generates a new common key and multicasts it to all the members in layer 2.
Members in layer 2 encrypt the new common key with the old common key.

3. Upon receiving the new common key, the members in layer 2, S1, S2, S3 and S4, extract
the new common key and multicast it to the members of their sub-group (dynamic) in
layer1. The new common key can be decrypted with the current sub-group key.

4. The members can decrypt the new common key using their current sub-group key.

STORAGE EFFICIENT KEY MANAGEMENT TECHNIQUE

683

Table 5. Protocol steps for the member leave operation.

Protocol steps for leave operation:
D → S1 : {leave request}.
S1 ↔ SG1 : {KEKSGi(SGK1(0))}, for all the members of sub-group 1.
S1 → H : {common key request}.
H ↔ {S1, S2, S3, S4}: {CK(new)}CK(old).
Si ↔ SGi : {CK(new)}SGKi(old) for i = 2, 3, 4.
S1 ↔ SG1 : {CK(new)}SGK1(new).

Table 6. Protocol steps for the member join operation.

Protocol steps for join operation:
J → {join request}.
As J joins S4 according to the authentication mechanism,
S4 ↔ SG4 : {KEKSG4i(SGK4(0))}, for all the members of sub-group 4.
S4 → H : {common key request}.
H ↔ {S1, S2, S3, S4} : {CK(new)}CK(old).
Si ↔ SGi : {CK(new)}SGKi(old), for i = 1, 2, 3.
S4 ↔ SG4 : {CK(new)}SGK4(new).

Member join: Suppose subscriber J joins the group as in the Fig. 5, the member is au-
thorized to join the group under sub-group S4, and the sub-group head S4 asks the host for
a new common key. As discussed above, the sub-group key changes for the affected
sub-group. The protocol steps in the above method (steps 2 and 3) are performed. Tables
5 and 6 show the protocol steps.

Reconfiguration: The grouping must be reconfigured in any of the following situations:

1. In an emergency, a static member leaves the group before it times out.
2. The size of the sub-group is out of bound.

The layer key and sub-group keys are generated and distributed using the method
discussed above.

As discussed previously, the key distribution mechanism basically depends on the
type of the virtual architecture employed. Moreover, the adopted key management tech-
nique should be scalable, and the overheads of, for example, storage and the communica-
tion must be reduced as the group size increases. The present work concentrates on im-
proving the efficiency of the protocol under these performance constraints. The Source/
Key Server creates a virtual structure called a crossbreed tree. The proposed crossbreed
tree is a rooted tree as shown in Fig. 6.

In this scheme, each static member is assigned a sub-group key, which is common
to all sub-group members. The common sub-group key is used to update the session key
within a sub-group through one encryption and one decryption operation. This is done by
organizing the static members in a star arrangement under the root. Here, leaf keys are

GANAPATHI PADMAVATHI AND SAMUKUTTY ANNADURAI

684

Sub-group members-Dynamic members

Static Member Keys (Star)

Dynamic
Member Key
tree

Group Key/Session Key

__
|
|
|
|__

Fig. 6 Proposed crossbreed tree.

allotted to the static members, and the dynamic members form sub-groups under the
static heads. A key tree for the dynamic members is maintained by the static heads to
facilitate sub-group maintenance.

3.4 Specific Advantages of the Proposed Key Tree

Following are the advantages of the proposed approach:

1. The proposed approach reflects the actual behavior of group members.
2. Unlike the previous methods, the members and the grouping are clearly determined

based purely based on their behavior. Generally, when both static and dynamic mem-
bers form a group, the number of key changes for a static member due to the dynamic
member will be significant and will depends on the ratio between them.

3. The virtual key tree can be constructed with the static member keys arranged in a star
and the dynamic member keys arranged in a tree. This approach reduces the depth of
the virtual key tree, as there is a trade off between the number of stored keys and the
depth of the tree.

4. As the static members perform partial key control operations, the amount of central-
ized traffic and the burden on the central controller are minimized.

4. ANALYSIS

The overall efficiency of any key management technique depends on the following
metrics:

1. the number of keys with the server;
2. the number of keys for an individual member;
3. the number of keys for intermediaries/ sub-group controllers;
4. the number of message updates or communication updates due to the key change op-

erations.

The proposed key tree will be analyzed and a comparison between it and the exist-
ing techniques made in this section. First, we will analyze the important parameters. The
notations used are as defined below:

STORAGE EFFICIENT KEY MANAGEMENT TECHNIQUE

685

The group size = n.
The ratio of static to dynamic members = 1 : r.
The total sub-group size = 1 + r.
The number of sub-groups ns = n/(1 + r).
In other words, the number of static members = n/(1 + r).
Therefore, the number of dynamic members = n − n/(1 + r) = nr/(1 + r).

4.1 Key Storage Requirements

In order to reduce the sender and network resources, secure multicast encryption
requires that all group members share a single data encryption key. As discussed earlier,
this key must be updated whenever there is a join/leave. When a single group controller
performs the rekeying operation to protect the integrity of group communication, the
focus must be efficient means of providing the same. However, in dynamic multicast
groups, the overheads cannot be calculated in a simple manner, because the group has
members that also leave in the middle of the session. In the absence of any other shared
key, the group center can use the individual public keys of the valid members. In a sim-
ple understanding and assumption, for a group of size n, n − 1 encryptions are needed
each time a member leaves the group. When a single member leaves, the group center
has to encrypt the new group key with the shared key of the individual members. This
simple approach requires that two keys be stored at the group center and requires n − 1
encryptions when a member leaves. This is the case for the star structure.

Instead, if the number of encryptions at the group center and if the network re-
sources are measured each time a member leaves, the group center can construct all pos-
sible subsets of users. For the above case, there are 2n possible subsets. Organizing the
keys in the form of hierarchy results in the formation of subsets. Once these subsets have
been formed, each set is assigned a unique key encryption key. When a member leaves
the group, the group center identifies the subset that does not contain the leaving member
and uses the corresponding key encryption key to update the group key to the rest of the
members. This scheme requires a single encryption. However, at least 2n keys have to be
stored by the group center and 2n-1 keys to be stored by every user.

If the key organization mechanism used is the tree type, then 2n − 1 is the number of
intermediate nodes in a binary tree. The root or the server stores 2 * n − 1 keys. For a
d-ary tree with depth h = logdn, the general storage size is 1 + 1 + d + d2 + … + dh. Hence,
the order of the storage requirement in this case is O(n), where n is the group size [8]. In
a rooted tree based key distribution scheme of degree d, each member is assigned 2 +
logdn keys. The depth of the tree is h = logdn. Deletion of a single member requires that
change operations be performed on the intermediate nodes, which leads to 2 + logdn key
updates. The key server (KS) or the CC, whose main job is key management, has to store
d(n + 1) − 2/(d − 1) keys [8]. In other words, the KS has to store 2n − 1 key encryption
keys, leading to O(2n).

In the hybrid clustering tree with cluster size m, the depth of the tree to be built is
logd(n/m). A user needs to store 1 + logd(n/m) key encryption keys [7]. The number of
message updates in this case is given by (d − 1)logd(n/m) within the tree and m − 1 within
the cluster. The total number of keys stored includes the keys on the tree plus the seeds

of the clusters, which is equal to / ,id n m+∑ where i = 0 to logd(n/m).

GANAPATHI PADMAVATHI AND SAMUKUTTY ANNADURAI

686

In the proposed method, the server storage size is O(n/r) << O(n). The proposed tree
is a crossbreed tree and is compared with the star graph and tree graph in Table 8. The
total number of keys to be stored by the CC is the important criterion for measuring the
storage requirement of any architecture. The calculated total key storage requirement for
each of the four cases, namely, the star, tree, hybrid cluster tree and crossbreed tree, is
shown in Table 8.

Table 8. Comparisons of key storage requirements.

Key Storage Star Tree Hybrid Cluster Tree Crossbreed

Total no. of keys stored by
the CC (No. of users * No.
of keys per User)

2 * n (1 + logdn) * n n * [2 + logd(n/m)]
2 * n/(1 + r) + [n/(1 +
r) * {1 + logdr}]

No. of keys per User 2 1 + logdn 2 + logd(n/m)
2 (static)
1 + logd(r) (dynamic)

For uniformity in the analysis, the key tree degree was assumed to be the same as d.

For the same reason, the cluster size in the hybrid cluster tree and the ration between the
static to dynamic members in the crossbreed tree are assumed to be the same. For a size
of n users,

Case 1: Star

The number of keys with the user = 2. (SEK + KEK)
The total number of keys required = 2 * n.

Case 2: Tree

The number of keys with the user = 1 + logdn (all the keys in the path from the root
to the leaf and the user key).
Total number of keys stored = n * (1 + logdn).

In the crossbreed tree, the total number of keys maintained can be calculated as fol-

lows:

Case 3: Crossbreed

Number of keys with static members = 2.
Number of static members = n/(1 + r).
Total number of keys for static members = 2 * n/(1 + r).
The number of keys stored by the dynamic member = the height of the tree main-
tained by the static members (h) = 1 + logd(r).
Total number of keys stored by dynamic members = n/(1 + r) * (1 + logd(r)).
Total number of keys stored = 1 + n/(1 + r) + n/(1 + r) * (1 + d + d2 + d3 + … + dh)
≈ O(n/r).

Case 4: Hybrid Cluster Tree

The number of keys stored by the user = 1 + logd(n/m) + 1 = 2 + logd(n/m)

STORAGE EFFICIENT KEY MANAGEMENT TECHNIQUE

687

(all the keys from the root node to the cluster head + the cluster key), where m is the
cluster size.
Total number of keys stored = n * [2 + logd(n/m)].

It can be observed that the key storage requirement of the proposed crossbreed tree

is lower than those of the other three methods. The storage efficiency scales to O(n/r) <<
O(n). In the worst case, when r = 1, the storage is proportional to O(n).

Actually, the minimum storage can be thought of as an n-ary tree with depth one; in
other words, a star graph is the best-suited structure. However, it is not suitable for large
groups due to the increased communication overheads. The star arrangement is efficient
in terms of the total CC storage. On the other hand, the tree is efficient in terms of com-
munication. In the tree structure, the intermediate nodes store the sub-group keys. The
height of the tree determines the number of intermediate nodes. As the degree of the tree
increases, the height of the tree decreases; therefore, there is a trade off between the
height of the tree and the degree of the tree. This is also an important factor when the
total key storage and the traffic in the network are taken into consideration. Moreover,
the key storage requirement and the amount of communication can be expressed as func-
tions of the parameters, usually the degree, defining a key distribution scheme [7, 8]. A
comparison of the CC storage requirements of the four methods is shown graphically in
Fig. 7. The model was simulated, and it was observed that on average, the percentage of
improvement was between 80% - 88% compared to the hybrid cluster tree and tree, and
19% compared to the star architecture.

To
ta

l N
um

be
r

of
 K

ey
s

St
or

ed

Group Size

Star

Tree

Hybrid Cluster
Tree
Crossbreed Tree

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

160000

140000

120000

100000

80000

60000

40000

20000

0

Fig. 7. Comparison of total key storage requirements.

4.2 Communication Updates

The important operations in key management involve joining and leaving members.
These dynamic membership operations correspond to key changes, which ultimately cor-
respond to the communication overhead. The overhead due to leave operations is greater
than that due to join operations as most of them take place at the beginning of group
communication.

GANAPATHI PADMAVATHI AND SAMUKUTTY ANNADURAI

688

Table 9. Comparisons of update communications.

Criteria Star Tree Hybrid Cluster Tree Crossbreed Tree

Total number
of key update
messages

n − 1 (d − 1) * logdn
(m − 1) + (d − 1) *
logd(n/m)

n/(1 + r) − 1 (among static
members)
(d − 1) * logd(r) (within the
sub-group)

When a member is deleted, the total number of key update messages is that shown

in Table 9.
The number of update messages exchanged when a member leaves based on the

crossbreed tree is 1 + (d − 1) * logdr. The update communication is a function of r.
The first order derivative of the communication updates also shows that the greater the
value of r, the smaller the amount of update communication. The amount of update com-
munication in the proposed method is proportional to O(logr). As observed in the above
table, the amount of update communication is higher for the star structure because it is
not suitable for moderate or big group sizes.

It can be clearly seen that the proposed method achieves significant improvement in
terms of the amount of update communication also. The model is simulated for small,
moderate and large groups. More than 1000 (210) requests with all possible combinations
of joins/leaves are simulated.

5. CONCLUSIONS

Secure communication is a major issue today as most Internet applications are mul-
ticast applications. Centralized key management techniques are simple and robust. Re-
ducing the overheads with a centralized controller and minimizing the overall perform-
ance are the important objectives of any secured multicast model. By means of an effi-
cient and flexible approach, these objectives have been met. A membership grouping has
been proposed that reflects the actual behavior of the group members. A novel key dis-
tribution architecture called the crossbreed tree has been proposed. As minimizing the
storage overheads is an important requirement, an effort has been made to do so without
increasing the communication overheads. The overheads achieved are minimal compared
to those of earlier approaches. A brief analysis of the method has also been given. The
results show significant improvement over other methods that employ similar approaches.
The model has been simulated, and the results obtained have been found to be optimal.

REFERENCES

1. D. Balenson, D. McGrew, and A. Sherman, “Key management for large dynamic
groups: one-way function trees and amortized initialization,” Areas Communication,
Special Issue on Middleware, Vol. 17, 1999, pp. 1614-1631.

2. S. Banerjee and B. Battarcharjee, “Scalable secure group communication for IP mul-
ticast,” Technical Report, No. CS-TR 4252, Department of Computer Science, Uni-
versity of Maryland, College Park, 2001.

STORAGE EFFICIENT KEY MANAGEMENT TECHNIQUE

689

3. I. Chang, R. Engal, D. Kandlur, D. Pendarakis, and D. Saha, “Key management for
secure internet multicast using Boolean function minimization techniques,” in Pro-
ceedings of IEEE INFOCOM, Vol. 2, 1999, pp. 689-698.

4. C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communication using key
graphs,” IEEE/ACM Transactions on Networking, Vol. 8, 2000, pp. 16-30.

5. H. Harney and C. Muckenhirn, “Group key management protocol (GKMP) archi-
tecture,” RFC 2094, 1997.

6. M. J. Moyer, J. R. Rao, and P. Rohatgi, “A survey of security issues in multicast
communications,” IEEE Network, Vol. 13, 1999, pp. 12-23.

7. M. Li, R. Poovendran, and C. Berenstein, “Design of secure multicast key manage-
ment schemes with communication budget constraint,” IEEE Communications Let-
ters, Vol. 6, 2002, pp. 108-110.

8. R. Poovendran and J. S. Baras, “An information theoretic approach for design and
analysis of rooted tree based multicast key management schemes,” IEEE Transac-
tions on Information Theory, Vol. 47, 2001, pp. 2824-2835.

9. S. Rafaeli and D. Hutchison, “A survey of key management for secure group com-
munication,” ACM Computing Surveys, Vol. 35, 2003, pp. 309-329.

10. W. Trappe, J. Song, R. Poovendran, and K. J. R. Liu, “Key management and distri-
bution for secure multimedia multicast,” IEEE Transactions on Multimedia, Vol. 5,
2003, pp. 544-557.

11. D. Wallner, E. Harder, and R. Agee, “Key management for multicast: issues and
architectures,” RFC 2627, 1998.

G. Padmavathi has been a staff member of the Computer
Science Department, Avinashilingam Deemed University, and
Coimbatore-641 043, INDIA, for 18 years. She received her mas-
ter’s degree in Applied Science and her M.Phil. degree in Com-
puter Science from Bharathiyar University, Coimbatore. She has
contributed 20 papers at the national level and 5 papers at the
international level. She has 4 publications in the areas fault toler-
ant real time systems, cryptography and network security.

S. Annadurai is Principal of Government Engineering Col-
lege, Tirunelveli, Tamil Nadu, INDIA. He received his doctorate
degree in Computer Science and Engineering from Anna Univer-
sity, Chennai, in 1995. He has more than 150 publications at the
national and international levels. He is and expert committee
member for the government of Tamil Nadu and is an active
member in many professional organizations. His research inter-
ests include image processing, soft computing and network secu-
rity.

