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In this work, we present the results of our empirical study on 802:11 wireless LAN 

network traffic. We collect the packet trace from existing campus wireless LAN infra- 
structure. We analyze four different data sets: aggregate traffic, upstream traffic, down-
stream traffic, tcp only packet trace from aggregate traffic. We analyze the time series 
aspects of underlying traffic (byte count process and packet count process), marginal dis-
tribution of time series, and packet size distribution. We found that in all four data sets 
there exist long-range dependent properties in terms of byte count and packet count proc-
ess. Inter-arrival distribution is well fitted with Pareto distribution. Upstream traffic, i.e. 
from the user to Internet, exhibits significant difference in packet size distribution from 
the rests. Average packet size of upstream traffic is 151:7byte while average packet size 
of the rest of the data sets are all greater than 260bytes. Packets with full data payloads 
constitute 3% and 10% in upstream traffic and downstream traffic, respectively. Despite 
the significant difference in packet size distribution, all four data sets have similar Hurst 
values. The Hurst alone does not properly explain the stochastic characteristics of the 
underlying traffic. We model the underlying traffic using fractional-ARIMA (FARIMA) 
and fractional Gaussian Noise (FGN). While the fractional Gaussian Noise based method 
is computationally more efficient, FARIMA exhibits superior performance in accurately 
modeling the underlying traffic. 
 
Keywords: network traffic, modeling, analysis, self-similarity, long-range dependence, 
fractional-ARIMA, fractional Gaussian noise 
 
 

1. INTRODUCTION 
 

Over the past several decades network and communication technology has been a 
significant and growing component of Internet traffic. Integrated broadband networks are 
expected to support various traffic types such as data, voice, image and video. Traffic 
generated from these services is substantially different in its statistical characteristics and 
networks are required to maintain a certain level of throughput during each session. For 
example, voice traffic has a bandwidth requirement of several Kbps and is delay sensi-
tive, while high speed data traffic for file transfers or LAN/WAN interconnection requires 
hundreds of Mbps and is loss sensitive. Complex network traffic requires elaborate mod-
eling and analysis which can be quite unconventional in an engineering sense. Tradi-
tional modeling tools and techniques, both theoretical and empirical, have been able to 
characterize and understand the behavior of network traffic to a rather limited extent. 
However, the discovery of the free-scaling nature of measured teletraffic has led to the 
creation of modeling solutions that can approximate data characteristics much better than 
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previous techniques. As a result, self-similar processes have been used to successfully 
model data exhibiting long-range dependence in a variety of different scientific fields, 
including hydrology [2], geophysics [8], biology [4], telecommunication networks [16] 
and economics [7].  

The objective of this study is to obtain a comprehensive understanding of the un-
derlying packet level traffic including the stochastic characteristics of the underlying time 
series, marginal distribution, and packet size distribution. Our study is based upon the real 
network packet trace data collected from an existing public 802.11 network. We analyzed 
the underlying network traffic from an upstream/downstream point of view with regard 
to the aggregate traffic. We found that aggregate traffic, upstream, and downstream 
traffic all exhibit long memory properties. However, the packet size distributions of 
upstream and downstream traffics are different. In our study, it was found that the aver-
age packet size in downstream traffic is much larger (298byte) than in upstream traffic 
(151:7byte). This is because a large fraction of packets in downstream traffic carries a 
full data payload whereas upstream traffic usually carries signal packets, e.g. SYN, ACK, 
and etc., which carry 8 byte signal information. In this study, our work is concentrated 
on characterizing traffic in wireless LAN environment. Traffic studies consist of either 
the study of aggregate traffic or the study of application dependent traffic characteristics. 
Our work focuses on aggregate traffic. Traffic characteristics based upon the application 
type is a very important topic. We like to address the application dependent traffic char-
acterization study in a separate context. We develop an analytical model for underlying 
network traffic using fractional Gaussian Noise (FGN) and fractional ARIMA (FARIMA) 
to model the long memory nature of the underlying traffic. The FARIMA process is bet-
ter than FGN in modeling the underlying traffic in that it can consider short range as well 
as long range dependence. 

2. RELATED WORK 

A few works have focused on identifying human behaviors in term of mobility pat-
terns [15] in wireless environments. These studies reflect a variety of wireless environ-
ments, such as university campuses, auditoria and enterprise networks. Balachandran et 
al. [1] analyzed user behavior and network performance in public-area wireless networks. 
They developed a parameterized model for wireless users for use with analytic and 
simulation studies and for the application of workload analysis results to issues in wire-
less network deployment, such as capacity planning and potential network optimizations. 
Gurtov et al. [10] designed transport protocols that can be improved by providing easy 
models (consider the interplay between wireless links and transport protocols) of wire-
less links that strike a balance between realism, generality and detail. Park et al. [20] 
showed that the degree to which file sizes are heavy-tailed directly determines the degree 
of traffic self-similarity. By measuring self-similarity via the Hurst parameter H and file 
size distribution by its power-law exponent, they show that there is a nearly linear rela-
tionship between x and y over a wide range of network conditions and when the rela-
tionship is subject to the influence of the protocol stack. This mechanism gives a simple 
explanation of why self-similar network traffic may be observed in many diverse contexts. 
Mah et al. [14] developed an empirical model of network traffic produced by HTTP. 
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Instead of relying on server or client logs, their approach is based on packet traces of 
HTTP conversations. Through traffic analysis, they determined statistics and distribu-
tions for higher-level quantities such as the size of HTTP files, the number of files per 
web page, and user browsing behavior. Paxson et al. [21] presented a fast Fourier trans-
form method for synthesizing approximate self-similar sample paths and, fractional 
Gaussian noise. Their method is as fast or faster than existing methods and appears to 
generate close approximations to true self-similar sample paths. Grossglauser et al. [9] 
argue that most recent modeling work has failed to consider the impact of two important 
parameters: (1) finite range of time scales of interest in performance evaluation and pre-
diction problems; and (2) first-order statistics such as the marginal distribution of a 
process. Specifically, their model is a modulated fluid traffic model in which the correla-
tion function of the fluid rate is asymptotically second-order self-similar with a given 
Hurst parameter, then drops to zero at a cutoff time lag. Tudjarov et al. [17] analyzed 
different protocols, e.g. TCP and UDP, and performed statistical analysis through the 
correlation coefficients, covariance, and self-similarity degree. Their experimental study 
captured traffic with a Hurst parameter around 0:7-0:75. They use the Maximum Likeli-
hood approach to fit the obtained time series to existing distributions, such as Pareto and 
exponential distribution, where the first distribution is a self-similar process and the sec-
ond is not. Leveraging the tree structure of the model, Vinay et al. [23] derived a multis-
cale queuing analysis that provides a simple closed form approximation to the tail queue 
probability. The analysis is applicable not only to the MWM (Multifractal Wavelet 
model) but to tree-based models in general, including fractional Gaussian noise. Their 
result clearly indicates that the marginal distribution of traffic at different time-resolu- 
tions affects queuing and that a Gaussian assumption can lead to over-optimistic predic-
tions of tail queue probability even when taking LRD (Long Range Dependence) into 
account. Oliveira et al. [3] examined the long range dependent nature of application traf-
fic in wireless environment. They analyzed three types of traffic in wireless LAN envi-
ronment: http, ftp and video streaming, and examined the self-similarity of the network 
traffic. This in contrast to our study in which we examined the degree of self-similarity 
in wireless LAN traffic and the effectiveness of the existing stochastic model, fractional 
Gaussian Noise and fractional ARIMA in modeling the wireless LAN traffic. While our 
work touches upon the workload of a Fast Ethernet layer and TCP layer for one and two 
direction traffic data sets (for packet size and packet counts), we are mainly interested in 
the statistical characteristics and the estimated the Hurst parameter and modeled the 
Fractional Gaussian noise and FARIMA by using a self similar method in the field of 
wireless technology. We also modeled for inter arrival time by using Pareto, Weibull and 
Lognormal type distributions and got the results that is Pareto type distribution is more 
correlated to real data networks traffic data sets. Closer to our work, the authors in [18, 
19] briefly describe the self similar network traffic in wired networks. These studies are 
however on self-similar based which has been shown to have a highly self similar nature 
in the autocorrelation function and inter arrival time figures whereas in our study we 
have calculated its statistical distributions. The rest of the paper is organized as follows. 
Section 3 presents the mathematical notion of self-similarity. Section 4 describes meas-
urement setup. Section 5 calculated the traffic statistics. Section 6 describes the long 
range dependent. Section 7 carries the modeling of wireless LAN traffic. Section 8 con-
cludes the paper. 
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3. SYNOPSIS: LONG RANGE DEPENDENT PROPERTY 

The notion of a long memory process or self-similar process has been widely used 
to explain the nature of a various network traffic, e.g. WAN (Wide area network) [13], 
LAN (Local Area Network) [16], variable rate video [12, 28] etc. Determining whether a 
certain underlying process is self similar or not is quite a subjective issue. Still, it is true 
that the notion of self-similarity provides an effective explanation for the empirical phe- 
nomenon without which it is difficult to explain. Before we move along, we revisit the 
mathematical definition of self-similarity. The basic definition of a self-similar process is 
as follows: 

A continuous-time stochastic process {Xt} is strongly self-similar with a self-simi- 
larity parameter H (0 < H < 1), if for any positive stretching factor c, the rescaled process 
with time scale ct, c-HXct, is equal in distribution to the original {Xt} [25]. This means that, 
for any sequence of time points t1, t2, t3, …, tn, and for all c > 0, {c-HXct1, c-HXct2, …, 
c-HXctn}, has the same distribution as {Xt1, Xt2, …, Xtn} [25]. In discrete-time case, let {Xk} 
= {Xk: k = 0, 1, 2, …} be a (discrete-time) stationary process with mean μ, and variance 
σ2. Let 1 2{ } { , ,  },m m m

kX X X= …  m = 1, 2, 3, …, be a sequence of batch means, i.e. m
kX   

= (Xkm-m+1 + … + Xkm)/m, k ≥ 1. The process {Xt} with autocorrelation function ρk → k-β,  
as k → ∞, 0 < β < 1, is called exactly self-similar with H = 1 − 2( ),β

 if ,m
k kρ ρ=  for any  

m = 1, 2, 3, …. In other words, the process {Xk} and the averaged processes { },m
kX  m ≥ 

1, have identical correlation structure. The process {Xk} is asymptotically self-similar  
with H = 1 − 2( ),β

 if 
( ) ,m

kkρ ρ→  as m → ∞ [27]. There are many approaches for making  
a certain process self-similar. One of the most widely used approaches is to use Frac-
tional Gaussian Noise [25]. The incremental process {Yk} = {Xk − Xk-1}, k > 0, is called 
the fractional Gaussian Noise (FGN) process if {Xk} designates a fractional Brownian 
motion (FBM) random process. Fractional Brownian is the model which is used widely 
for modeling self-similar processes as it provides tractable analysis techniques [18]. The 
main properties of self-similar processes include [2, 5, 13]: (i) Slowly decaying variance, 
i.e., the variance of the sample mean decreases more slowly than the reciprocal of the 
sample size, that is, ( )[ ]m

kVar X  → cτ-β as τ → ∞, where c is constant and 0 < β < 1 [24].  
In this process, the Hurst parameter corresponds to H = 1 − 2( )β [28]. (ii) Covariance  

structure of the self-similar process looks as 
2 2 2 2

2( , ) {  | | }.H H H
x t s t t s sσγ − − +  (iii) Its  

auto-correlation function ρk is non-summable, i.e., 
0

.k
k

ρ
∞

=
= ∞∑  The speed of decay of  

autocorrelations is more hyperbolic than exponential.  
There are a number of ways to determine the degree of self-similarity, H. These in-

clude rescaled adjusted R/S statistics [25], variance time plots [13], wavelet analysis [28] 
etc. In this work, we use R/S plot in determining the H parameter of the underlying traf-
fic. For a given set of numbers {X1, X2, …, Xn}, a Hurst parameter H can be estimated  

from the rescaled adjusted range 
( )
( )

R n
S n  (or R/S statistics) where 

1
( ) max{ (

k

i
i

R n X
=

= −∑   

μ), 1 ≤ k ≤ n}. An asymptotic slope on a loglog plot of R/S statistics represents the H 
parameter. Further interested users are referred to [18, 25].  
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4. MEASUREMENTS SETUP 

Fig. 1 shows the network configuration and connection used in this study. To a cover 
wider geographical area, it is more cost effective to use wireless network than to use 
wired network technology. Particularly, in a sparsely populated country such as Mongo-
lia, wireless network is the more preferred communication medium. In a wireless net-
work there is one six-sector antenna system where each sector antenna approximately 
covers 60° degree angle and adjacent sector antennas slightly overlap with each other. 40 
wireless clients are connected to 2 Access Points of the provider. Routing of all connec-
tions, and also the control and management of throughput (Traffic Shaping, QoS) are 
carried out with a router. Each wireless client has throughput ranging from 64 up to 512 
kbps. 

 
Fig. 1. The wireless network configuration. 

       
 (a) eth.dat: H = 0.88.                       (b) eth.src: H = 0.85. 

       
(c) eth.dst: H = 0.89.                       (d) tcp.dat: H = 0.89. 

Fig. 2. Degree of self-similarity in datasets: R/S plots. 
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We use sniffer to collect the packet trace. A sniffer is program or a device that eaves-
drops on the network traffic by grabbing information traveling over a network. These 
devices work in this manner because the Ethernet was built around a principle of sharing. 
Computers can be made to accept messages that are not meant for them. A computer 
connected to the LAN has 2 addresses. One is the MAC address that uniquely identifies 
each node in a network and is stored on the network card itself. It is the MAC address 
that is utilized by the Ethernet protocol while building ‘frames’ to transfer data to and 
from a machine. The other is the IP address which is used by applications. The data link 
layer uses an Ethernet header with the MAC address of the destination machine rather 
than the IP address. The network layer is responsible for mapping IP network addresses 
to the MAC address as required by the Data link Protocol. It initially look up the MAC 
address of the destination machine in a table, usually called the ARP cache. If no entry is 
found for the IP address, the address resolution protocol broadcasts a request packet 
(ARP request) to all machines on the network. The machine with that address responds 
to the source machine with its MAC address. This MAC address then gets added to the 
source machines ARP Cache. This MAC address is then used by the source machine in 
all its communications with the destination machine. Traffic used to collect personal 
computer running Windows 2000 Professional by its protocol analyzer Ethereal (sniffer), 
which ensures the accuracy of determining the time stamp of a package of 10-6 seconds. 
Sniffer is connected to the network so as to record traffic going through Point “1” and 
simultaneously through Point “2” in Fig. 1. Please note that the point of “1” receiving 
traffic information sharing among wireless customers, and with it the traffic flow of in-
formation between customers and Internet. After a point “2” is only the latest of them. 
All packages are recorded down to the file format tcpdump. More than 12.7 million 
packages were collected in our study. Of these, 70 percent were used to construct the 
TCP datagram. 

5. TRAFFIC STATISTICS 

5.1 Primitive Statistics 
 

We collected the packet traffic from 10:00 to 17:00 on March 18, 2005. Our traffic 
data consists of four data sets shown in Table 1. Table 2 summarizes the trace data statis-
tics. We obtain packet traces from two different layers of protocol stacks: Ethernet layer 
and TCP layer. Average packet size for “eth.dat”, “eth.src”, “eth.dst” and “tcp.dat” are 
267.4, 151.7, 298.5 and 270.7byte, respectively. “eth.src” has different characteristics 
from the other three files. Average packet size of “eth.src” is 151.7byte, which is much 
smaller than the average packet size of the other files. For the other three files, average 
packet size is 267bytes or larger. Variance of packet size is also much smaller in “eth.src” 
than in the other files. Variance of packet size in “eth.src” is approximately 33% of the 
variance of packet size in the other files. Average inter-arrival times are 2msec, 5.5msec, 
4.5msec, 3msec for “eth.dat”, “eth.src”, “eth.dst”, and “tcp.dat”, respectively. Fig. 3 
shows the result of the aggregated traffic for 1 hour time intervals for the trace data. We 
collected four traffic data sets which there are haven in 2 direction “eth.dat”, “tcp.dat” 
and 1 direction “eth.src”, “eth.dst” data traffic sets with 1 microsecond time interval. The 
objective of this work is to examine the characteristics of wireless network traffic. 
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Table 1. File description of wireless network. 
 File Name File Description Protocol layer 
1 eth.dat Aggregate traffic, captured at point 1 2 (Ethernet) 
2 eth.src Upstream traffic, captured at point 2 2 (Ethernet) 
3 eth.dst Downstream traffic, captured at point 2 2 (Ethernet) 
4 tcp.dat TCP traffic, captured at point 2 4 (TCP) 

 

Table 2. Traffic of data sets (10:00-17:00, Mar-18-2005). 
Packet size (byte) Inter arrival time (msec) 

Data Set Number of packets
μ σ2 μ σ2 

eth.dat 12 715 077 267.4 204760 2 10 
eth.src 4 554 667 151.7 80103 5.5 67 
eth.dst 5 586 555 298.5 239430 4.5 71 
tcp.dat 8 468 547 270.7 279430 3 45 

 
Fig. 3. Statistical analysis for data sets. 

 
5.2 Application Layer Statistics 
 

To understand the behavior of the application layer traffic and provide reference to 
study of scheduled traffic for the wireless network, this section gives detail statistics and 
understandings of TCP wireless traffic, specifically its port usages at point 1 at Fig. 1. 
The TCP traffic trace used in the paper has been manipulated and sanitized to hide the 
source and destination IP addresses, since it causes security issues. However, the port 
numbers in the traces are intact, which is meant to be and used for only scholarly pur-
poses. Internet Assigned Numbers Authority (IANA) provides the list of well known 
ports in the range of 0 to 1023, and Tables 3 and 4 distinguishes well known ports and 
registered port numbers in the captured wireless traffic. Top ten of each region is listed 
respectively. Wireless traffic trace shows simple behavior where the majority services 
exploited by the users are World Wide Web, E-mail, FTP, and DNS services. 
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Table 3. Ranks of TCP traffic well known port and its applications. 
Rank Ports Applications Percentage Packet Sum 

1 80 WWW HTTP 37.80% 117Mbyte 
2 443 HTTPS 22.59% 70Mbyte 
3 135 EPMAP 8.35% 26Mbyte 
4 25 SMTP 5.29% 16.5Mbyte 
5 110 POP3 3.21% 10.0Mbyte 
6 20 FTP-DATA 2.01% 6.2Mbyte 
7 53 DNS 2.00% 6.2Mbyte 
8 21 FTP-Control 0.26% 0.8Mbyte 
9 119 NNTP 0.12% 0.3Mbyte 

10 143 IMAP 0.07% 0.2Mbyte 
 

Table 4. Ranks of TCP traffic registered ports and its applications. 
Rank Ports Applications Percentage Packet Sum 

1 4899 RAdmin Port 2.57% 8.0Mbyte 
2 1494 ICA 2.52% 7.8Mbyte 
3 1790 NMSP 1.29% 4.0Mbyte 
4 5190 AOL 0.92% 2.8Mbyte 
5 4662 OMS 0.85% 2.6Mbyte 
6 4000 ICQ 0.59% 1.8Mbyte 
7 49753 Unknown 0.41% 1.2Mbyte 
8 8080 HTTP Alternate 0.36% 1.1Mbyte 
9 1297 SDPROXY 0.29% 0.9Mbyte 

10 1934 IBM LM Appl. Agent 0.28% 0.8Mbyte 

 
These top ten rank services holds about 80% of wireless TCP traffic. There were 

total of 5637 distinct port numbers found in the traffic trace. There are 23 well known 
ports, and the rest are used by registered ports. From the Table 3, it is comprehensible 
that wireless users tend to navigate the WWW, check E-mails, and uses it to download 
contents. Table 4 shows registered ports used in the captured traffic trace. Port number 
4899 is used by remote control software called RAdmin, which allows mobile computer 
users to remotely connect to their desktop computers. 
 
5.3 Packet Size Distribution 
 

We examine the packet size distribution in the underlying traffic. As mentioned ear-
lier, the packet size distribution of the upstream traffic, “eth.src” is smaller than the pack-
et sizes of the others three data sets. Fig. 4 presents the histograms of the packet sizes. In 
“eth.dat”, “eth.dst” and “tcp.dat” more than 10% of the packets carry a full data payload 
(1500bytes). On the other hand, in ”eth.src”, the percentage of packets with a full data 
payload is 3% . Figs. 4 (a)-(d), show the respective packet size distributions for the wire-
less network traffic for eth.dat, eth.src, eth.dst, and tcp.dat. Packet sizes from 60bytes to 
1514bytes were generated by the wireless traffic data. The histogram clearly demon- 
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(a) eth.dat.                                (b) eth.src. 

 
(c) eth.dst.                               (d) tcp.dat. 

Fig. 4. Histogram in datasets. 
 

Table 5. Packet size statistics of wireless network. 
eth.dat eth.src eth.dst tcp.dat 

Rank 
size % size % size % size % 

1 60 24.6% 60 33% 62 30% 40 66.6% 
2 62 16.6% 74 25.2% 60 17.3% 1500 12.1% 
3 74 13.0% 62 8.6% 1514 10.4% 66 2.0% 
4 1514 9% 66 5.7% 74 8.2% 1488 1.4% 
5 66 3% 80 2.7% 106 3.6% 52 0.6% 
6 64 2.8% 1514 2.6% 78 3.2% 46 0.58% 
7 214 2.3% 102 2% 64 2.6% 192 0.5% 
8 150 2% 91 1.7% 80 2.3% 1420 0.47% 
9 106 1.7% 64 1.4% 709 2% 628 0.38% 

10 94 1.6% 87 1.2% 66 1.5% 54 0.37% 
11 78 1.5% 82 0.7% 84 1.14% 1400 0.33% 
12 80 1.4% 99 0.66% 1434 0.88% 1216 0.26% 

 
strates the heavy tail presence in the traffic distribution (see a histograms for eth.dat, 
eth.src, eth.dst and tcp.dat in Figs. 4 (a)-(d)). Table 5 illustrates the percentages of most 
common packet sizes. Packets with less than 80bytes are usually used to carry control 
messages. As can be seen in Table 5, more than 85% of the packets are less than 100bytes. 
This characteristic persists through all four traces. In terms of the packet count, packets 
with full data payloads constitutes approximately 10% and 2.6% in downstream and up-
stream traffic, respectively. 
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6. LONG RANGE DEPENDENCY 

6.1 Empirical Observation 
 

We first visually examine the burstiness of the traffic under different time scale. We 
plot the packet count and the byte count process in 10msec, 50msec, 100msec intervals 
for the four data sets. As can be seen, we do not observe a noticeable smooting effect 
even though we increase the time scale of interest by orders of magnitude in Figs. 5 and 
6. The Hurst parameters are presented in Table 7. Table 6 presents the result of statistical 
parameters for synthetic data set of FGN and FARIMA. Our work focuses on analyzing 
the aggregate traffic in wireless LAN environment and on examining the effectiveness of 
the existing stochastic model for wireless LAN traffic. As currently it stands, we do not 
examine the application type of the packets and indeed our packet trace does not include 
application specific information. We plan to examine the application specific traffic cha-
racteristics in the separate context. 

   
  (a) 10msec(eth.dat).          (b) 50msec(eth.dat).          (c) 100msec(eth.dat). 

   
  (d) 10msec(eth.src).          (e) 50msec(eth.src).          (f) 100msec(eth.src).  

   
 (g) 10msec(eth.dst).          (h) 50msec(eth.dst).          (i) 100msec(eth.dst). 

   
 (j) 10msec(tcp.dat).           (k) 50msec(tcp.dat).          (l) 100msec(tcp.dat). 

Fig. 5. Byte count for eth.dat, eth.src, eth.dst, tcp.dat. 
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(a) 10msec(eth.dat).         (b) 50msec(eth.dat).         (c) 100msec(eth.dat). 

   
(d) 10msec(eth.src).         (e) 50msec(eth.src).         (f) 100msec(eth.src). 

   
(g) 10msec(eth.dst).          (h) 50msec(eth.dst).         (i) 100msec(eth.dst). 

   
(j) 10msec(tcp.dat).          (k) 50msec(tcp.dat).         (l) 100msec(tcp.dat). 

Fig. 6. Packet count for eth.dat, eth.src, eth.dst, tcp.dat. 
 

Table 6. Description of model parameters. 
H parameter 

Data sets μ (byte) σ2 (byte)2

Trace Data FARIMA FGN 
eth.dat 267.4 204760 0.88 0.85 0.82 
eth.src 151.7 80103 0.85 0.84 0.83 
eth.dst 298.5 239430 0.89 0.84 0.83 
tcp.dat 270.7 279430 0.89 0.83 0.83 

 

Table 7. H parameter with 10msec, 100msec aggregation. 
H parameter 

eth.dat eth.src eth.dst tcp.dat  
10ms 100ms 10ms 100ms 10ms 100ms 10ms 100ms 

Byte count 0.82 0.78 0.74 0.85 0.81 0.75 0.82 0.79 
Packet count 0.84 0.79 0.80 0.79 0.83 0.80 0.84 0.82 
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6.2 Sample Autocorrelations  
 

Fig. 9 illustrates the sample autocorrelations for the underlying traffic. As can be 
seen, ACF decays very slowly with respect to the lag. There are variety of factors which 
cause the network traffic (Layer 3) or Ethernet traffic (Layer 2) to be appear self-similar. 
These include the heavy tailed nature of the file size distribution, TCP congestion al-
gorithm [25], on-off distribution of a user’s computer usage model, or a combination of 
these factors. The properties of self-similar processes lend themselves to the following 
methods for estimating H [6, 13, 25]. We obtain the Hurst parameter of each data set by 
an R/S plot. The R/S statistics of an aggregated process increases linearly (for large n) in 
log-log plots over n. The slope of the regression line for these R/S samples are an esti-
mate for the Hurst parameter H for the 4 data sets (see in Figs. 2 (a)-(d)). We calculated 
the cumulative distribution function and tail probability function for interarrival time in 
Fig. 7. 

       
(a) Cumulative distribution function for 

inter arrival time. 
(b) Tail probability function for inter 

arrival time. 
Fig. 7. Inter-arrival time statistics. 

7. MODELING OF WIRELESS LAN TRAFFIC 

7.1 Background  
 

A number of analytical models have been proposed to model the long memory na-
ture of the underlying traffic. In this paper, we use fractional Gaussian noise (FGN) and 
fractional ARIMA (FARIMA) to model the underlying traffic. FGN algorithm is based 
on synthesizing sample paths that have the same power spectrum as FGN. These sample 
paths can then be used in simulation as traces of self-similar network traffic. The algo-
rithm is a fast approximation of the power spectrum of an FGN process; this approxima-
tion also has applications for fast estimation of the strength of long-range dependence 
(Hurst parameter) present in network arrival processes [21]. We also generated the actual 
traffic data by using an FFT algorithm for fractional Gaussian noise synthesis (see a more 
detailed algorithm in the next chapter). Recent real traffic measurements found that the 
co-existence of both long-range and short-range dependence in traffic traces [18]. Mod-
els are required to describe both long-range and short-range dependence simultaneously. 
We consider the F-ARIMA (fractional autoregressive integrated moving average) model 
as one of the better models with this capability. We provide a procedure to fit a FARIMA 
model to the actual traffic trace, as well as a method to generate a FARIMA process with  
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(a) Inter-arrival time fitting: eth.dat vs. Pareto, 

Weibull, Log-normal distribution. 
(b) Tail probability function for inter- 

arrival time. 
Fig. 8. Probability of inter-arrival time. 

 
(a) eth.dat.                            (b) eth.src. 

 
(c) eth.dst.                            (d) tcp.dat. 

Fig. 9. Autocorrelations of sample data sets and ACF of synthetic traffic generated by FGN and 
FARIMA. 

 
given parameters [10]. We generated the raw packets process using a Gaussian Motion 
noise generator in the same manner as F-ARIMA by using Hosking’s algorithm. We 
estimate the Hurst parameter from the wireless LAN traffic and by using that the Hurst 
parameter modeled the synthetic traffic data for wireless LAN and calculated the auto-
correlation function for the FGN data series and, the FARIMA data series and found that 
it is strongly correlated, similar to measurement of the a wireless LAN traffic data (in Fig. 
9) and may have LRD structure. The obvious clustering of R/S plot points around a lin-
ear line suggests the presence of LRD of about H = 0:88 (in Figs. 2 (a)-(d)). We also 
simulated the interarrival time by using the Pareto, Weibull and Lognormal distributions 
in Figs. 8 (a) and (b). In Fig. 9 FGN, FARIMA simulation, also exhibits LRD and Self- 
similar properties in the LRD test. We also performed the simulation for Interarrival time 
with heavy-tailed distribution. LRD test applied to the reported traffic showed the pres-
ence of LRD with all most the near values for H [18, 19]. 
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7.2 Self-similar Process from Fractional Gaussian Noise 
 

Fractional Gaussian Noise and Fractional ARIMA are two of most widely studied 
self-similar processes [21]. In addition to these models, there are a number of stochastic 
models for synthesizing self-similar processes, e.g. M/G/∞ [22], Random Midpoint Dis-
placement [18], Fractional Brownian Motion [25], Wavelet model [28]. In this study, we 
use FGN and FARIMA to model the empirical traffic data and examine their effective-
ness in describing these self similar processes. Fractional Gaussian noise (FGN) is a 
process of FBM (Fractional Brown Motion) increments, i.e. XH(t) = 1/δ[BH(t + δ) − BH(t)], 
where δ is an increment and BH(t) is Fractional Brownian Motion. The XH(t) process is 
normally distributed i.e. N (0; σ2), the normalized covariation function being of the form.  

 
r(τ) = (|τ + 1|2H − 2|τ|2H + |τ − 1|2H)/2 
 
All aggregated processes 

( ) ( )m
HX t  have the same distribution for any 0 < H < 1. 

FGN is exactly a self-similar process with the Hurst exponent H varying in the interval 
1/2 < H < 1. FGN is fully described by two parameters only, by variance and Hurst ex-
ponent H. The substantial argument in favour of FGN models in networks is that in many 
cases traffic can be considered as a superposition of a large number of separate inde-
pendent ON/OFF sources having distributions with heavy tails for the ON-period dura-
tion [26]. For this case, after subtraction of the average arrival speed and necessary nor-
malization in accordance with the central limit theorem, the aggregated ON/OFF sources 
(cumulative arrivals) converge to the Gaussian FBM. Therefore, the self-similar traffic 
(for the increment process) can be modeled as the model FGN + mean with a given vari-
ance and H. Unfortunately, FGN models have strict limitations when adapted to network 
traffic. First of all, it is not enough to have the H parameter only cover the complex cor-
relation structure of real network processes. Moreover, other studies have proven the 
importance of short-term correlations for buffering and for discovery of significant time-
scales [16]. Secondly, the Gaussian features of FGN models may not correspond with 
reality, e.g. when the mean-square deviation is greater than the mean value. In this case, 
FGN outputs contain a large number of negative values. Thirdly, many real network ap-
plication processes are not Gaussian, especially for small timescales. Due to the complex 
correlation structure of the underlying traffic, Fractional ARIMA model may be prefer-
able to FGN despite its high computational complexity, 2( )nϑ  where n is the number of 
samples.  

Paxson develop an efficient method to generate self-similar sample path using fast 
Fourier transform method [21]. This algorithm is based on a calculation of the power 
spectrum density with the use of a period gram (the power spectrum at the given fre-
quency is represented by independent exponential random variables). In the first stage 
the complex numbers are constructed, their magnitudes are regulated by the normal dis-
tribution and after that the inverse FFT is fulfilled. Fig. 10 shows how self-similar se-
quences have been generated by means of the FFT. Fractional Gaussian Noise process is 
modeled as: X(t) = μ + σ * ZH(t) where ZH(t) denotes the fractional Gaussian Noise proc-
ess with Hurst parameter H. μ and σ is mean and standard deviation of X(t) since ZH(t) is 
centralized normal process (see a the algorithm for FGN in Fig. 10). The illustration use 
of the model is shown by applying it to the Wireless LAN aggregate traffic presented 
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Fig. 10. Fast fourier transform algorithm for FGN. 

 
above μ and σ, are estimated from the data sets of “eth.dat”, “eth.src”, “eth.dst” and 
“tcp.dat” frames for real wireless data traffic. The estimate of the Hurst parameter of the 
data sets are presented in Table 2 for “eth.dat”, “eth.src”, “eth.dst” and “tcp.dat” for our 
previous LRD test. 
 
7.3 Self-similar Process from Fractional-ARIMA 
 

We use the FARIMA (fractional autoregressive integrated moving average) process, 
which has some advantages over other models based on other fractal processes. FBM, 
the aggregation of ON/OFF sources with high changeability, etc., is an example of such 
processes. The fractional Brownian motion has only one parameter, which controls the 
correlation function, and therefore there is no flexibility for short-range dependence mod-
eling. The aggregation of a large number of ON/OFF sources with infinite variance for 
ON and OFF periods allows for the formation of long-range dependence and can be used 
to cover the asymptotic behavior of long-range traffic. However, the possibility of short- 
range behavior simulation is not possible. FARIMA (p; d; q) models have three parame-
ters, p, d and q, that control the correlation structure. Therefore, they can cover the short- 
range dependence as well as long-range dependence. It is necessary to have a model that 
will be able to cover the short-range dependence, the long range dependence and the arbi-
trary distribution. A FRIMA(p; d; q) process is a process where d is the level of differ-
encing, p is the auto regression order, and q is the moving average order; p and q have 
non-negative integer values and d have non-integer value. We synthesize underlying 
packet traces using a fractional ARIMA process. We apply FARIMA (0; d; 0) to generate 
a synthetic sequence. d is the fractional differencing order, 0 < d < 1/2, H = d + 1/2. We 
use Hosking’s algorithm for generating self-similar processes using the FARIMA model 
[10, 11]. In practice, this method is very computationally intensive for generating long 
sequences. A number of Mathematical models have been proposed for Internet backbone 
traffic. They include fractional Gaussian Noise (FGN), fractional Brownian Motion, M/ 
G/∞, MMPP (Markov Modulated Poisson Process) and etc. The contribution of this work 
is twofold. First, we carefully analyze the stochastic characteristics of the underlying 
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Wireless LAN traffic. Second, we examine the existing stochastic model for network 
traffic against our empirical data and verify the effectiveness of the respective models. It 
is found that FARIMA better models the underlying network traffic. This study delivers 
valuable and meaning result full which bridges the gap between empirical traffic study 
and analytical modeling. In this work, we found that FARIMA model more accurately 
represents the stochastic characteristics of the underlying traffic. 

8. CONCLUSION 

In this study, we perform comprehensive analysis on 802.11 network traffic. We 
capture packet traces from the existing wireless LAN environment. We analyze four data 
sets: aggregate traffic, upstream traffic, downstream traffic, and TCP only aggregate traf-
fic. We examine the primitive statistics and sample autocorrelations of data sets. We 
found that the upstream traffic packet size distribution is significantly different than the 
other three data sets. The fraction of data packets i.e. packets with full data payloads are 
much smaller in upstream traffic. Packet-Inter arrival times are well fitted with a Pareto 
distribution. We examine the packet count process (packets/sec) and byte count process 
(byte/sec) of the underlying packet trace. We found that example auto-correlations decay 
slowly in their data sets. Parameters that are greater than 0.5 indicate that underlying data 
sets have long-range dependent property. We used FGN and FARIMA to model the long- 
range dependent property of the underlying traffic. We found that among the models 
tested, FARIMA more accurately synthesizes the long memory characteristics of the un-
derlying traffic. The results of our work can be used in many areas. They include syn-
thetic traffic generation, capacity planning in various network related hardware, and etc. 
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DETAILS OF LONG RANGE DEPENDENCE 

The proof is as follows: Let us define a new process Y(t) = X(t) − X(t − 1) which is 
the increment process corresponding to X(t) (sampled at every integer instant). The Long 
range dependence characteristics of the increment process can be obtained from the 
analysis of the covariance of the process Y(t). 

[ ( ) ( )] [( ( ) ( 1))( ( ) ( 1))]
                        [ ( ) ( )] [ ( ) ( 1)]
                           [ ( 1) ( )] [ ( 1) ( 1)]

E Y t k Y t E X t k X t k X t X t
E X t k X t E X t k X t

E X t k X t E X t k X t

+ = + − + − − −
= + − + −
− + − + + − −

              (1) 

The above expression can be simplified to obtain 

2
2 2 2( ) [ ( ) ( )] {( 1) 2 ( 1) }.

2
H H H

Y k E Y t k Y t k k kργ = + = − − + +                 (2) 

The autocorrelation of the increment process ρ(k) is obtained as 

2 2 2
2
( ) 1( ) {( 1) 2 ( 1) }.

2
H H HY

Y
k

k k k k
γ

ρ
ρ

= = − − + +                         (3) 

The asymptotic behavior of ρ(k) can be obtained by using Taylor series expansion. 
Eq. (3) can be modified as 

2 22 2 11 1( ) [(1 ) 2 (1 ) ] ( ),
2 2

H HH Hk kk g k
k k

ρ −= + − + − =                      (4) 

where g(x) = [(1 + x)2H − 2 + (1 − x)2H].  
Taking the first and second derivatives of g(x), we get 

2 1 2 1

2 2 2 2

( ) 2 [(1 ) (1 ) ],

( ) 2 (2 1)[(1 ) (1 ) ].

H H

H H

g x H x x

g x H H x x

− −

− −

′ = + − −

′′ = − + + −
 

The Taylor series expansion of g(x) can be written as 
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2

0 0 0 0( ) ( ) ( ) ( )  ,
2
xg x x g x xg x g x′ ′′− = + + + …  

so that 

2
( ) (0) (0) (0)  .

2
xg x g xg g′ ′′= + + + …  

Substituting the expressions for g′(x) and g″(x), the first non zero term in the expan-
sion of g(x) is seen as  

2
( ) 2 (2  1).

2
xg x H H= −                                              (5) 

The expression for ρ(k) will now become 

2 1 2 2

2 2

( ) ( ) (2  1) ,
2

( )lim 1.
(2  1)

H H

Hk

kk g k k H H k

k
H H k

ρ

ρ

− −

−→∞

= = −

→
−

                               (6) 
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