Fault-Tolerant Hamiltonian Connectivity and Fault-Tolerant Hamiltonicity of the Fully Connected Cubic Networks

TUNG-YANG HO AND CHENG-KUAN LIN*
Department of Information Management
Ta Hwa Institute of Technology
Hsinchu, 307 Taiwan
E-mail: hoho@thit.edu.tw
*Department of Computer Science
National Chiao Tung University
Hsinchu, 300 Taiwan

Many papers on the fully connected cubic networks have been published for the past several years due to its favorite properties. In this paper, we consider the fault-tolerant hamiltonian connectivity and fault-tolerant hamiltonicity of the fully connected cubic network. We use $FCCN_n$ to denote the fully connected cubic network of level n. Let $G = (V, E)$ be a graph. The fault-tolerant hamiltonian connectivity $H^f_k(G)$ is defined to be the maximum integer l such that $G - F$ remains hamiltonian connected for every $F \subseteq V(G) \cup E(G)$ with $|F| \leq l$. The fault-tolerant hamiltonicity $H^f(G)$ is defined to be the maximum integer l such that $G - F$ remains hamiltonian for every $F \subseteq V(G) \cup E(G)$ with $|F| \leq l$. We prove that $H^f_k(FCCN_n) = 0$ and $H^f_k(FCCN_n) = 1$ if $n \geq 2$.

Keywords: hamiltonian, hamiltonian connected, fault-tolerant hamiltonian, fault-tolerant hamiltonian connected, fully connected cubic network

1. INTRODUCTION

As is customary in structure studies of parallel architectures, we focus on a set of identical processors and view the architectures of the underlying interconnection networks as graphs. The vertices of a graph represent the processors of architecture, and the edges of the graph represent the communication links between processors. Network topology is a crucial factor for the interconnection networks since it determines the performance of the networks. Many interconnection network topologies have been proposed in the literature for the purpose of connecting thousands of processing elements. The hypercube networks have received much attention over the past few years since they offer a rich interconnection structure with large bandwidth, logarithmic diameter, high degree of fault tolerance, and embedding of various interconnection. The hypercube network has been chosen as the interconnection topology in several commercially available parallel computers [11]. However, the hypercube networks are not truly expandable because we have to change the hardware configuration of all the vertices whenever the number of vertices grows exponentially, as the vertices have to be provided with additional ports. Fortunately, hierarchical interconnection networks (HINs) provide excellent expandability to meet this need.

For decades, two kinds of HINs were proposed addressing the issue of constructing...
hierarchical interconnection networks. One is the HINs consisting of exactly two levels [3, 5, 8, 12-14], and another is recursively defined HIN [2, 15, 17, 18]. Moreover, the fully connected cubic networks (FCCNs) proposed in [15] are defined recursively by taking the 3-dimensional cube as the basis graph. It indicates that fully connected cube networks are a class of newly proposed hierarchical networks for multisystems, which enjoy the strengths of constant vertex degree and good expandability. Some interesting properties about FCCNs are discussed in [15]. In particular, Yang et al. [16] presented the shortest-path routing algorithm. Fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity are other important issues in the design and the analysis of interconnection networks [4, 6, 7, 9, 10]. In this paper, we discuss these two parameters for FCCNs.

The remaining of this paper is organized as follows: Section 2 provides the formal definition of FCCNs and some preliminaries. In section 3, we discuss the fault-tolerant hamiltonian connectivity for FCCNs. In section 4, we discuss the fault-tolerant hamiltonicity for FCCNs.

2. PRELIMINARIES

An interconnection network is represented by a graph \(G = (V, E) \) with vertices and edges symbolizing the processors and communication links between processors, respectively. For graph definitions and notations we follow [1]. An \(n \)-dimensional cube, \(Q_n \), is a graph with \(2^n \) vertices that can be one-to-one labeled with 0-1 binary strings so that two vertices are adjacent if and only if their labels differ in exactly one position. A path, \((v_0, v_1, \ldots, v_k) \), is an ordered list of distinct vertices such that \(v_i \) and \(v_{i+1} \) are adjacent for \(0 \leq i \leq k-1 \). We also write the path \((v_0, v_1, \ldots, v_k) \) as \(v_0, v_1, \ldots, v_k \). A path is a hamiltonian path if its vertices are distinct and span \(V \). A cycle, \((v_0, v_1, \ldots, v_k, v_0) \), is a path with at least three vertices such that the first vertex is the same as the last vertex. A cycle is a hamiltonian cycle if it traverses every vertex of \(G \) exactly once. A graph is hamiltonian if it has a hamiltonian cycle. A graph \(G \) is hamiltonian connected if there exists a hamiltonian path joining any two vertices of \(G \). A hamiltonian connected graph with at least three vertices is hamiltonian.

The fault-tolerant hamiltonian connectivity of a graph \(G \), \(H^*_F(G) \), is defined to be the maximum integer \(l \) such that \(G - F \) remains hamiltonian connected for every \(F \subseteq V(G) \cup E(G) \) with \(|F| \leq l \) if \(G \) is hamiltonian connected and is undefined otherwise. A hamiltonian graph \(G \) is \(k \) fault-tolerant hamiltonian if \(G - F \) remains hamiltonian for every \(F \subseteq V(G) \cup E(G) \) with \(|F| \leq k \). The fault-tolerant hamiltonicity of a graph \(G, H_F(G) \), is defined to be the maximum integer \(k \) such that \(G \) is \(k \) fault-tolerant hamiltonian if \(G \) is hamiltonian and is undefined otherwise.

Let \(Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\} \). For \(m \geq 1 \) and \(a \in Z_8 \), let \(a^m = a^{a^{\ldots a}} \).

For \(n \geq 1 \), an \(n \)-level FCCN, \(FCCN_n \), is a graph defined recursively as follows:

1. \(FCCN_1 \) is a graph with \(V(FCCN_1) = Z_8 \) and \(E(FCCN_1) = \{(0, 1), (0, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 7), (6, 7), (0, 4), (1, 5), (2, 6), (3, 7)\} \). Obviously, \(FCCN_1 \) is isomorphic to \(Q_3 \).
2. When \(n \geq 2 \), \(FCCN_n \) is built from eight vertex-disjoint copies of \(FCCN_{n-1} \) by adding 28 edges. For \(0 \leq k \leq 7 \), we let \(kFCCN_{n,k} \) denote a copy of \(FCCN_{n-1} \) with each vertex
being prefixed with k, then $FCCN_n$ is defined by

$$V(FCCN_n) = \bigcup_{k=0}^{7} V(kFCCN_{n-1}),$$

$$E(FCCN_n) = (\bigcup_{k=0}^{7} E(kFCCN_{n-1})) \cup \{(pq^{n-1}, qp^{n-1}) | 0 \leq p < q \leq 7\}.$$

Let $n \geq 2$. A vertex v in $FCCN_n$ is a boundary vertex if it is of the form p^n and v is an intercubic vertex if it is of the form pq^{n-1} with $p \neq q$. An intercubic edge is an edge joining two intercubic vertices.

Figs. 1 (a)-(c) show $FCCN_1$, $FCCN_2$ and $FCCN_3$. In essence, each vertex of an $FCCN$ has four links, with each boundary vertex having one I/O channel link that is not counted in the vertex degree. Obviously, $kFCCN_{n-1}$ have 7 intercubic vertices and 1 boundary vertex for $0 \leq k \leq 7$ and $n \geq 2$.

![Fig. 1. The graphs (a) FCCN_1, (b) FCCN_2, (c) FCCN_3, and (d) FCCN_2.](image-url)
In order to discuss the fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity of fully connected cubic networks, we need to introduce the extended fully connected cubic network \(FCCN^n_w\) is the graph obtained from \(FCCN^n_0\) by joining the vertices in the set \(\{p^i \mid p \in Z_6 - \{t\}\}\) to an extra vertex \(w\). For example, \(FCCN^n_2\) is illustrated in Fig. 1 (d). Note that \(FCCN^n_w\) is isomorphic to \(FCCN^n_0\) for every \(i, j\) in \(Z_6\). We only discuss \(FCCN^n_w\).

Since \(FCCN_2\) has 64 vertices and \(FCCN^n_2\) has 65 vertices, we can check the following two lemmas by brute force.

Lemma 1 \(FCCN_2\) and \(FCCN^n_2\) are hamiltonian connected.

Lemma 2 \(FCCN^n_2 - f\) is hamiltonian for any \(f \in V(FCCN^n_2) \cup E(FCCN^n_2)\) with \(|f| = 1\). Moreover, \(FCCN^n_2 - f' = f\) is hamiltonian for any \(f' \in V(FCCN^n_2) \cup E(FCCN^n_2)\) with \(|f'| = 1\).

3. FAULT-TOLERANT HAMILTONIAN CONNECTIVITY

Lemma 3 Both \(FCCN^n_2\) and \(FCCN^n_0\) are hamiltonian connected for \(n \geq 2\).

Proof: We prove this lemma by induction. With Lemma 1, the statement holds for \(n = 2\).

We assume the statement holds for \(FCCN^n_l\) with \(2 \leq l \leq n\).

First, we prove that \(FCCN^n_{n-1}\) is hamiltonian connected. Let \(u\) and \(v\) be any two distinct vertices in \(FCCN^n_{n-1}\). We need to find a hamiltonian path of \(FCCN^n_{n-1}\) joining \(u\) to \(v\).

Suppose that \(u \in bFCCN^n\) and \(v \in eFCCN^n\) with \(b \neq e\). Let \(k_0, k_1, \ldots, k_7\) be any permutation of \(Z_8\) such that \(k_0 = b, k_7 = e, k_0^i \neq u, k_7^i \neq v\). Let \(x_i = k_i^0\) for \(1 \leq i \leq 7\), \(y_j = k_j^1\) for \(0 \leq j \leq 6, x_0 = u, \) and \(y_7 = v\). By induction, there exists a hamiltonian path \(P_i\) of \(kFCCN^n\) joining \(x_i\) to \(y_i\) for \(0 \leq i \leq 7\). Obviously, \(P = (u, P_0, P_1, \ldots, P_7, v)\) forms a hamiltonian path of \(FCCN^n_{n-1}\) joining \(u\) to \(v\). See Fig. 2 (a) for an illustration.

Second, we prove that \(FCCN^n_{n-1}\) is hamiltonian connected. Let \(u\) and \(v\) be any two distinct vertices in \(FCCN^n_{n-1}\). We need to find a hamiltonian path of \(FCCN^n_{n-1}\) joining \(u\) to \(v\).

Suppose that \(u \in bFCCN^n\) and \(v\) is the extra vertex \(w\). Let \(k_0, k_1, \ldots, k_7\) be any permutation of \(Z_8\) such that \(k_0 = b, k_7 = e, k_0^i \neq u, k_7^i \neq v\). Let \(x_i = k_i^0\) for \(1 \leq i \leq 7, y_j = k_j^1\) for \(0 \leq j \leq 6, x_0 = u, \) and \(y_7 = k_7^1\). By induction, there exists a hamiltonian path \(P_i\) of \(kFCCN^n\) joining \(x_i\) to \(y_i\) for \(0 \leq i \leq 7\). Obviously, \(P = (u, P_0, P_1, \ldots, P_7, v = w)\) forms a hamiltonian path of \(FCCN^n_{n-1}\) joining \(u\) to \(v\). See Fig. 2 (c) for an illustration.

Suppose that \(u \in bFCCN^n\) and \(v \in eFCCN^n\) with \(b \neq e\). Let \(k_0, k_1, \ldots, k_7\) be any permutation of \(Z_8\) such that \(k_0 = b, k_7 = e, k_0^i \neq u, k_7^i \neq v, 0 \notin \{k_1, k_2\}\). Let \(x_i = k_i^0\)
for $3 \leq i \leq 7$, $y_j = k_i^{n+1}$ for $2 \leq j \leq 6$, $x_0 = u$, $x_1 = k_0^n$, $x_2 = k_1^{n+1}$, $y_0 = k_0^n$, $y_1 = k_1^{n+1}$, and $y_7 = v$. By induction, there exists a hamiltonian path P_i of k_iFCCN_n joining x_i to y_i for $0 \leq i \leq 7$. Obviously, $P = \langle u, P_0, P_1, w, P_2, \ldots, P_7, v \rangle$ forms a hamiltonian path of $FCCN^0_{n+1}$ joining u to v. See Fig. 2 (d) for an illustration.

Suppose that $\{u, v\} \subset bFCCN_n$. By induction hypothesis, there is a hamiltonian path P_b of $bFCCN_n$ joining u and v. Obviously, P_b can be written as $\langle u, P_{b1}, b^{n+1}, w, b^{n+1}, P_{b2}, v \rangle$. Clearly, $b \not\in \{k_1, k_7\}$. Obviously, at least one of k_1 and k_7 is not 0. Without loss of generality, we assume $k_1 \neq 0$. Let k_2, k_3, \ldots, k_6 be any permutation of $Z_8 - \{b, k_1, k_7\}$ such that $k_2 \neq 0$. We set $k_8 = b$. Let $x_i = k_i^{n+1}$ for $3 \leq i \leq 7$, $y_i = k_i^{n+1}$ for $2 \leq i \leq 7$, $x_1 = k_1^n$, $x_2 = k_2^{n+1}$, and $y_1 = k_1^{n+1}$. By induction, there exists a hamiltonian path P_i of k_iFCCN_n joining x_i to y_i for $1 \leq i \leq 7$. Obviously, $P = \langle u, P_{b1}, P_1, w, P_2, \ldots, P_7, P_{b2}, v \rangle$ forms a hamiltonian path of $FCCN^0_{n+1}$ joining u to v. See Fig. 2 (e) for an illustration.

\[\color{white}0\]

\[\color{white}0\]

Theorem 1 \[H^f_k(FCCN_n) = 0 \text{ if } n \geq 2 \text{ and is undefined if } n = 1.\]

Proof: Assume $n \geq 2$. With Lemma 3, we have proved that $H^f_k(FCCN_n) \geq 0$. Obviously, $0'$ is a boundary vertex of $FCCN_n$ with exactly three neighbors, say x, y and z. It is easy to see that there is no hamiltonian path of $FCCN_n - \{x\}$ joining y to z. Thus, $FCCN_n - \{x\}$ is not hamiltonian connected. Thus, $H^f_k(FCCN_n) = 0$ if $n \geq 2$. Note that $FCCN_1$ is isomorphic to Q_3. Since Q_3 is a bipartite graph with 8 vertices, there is no hamiltonian path joining two vertices in the same partite set. Thus, $FCCN_1$ is not hamiltonian connected. Therefore, $H^f_k(FCCN_1)$ is undefined. \[\color{white}0\]
4. FAULT-TOLERANT HAMILTONICITY

Lemma 4 Both $FCCN_n$ and $FCCN^0_n$ are 1 fault-tolerant hamiltonian for $n \geq 2$.

Proof: We prove this lemma by induction. It is sufficient to prove that $G - f$ is hamiltonian for any $f \in V(G) \cup E(G)$ with $|f| = 1$. By Lemma 2, the statement holds for $n = 2$. We assume the statement holds for $FCCN_j$ and $FCCN^0_j$ with $2 \leq l \leq n$.

First, we prove that $FCCN_{n+1} - f$ is hamiltonian.

Suppose that $f \in V(bFCCN_n) \cup E(bFCCN_n)$. By induction, there is a hamiltonian cycle $\langle w, bk^0, P_b, bk^0, w \rangle$ of $bFCCN^0_n - f$. Clearly, $b \not\in \{k_1, k_2\}$. Let k_2, k_3, \ldots, k_6 be any permutation of $Z_6 \backslash \{b, k_1, k_2\}$. We set $k_0 = k_8 = b$. Let $x_i = k^8k^i_1$ and $y_i = k^ik^i_1$ for $1 \leq i \leq 7$.

By Theorem 1, there exists a hamiltonian path P_i of $kFCCN_n$ joining x_i to y_i for $1 \leq i \leq 7$. Obviously, $\langle bk^0, P_b, P_1, \ldots, P_7, bk^0 \rangle$ forms a hamiltonian cycle for $FCCN_{n+1} - f$.

Second, we prove that $FCCN^0_{n+1} - f$ is hamiltonian.

Suppose that f is the extra vertex w. Obviously, $FCCN^0_{n+1} - \{w\} = FCCN_{n+1}$. By Theorem 1, $FCCN^0_{n+1} - \{w\}$ is hamiltonian connected. Therefore, $FCCN^0_{n+1} - f$ is hamiltonian.

Suppose that $f \in V(bFCCN_n) \cup E(bFCCN_n)$. By induction hypothesis, there is a hamiltonian cycle C of $bFCCN^0_n - f$. Since C can be traversed forward and backward, we can assume that $C = \langle w, bk^0, P_b, bk^0, w \rangle$ with $k_1 \neq 0$ and $k_7 \neq 0$. Let k_2, k_3, \ldots, k_6 be any permutation of $Z_6 \backslash \{b, k_1, k_2\}$ such that $k_2 \neq 0$. We set $k_0 = k_8 = b$. Let $x_i = k^8k^i_1$ for $3 \leq i \leq 7$, $y_i = k^ik^i_1$ for $2 \leq i \leq 7$, $x_1 = k_1b_7$, $x_3 = k_2b_1$, and $y_1 = k_1b_1$.

By Theorem 1, there exists a hamiltonian path P_i of $kFCCN_n$ joining x_i to y_i for $1 \leq i \leq 7$. Obviously, $\langle bk^0, P_b, P_1, \ldots, P_7, bk^0 \rangle$ forms a hamiltonian cycle for $FCCN^0_{n+1} - f$.

Suppose that f is an edge of the form (r^{n+1}, w). Let b and e be two indices in Z_6 with $\{b, e\} \cap \{0, r\} = \emptyset$. By Theorem 1, there is a hamiltonian path P of $FCCN_{n+1}$ joining b^{n+1} to e^{n+1}. Obviously, $\langle w, b^{n+1}, P, e^{n+1}, w \rangle$ forms a hamiltonian cycle for $FCCN^0_{n+1} - f$.

Suppose that f is an intercubic edge between $bFCCN_n$ and $eFCCN_n$. Thus, $f = (be^0, eb^0)$. Let k_0, k_1, \ldots, k_6 be any permutation of Z_6 such that $k_0 = b$ and $k_2 = e$. Let $x_i = k^0k^i_1$ for $3 \leq i \leq 7$, $y_i = k^ik^i_1$ for $2 \leq i \leq 7$, $x_1 = k_1b_7$, $x_3 = k_2b_1$, and $y_1 = k_1b_1$.

By Theorem 1, there exists a hamiltonian path P_i of $kFCCN_n$ joining x_i to y_i for $1 \leq i \leq 7$. Obviously, $\langle bk^0, P_b, P_1, w, P_2, \ldots, P_7, bk^0 \rangle$ forms a hamiltonian cycle for $FCCN^0_{n+1} - f$.

Theorem 2 $H_f(FCCN_n) = 1$ if $n \geq 2$ and $H_f(FCCN_1) = 0$.

Proof: Assume $n \geq 2$. With Lemma 4, we have proved that $H^b_f(FCCN_n) \geq 1$. Obviously, 0^0 is a boundary vertex of $FCCN_n$ with exactly three neighbors, say x, y, and z. Since there is only one vertex z adjacent to 0^0 in $FCCN_n - \{x, y\}$, $FCCN_n - \{x, y\}$ is not hamiltonian.
Thus, $H_f(FCCN_n) = 1$ if $n \geq 2$. Note that $FCCN_1$ is isomorphic to Q_3. It is easy to check that Q_3 is hamiltonian but $Q_3 - \{0\}$ is not hamiltonian. Therefore, $H_f(FCCN_1) = 0$.

REFERENCES

17. C. H. Yeh and E. A. Varvarigos, “Macro-star networks: efficient low-degree alternatives to star graphs,” *IEEE Transactions on Parallel and Distributed Systems*, Vol. 9,

Tung-Yang Ho (何東洋) received the B.S. and M.S. degrees in Applied Mathematics in 1984 and 1989, respectively, and the Ph. D. degree in Computer Science in 1995, all from National Chiao Tung University, Taiwan, R.O.C. Currently, he is a professor in the Department of Information Management, Ta Hwa Institute of Technology, Hsinchu, Taiwan, R.O.C. His research interests are applications of graph theory in network architectures and graph algorithms.

Cheng-Kuan Lin (林政寬) received his M.S. degree in mathematics from National Central University, Taiwan, R.O.C. in 2002. His research interests include interconnection networks and graph theory.