Exploring Evolutionary Technical Trends From Academic Research Papers

TENG-KAI FAN AND CHIA-HUI CHANG
Department of Computer Science and Information Engineering
National Central University
Chungli, 320 Taiwan

Technical terms are vital elements for understanding the techniques used in academic research papers, and in this paper, we use focused technical terms to explore technical trends in the research literature. The major purpose of this work is to understand the relationship between techniques and research topics to better explore technical trends. We define this new text mining issue and apply machine learning algorithms for solving this problem by (1) recognizing focused technical terms from research papers; (2) classifying these terms into predefined technology categories; (3) analyzing the evolution of technical trends. The dataset consists of 656 papers collected from well-known conferences on ACM. The experimental results indicate that our proposed methods can effectively explore interesting evolutionary technical trends in various research topics.

Keywords: term classification, supervised machine learning, text mining, information extraction, trends analysis

1. INTRODUCTION

The importance of document understanding has increased due to the large volume of texts published that researchers must search through to find relevant information. Various approaches have been proposed to assist in this task: text summarization [22, 36], information extraction [6], and others. For example, text summarization is a main task in DUC (Document Understanding Conferences)¹ that aims to represent a document in a short paragraph or few sentences. Information extraction has also been applied in financial news to find management succession events and also in the biomedical literature to find information on protein interactions. In a sense, information extraction is a special type of text summarization that is designed specifically for the input documents. Thus, in this paper, we consider what proper task to be used for academic research papers.

For many novice graduate students who begin their study in a research field, understanding common techniques in that field is crucial. For example, TF-IDF (term frequency and inverse document frequency) is a commonly used weighting technique for information retrieval [7], while decision trees and Naïve Bayes are two common algorithms for classification [31]. For experienced researchers with some background knowledge in a research field, comparing different techniques used for a particular research problem might help to exhaustively explore approaches for such problems. As time axis extends, the relationship between these techniques and research topics may also provide insight to the evolutionary technical trends. For example, whether certain techniques are

¹ http://www.nist.gov/tac/.

Received March 3, 2008; revised July 14, 2008; accepted September 18, 2008.
Communicated by Jorng-Tzong Horng.
* The work was supported in part by the National Science Council of Taiwan, No. NSC 96-2627-E-008-001.
adopted by different research fields to different degrees. In any case, it would be very useful to automatically explore, recognize, and summarize trends in research techniques.

Despite its importance, however, exploring evolutionary technical trends in academic research papers have not been well addressed in the existing works. Some existing text mining methods only discover the theme patterns but do not investigate the technical trends [14, 16, 23, 25]. In this study, we define three tasks for exploring evolutionary technical trends in academic research papers: (1) recognizing focused technical terms from research papers; (2) classifying these terms into predefined categories of technology; and (3) analyzing evolutionary technical trends. For this, we define focused technical terms for a research paper as terms for techniques “applied” in a research paper (i.e., excluding terminologies that are mentioned but not actually employed).

We evaluated the proposed methods on ACM (Association for Computing Machinery) papers. The data consisted of 656 papers on two research topics, SIGIR (Special Interest Group on Information Retrieval) and KDD (Knowledge Discovery and Data Mining), from 2002 through 2006. Every focused technical term is either discarded or assigned to one ACM’s classification names. For example, Fig. 1 shows that the significant technical trends of a research topic that involves two categories of technology, Artificial Intelligence and Probability & Statistics with different time interval and strength as shown in X-axis and Y-axis, respectively. In addition, the corresponding popular techniques applied in that category are shown in Table 1. This information would not only serve as a good synopsis of the topics, but also make it much easier for a researcher to choose appropriate studies to read based on his/her research interests/background knowledge.

![Fig. 1. Technical trends of KDD.](image)

The experimental results indicate that our proposed methods can effectively explore noteworthy technical trends in various research topics by visual representations. For the recognition of focused technical terms, the proposed approach can achieve 60.68%, 84.44%, and 70.56, for precision, recall, and F-measure, respectively. For term classification, the performance achieves 76.67%, 55.47% and 64.37% for precision, recall, and F-measure, respectively.
Table 1. Popular techniques of each category.

<table>
<thead>
<tr>
<th>Technology Categories</th>
<th>Popular techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Intelligence</td>
<td>bootstrap method, gov2 collection, language model, language modeling approach, lemur toolkit, light stemmer, lsi method, mushroom dataset, named entity recognizer…</td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td>binomial distribution, gaussian distribution, gaussian mixture model, generative model, hidden markov model, hmm, joint distribution, logistic regression model, markov model…</td>
</tr>
</tbody>
</table>

The remainder of this paper is organized as follows: Section 2 introduces related work including an overview of term variation, terminology searching, term classification and topic pattern detection. Sections 3 and 4 describe our proposed approach for focused technical term recognition and term classification respectively, the first two phases of the three tasks mentioned above. The experiments and evolutionary technical trend visualization are presented in section 5. Finally, the conclusions are made in section 6.

2. RELATED WORK

Terms are linguistic units that are assigned to concepts and used by domain specialists to describe and refer to specific domain knowledge. Nenadie et al. [18, 21] have pointed out that concepts are frequently denoted by their variant surface, called term variant [2]. There exist several types of term variations, such as orthographic, morphological, lexical, structural, and acronyms/abbreviations. Therefore, concepts not only can be morphologically described by any of the surface representations but also can be linguistically represented by any of the synonyms that have enough explanation power to retain their implicit meaning.

Terminology processing has long been recognized as one of the crucial aspects of systematic knowledge acquisition and also of many NLP applications (text clustering, term classification, information extraction, corpus querying [1, 6, 13, 19, 20, 22], etc.). Studies in automatic term recognition (ATR) have been increasing over the last few years. Many techniques for term extraction have been moved recently from using both linguistic and statistical information to incorporating a machine learning approach.

Several studies have been proposed to automatically extract scientific or technical terms from domain-specific corpora [20, 34]. Generally speaking, a standard automatic term recognition process consists of two procedures. Extracting candidate terms from corpora occurs in the first procedure and assign a weight (score) to each candidate term in the second.

Candidate term extraction: A candidate term is usually built in a form of single word or multi-word (compound words). In order to extract compound words as a potential focused candidate term, three term selection approaches have been widely used: n-grams, noun phrase chunks and part-of-speech tag patterns. Zhai and Evans [7] consider noun phrases, Wermter and Hahn [34] consider n-grams, while Frantzi et al. [8] define three filters that consist of pos tag patterns (noun, adjective tag, etc.) for covering all potential terms. In ever view, Hulth [11] compares the above three methods and the experimental
results indicate that noun phrase chunks and pos tag patterns obtain the best performance for precision and recall, respectively.

Weighting (scoring) function: The candidate terms subsequently are submitted to a frequency (statistical-based) measure, which computes scores indicating the degree to which a candidate term is a terminological unit. The idea of a statistical-based approach is to exploit the fact that the words comprising a term tend to be found close to each other and reoccurring. In recent years, two representative methods have been proposed, the C-value/NC-value approach [8] and the limited paradigmatic modifiability approach [34]. The purpose of these methods is to improve the extraction of nested terms.

In supervised automatic keyword extraction, a classifier is trained by using documents with annotated keywords. The training model is subsequently applied to test documents for determining each term from these documents as either a keyword or a non-keyword. The task, applying supervised machine learning for automatic keyword extraction, was first proposed by Turney [32]. Features used for the learning task include: the frequency of the component; the relative number of characters of the phrases; the first relative occurrence of a phrase component; and whether the last word is an adjective. Hulth in [11] improves automatic keyword extraction by adding linguistic knowledge to the feature representation (such as syntactic features). Another difference between these works is that Turney conducts experiments on full-length text and restricts the length of keyword to be within three tokens, whereas Hulth adopts an arbitrary length of keyword from abstract of journal paper as corpus.

Although we similarly apply the supervised machine learning approach for term recognition, there are some differences between these studies and ours. First, our goal is to recognize the focused technical terms, i.e. techniques that are actually applied in a paper. Thus, the feature selection and feature value assignment are quite distinct since not all of the keywords are technical terms. For example, for each candidate term, we are not only concerned with its frequency, but also its specific position. Second, we also use chunk phrases as candidate terms, as does Hulth, but we choose the full-text conference papers to retain the completeness of information and integrity of context for determining features.

Term classification has been learned by typical classifiers, such as the hidden markov model, naïve bayes, decision tree, support vector machine, etc. Whether the term frequency within documents of the specific domain is higher than its frequency within generic documents is the main feature for such classification task [5, 26, 30]. Nenadic et al. conducted a series of large-scale experiments with different types of features for a multi-class SVM. The features used include, document identifiers, single words, their lemmas and stems. Spasic et al. in 2003 [31] suggest the use of a genetic algorithm as a learning engine, where the verb complementation patterns are automatically learned by combining information found in a corpus and ontology. In our approach, we used SVM as the learning techniques and added features from the Web resources for term classification.

Theme detection is another problem relevant to our work. Discovery of novel topics (themes) and trends in text streams has been considered in several studies [14, 25]. Perkio et al. [20] use a multinomial PCA model to extract themes from a text collection
and apply a hidden theme-document weight to compute the strength of a theme. Mei et al. [16] model the theme transitions in a context-sensitivity way with HMM, which presumably captures the natural proximity of similar topics. However, they focus on identifying the theme trends by using a probability model rather than exploring the relationship between evolutionary technical trends and research topics via term extraction and classification, as we do.

3. TERM RECOGNITION

Before demonstrating the proposed methods, we will explain what focused technical terms are since the task of focused technical term extraction is slightly different from general term recognition. A study usually involves with several technical terms, such as the approach proposed by the authors, well-known datasets, existing techniques and evaluation measures. Nevertheless, we only define focused technical terms as those techniques applied in a research paper. Thus, even if several terminologies are mentioned in a study, we are only concerned with those that are really employed. For example, in the sentence, “The main reason that we chose XML rather than MathML is due to its extensibility”, two technical terms, XML and MathML, are mentioned; however, only the term XML is considered a focused technical term (henceforth called term), while MathML is only noted for comparison.

Given a paper as input, we conduct three steps before the learning step: text pre-processing, candidate term selection, and feature construction, as shown in Fig. 2.

![Diagram](image)

Fig. 2. The proposed framework of term recognition.

3.1 Text Pre-Processing

Since academic research papers usually contain meaningless content in fixed positions, such as page numbers, the Affiliation section, the References section and the Acknowledgements section, we perform a heuristic mechanism to remove the irrelevant content. Additionally, we observe that the non-focused technical terms sometimes occur in a sentence containing negative words (or comparative words), such as different from,
instead of. To detect a sentence including negative words, we consult the sentiment dictionary\(^2\) that collects different types of sensitive words to define the initial negative word sets manually. Since a small dictionary may have the problem of coverage, a popular thesaurus (e.g., WordNet\(^3\)) is used to enlarge the initial negative word sets. We submit each negative/comparative word included in the sentiment dictionary to WordNet to obtain corresponding synonyms. For instance, the comparative word different has the synonym dissimilar. Hence, each sentence that contains one or more negative words (or comparative words), will be removed to avoid the extraction of non-focused technical terms.

A concept can be linguistically illustrated by any of the surface representations. In order to maintain implications of a term, we consider orthographic (e.g., the usage of hyphens, slashes and asterisk) and morphological (e.g., singular and plural) aspects to define our canonical form. In other words, we normalize each word in a singular form and remove the special characters, e.g.:

- **orthographic**: tf-idf → tf idf.
- **morphological**: search engines → search engine.

3.2 Candidate Term Selection

According to [11, 12], three common selection approaches have been used for candidate term selection: \(n\)-grams, NP-chunks, and Pos Tag Patterns. Nakagawa [17] points out that in technical documents most domain-specific terms are noun phrases or compound nouns. We also note that some potential terms are four tokens or more in length. Hence, to ease the length constraint, we apply the NP-chunks approach for selecting candidate terms. Furthermore, we remove a term that is subsumed by another term when determining the final candidate terms. For example, if there are two terms, Gaussian distribution and Gaussian distribution model, the first term will be filtered out.

After text pre-processing and candidate term selection, the next section will describe how to choose the discriminating features as input of our approach and which type of value to assign to these features. The approach was taken to the term recognition is that of supervised machine learning, so the output of the machine learning algorithm is binary (a candidate term is either a term or not).

3.3 Feature Construction

Generally sentences at the beginning and the end of a paragraph are important, so a term occurring in the first sentence of a paragraph more likely to be valuable. For each candidate term, we are concerned not only with its frequency, but also with its specific position. As for term’s position, we determine features that consist of eight elements and are divided into sentence level and location level. At the sentence level, we are concerned with two features, that is:

\[P_{\text{enr}}: \text{the candidate term and cue phrase are contained in a same sentence.} \]

We manually construct a cue phrase list according to our observations, e.g. in this paper, in this article, we propose, or we use. We check the candidate term whose affiliated words include any

\(^2\) http://www.wjh.harvard.edu/~inquier/.

\(^3\) http://wordnet.princeton.edu/.
phrases of the cue phrase list. If a sentence covers both candidate term and any phrases of cue phrase list, the P_{cue} value is assigned 1, otherwise 0.

P_{form}: the candidate term is depicted in a specific form, e.g. uppercase, abbreviation or acronym. When capital letters appear in a term, this term may imply significant information in the context. Thus, concerning the value assignment of feature P_{form}, the number of uppercase characters is assigned to it.

At the location level, we concentrate our attention on five features, that is:

P_{tit}: the candidate term is included in the title. Authors usually arrange the most important approach in the title to highlight their focus. If the term appears in the title section, the P_{tit} value is assigned 1, otherwise 0.

P_{abs}: the candidate term is included in the abstract section. An abstract can be regarded as the summary of a document since it always mentions the main methods and their purposes. If the term appears in the abstract section, the P_{abs} value is assigned 1, otherwise 0.

P_{ins}: the candidate term is included in the introduction section. Since the introduction aims to introduce the outline of this article; it always discusses the major content including the target, applied method… etc. If the term appears in instruction section, the P_{ins} value is assigned 1, otherwise 0.

P_{exp}: the candidate term is included in the experimental section. We observe that some techniques appear in the experimental section with low term frequency. For example, “Our system is developed in the Java platform.” Nevertheless, the term Java appeared in this article only once. If we consider only the term frequency information, we would miss it. Hence, in order to ease the restriction of term frequency, we select the feature P_{exp} for keeping certain terms with low frequency. If the term appears in the experimental section, the P_{exp} value is assigned 1, otherwise 0.

P_{con}: the candidate term is included in the conclusion section. Generally, the main method, the goal and experimental results are mentioned again in the last paragraph. If the term appears in conclusion section, the P_{con} value is assigned 1, otherwise 0.

In order to determine the above features, we develop a naïve method to divide a document into several blocks to accurately determine the range of each section.

P_{co}: a candidate term co-occurs with associated words. The distribution of a word across lexical contexts is highly indicative of its meaning; moreover, some particular words appear together with other words and phrases. Therefore, to construct a co-occurrence list (i.e., associated terms) that has high association with technical terms, we adopt the logarithm of odds ratio (LODR) approach, as shown in Fig. 3.

We first obtain a sentence set containing the focused technical terms of training data. Then, the sentence set is split into two subsets of focused technical term set and other words set. Lastly, the LODR formula is used to generate associated terms that occur frequently together with a focused technical term, as follows:

$$LOD_r(t_j, F) = \log \frac{p^r(1 - p)}{q^r(1 - q)} = \log \frac{p(1 - q)}{q(1 - p)}$$
where, F is the focused technical term, t_i is any word in another words set. Let p be the probability that a word, t_i, co-occurs with any of the focused technical terms. That is,

$$p = \Pr(t_i \mid \text{sentence containing focused technical terms}).$$

Also, let q be the probability that t_i co-occurs with non-focused technical terms. The formula for the occurrence probability of the word t_i with non-focused technical terms is shown below:

$$q = \Pr(t_i \mid \text{sentence excluding focused technical terms}).$$

If $\text{LOD}_r(t_i, F) > \delta$ (where, δ is a threshold), then t_i is considered an associated term that focused technical terms co-occur with. The number of associated terms in the first three sentences S_k containing a candidate term c_i is assigned to feature P_{co}, as follows:

$$P_{co}(c_i, S_k) = \# \text{ of words } (S_k \cap \text{co-occurrence list})$$

where, $k = 3$.

In addition to the above features, we consider a term’s within-document frequency, and the relative position of its first occurrence as well. Therefore, to this point we have considered ten features as input to the supervised learning algorithm for performing term recognition: P_{cue}, P_{title}, P_{abs}, P_{int}, P_{exp}, P_{con}, P_{form}, P_{co}, term frequency and relative position of the first occurrence with corresponding feature values. After recognition by a learning algorithm, we combine a strategy to perform the final term selection. We then unify each term into a lowercase form to eliminate any duplicate terms. For instance with the two terms Vector Space Model and vector space model, after converting, only later term will be kept in final results.

4. TERM CLASSIFICATION

To represent the evolutionary technical trends clearly, it is necessary to build some general technology categories from a large number of terms. Thus, we define five suitable
categories for these terms. The goal of term classification is similar to general automatic text classification in that text categorization is the task of assigning any of a set of predefined categories to a document. Given a focused technical term as input, we conduct three steps before the learning step: data collection, text pre-processing, and feature construction, as shown in Fig. 4.

4.1 Data Collection and Text Pre-Processing

Due to the growth of the World Wide Web, many studies combine their proposed method with web-based resources (e.g., Wiki-pedia, search engine, or Blogs). Sato and Sasaki [28, 29] propose an automatic web-based method of collecting technical terms that are related to a given seed term. Turney [33] and Wong et al. [35] respectively apply the search engine and Wiki-pedia as distance measures to calculate the mutual information between words. Sahami et al. [27] propose a novel approach for measuring the similarity between short text snippets by leveraging web search results to provide greater context for the short texts. In addition, more and more studies have been conducted on measuring the semantic similarity between words using web information [3, 33]. It is noteworthy that some studies [9, 10, 36] present interesting subjects that are based on user-oriented information, such as user’s review, opinion and blogs. It is clear that the importance of web-application cannot be overemphasized. Thus, to implement term classification effectively, we regard each focused technical term as a seed term to collect related documents by web mining. We use the world’s most abundant resource, the Word Wide Web, as the information source. Search engines are widely used for information retrieval on the World Wide Web; however, they usually retrieve URLs corresponding to a keyword. Moreover, these URLs are ranked according to their importance and implication. Therefore, for each term, we rely on Google APIs\(^4\) for gathering top-k (the default k is 3) related pages. Nevertheless, the task of text pre-processing may suffer from the specific file format, such as DOC, XLS, PPT, and PDF; we apply a simple mechanism to filter specific file formats out for re-arranging the top-k pages. Lastly, in order to deal with the context of each page more efficiently, we merge the top-k pages into a single document for the next procedure.

Due to the web page format, the retrieved pages contain many meaningless tags that

\(^4\)http://code.google.com/.
are used for browser parsing, so we extract only the contents which are contained in BODY tags. Stop words appear in text frequently and contain meaningless information. For example, “is”, “the”, and “a”. Accordingly, we apply the stop-word list developed by Cornell University\(^5\) to remove the redundant words. The task of case folding involves converting each character of words into a specific form, such as upper case and lower case. In this case, we use the lowercase format as standard data representation.

4.2 Feature Construction

POS tagging is used to attach a syntactic tag on a word. Since not all words are useful for vector representation, we select only words that are labeled with a noun tag, adjective tag or verb tag as features. Besides, Stemming is the fundamental text processing that attempts to reduce a word to its stem or root form. Suffix-stripping algorithms are widely used for implementing stemming algorithms and we adopt the Porter’s stemmer \(^{24}\) since it is very popular and has become the de-facto standard algorithm for English stemming. Lastly, we define a threshold to disregard terms with low frequency.

In general, the most frequently used data representation in text mining is the bag-of-words. Since this representation excludes information about the order of the words from the context, its major merits are conceptual simplicity and relative computational efficiency. Thus, for our data representation, we use the vector space model (VSM), which is a way of representing documents through the words that they contain. Regarding each word (attribute) as one dimension in a document vector is the fundamental concept of VSM. Hence, a document is represented as weights in an n-dimension space. Let \(w_{t,d}\) be a weight associated with a term \(t_i\) in a document page \(d\). Then, the document vector \(\vec{d}\) is defined as \(\vec{d} = \{w_{1,d}, w_{2,d}, \ldots, w_{n,d}\}\). Moreover, the weight of each attribute (vector) can be assigned either a boolean value or a \(tf\)-idf (term frequency − inverse document frequency) value. Here, the \(tf\)-idf weight is a statistical measure used to evaluate how important a word is to a document in a collection; hence the learning algorithm could distinguish this relatively accurately. The \(tf\)-idf function assumes that the more frequently term \(t_i\) occurs in documents \(d_j\), the more important it is for \(d_j\), and furthermore the more documents \(d_j\) that term \(t_i\) occurs in, the smaller its contribution is in characterizing the semantics of a document in which it occurs. Weights computed by \(tf\)-idf techniques are often normalized so as to contrast the tendency of \(tf\)-idf to emphasize long documents. The type of \(tf\)-idf that will provide the normalized weights for data representation considered in our term classification is

\[
\text{tf-idf} = \text{tf}(t_i, d_j) \cdot \log \frac{|D|}{\#_D(t_i)}
\]

where the factor \(\text{tf}(t_i, d_j)\) is called term frequency, the factor \(\log \frac{|D|}{\#_D(t_i)}\) is called inverse document frequency, while \(\#_D(t_i)\) denotes the number of documents in the document collection \(D\) in which term \(t_i\) occurs at least once and

\[
\text{tf}(t_i, d_j) = \begin{cases}
1 + \log \#(t_i, d_j), & \text{if } \#(t_i, d_j) > 0 \\
0 & \text{otherwise}
\end{cases}
\]

where \(\#(t_i, d_j) \) denotes the frequency of \(t_i \) occurs in \(d_j \). Weights obtained by \(tf-idf \) function are then normalized by means of cosine normalization, finally yielding

\[
 w_{i,j} = \frac{tfidf(t_i, d_j)}{\sqrt{\sum_{k=1}^{|d|} tfidf(t_k, d_j)^2}}.
\]

For technical trend analysis, statistics of term classification and time stamp information are needed, and this will be discussed in the experimental section (see section 5.3).

5. EXPERIMENTS AND RESULTS

The datasets utilized for experiments consists of 656 full-text papers from two well-known conferences, namely ACM SIGIR and KDD from 2002 to 2006, as shown in Table 2. One of the reasons we chose these articles as our datasets is that they are related to our study; moreover, we are also interested in the technical trends on these different type research topics. The POS tags and noun phrases are respectively identified by a tagger [4] and a chunking [15] tools. Besides, the chunking tool whose training data derived from WSJ (Wall Street Journal) and the result indicated that the performance of chunker achieved 94.7% precision. The experiments can be separated into three parts: term recognition, term classification, and technical trend analysis respectively for discussions.

Table 2. Basic information of data sets.

<table>
<thead>
<tr>
<th>Data Source</th>
<th># of docs</th>
<th>Avg. Length</th>
<th>Time interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDD</td>
<td>398</td>
<td>7403</td>
<td>2002 ~ 2006</td>
</tr>
<tr>
<td>SIGIR</td>
<td>258</td>
<td>6550</td>
<td>2002 ~ 2006</td>
</tr>
</tbody>
</table>

Two supervised machine learning algorithms, namely SVM, and C4.5 are applied in the first experiment for term recognition; in addition, we take the precision, recall, and F-measure as our evaluation metrics. Similarly, we evaluate the performance of term classification on the same metrics using SVM algorithm with the \(tf*idf \) model, as discussed in section 4.2. Finally, we combine the results of term classification with temporal information to demonstrate the development of technical trends in various research topics by using visual representations.

5.1 Experiment of Term Recognition

We arbitrary select 100 papers from the total of 656 papers as the dataset for the first experiment since it is necessary to manually assignment of focused terms to each document. We then adopt the ModApte split to divide the data set into 75 documents (for training) and the remaining 25 documents (for testing). The average number of candidate terms for a document is 90 while the number of focused technical terms manually assigned to a document is 15. Each instance is assigned the feature-value pairs described in section 3. Since the ratio of negative (non-focused) to positive (focused) terms can be very large, we conduct a sampling of negative terms to make the ratio approximately 1:1...
We compare two supervised learning algorithms, namely SVM (support vector machine), and C4.5, for term recognition. SVM is a well-known learning method widely used for classification and regression, while C4.5 generates a decision tree which is more interpretable. We use the packages implemented in Weka\(^6\) software (a collection of data mining algorithms) for the following tasks.

The precision (proportion of extracted terms that are marked as focused term to all the extracted terms), recall (proportion of the manually marked terms that are recognized, out of all marked terms available) and F-measure (weighted harmonic mean of precision and recall) are used as the evaluation measures. The results for the 5-fold cross validation runs are shown in Table 3. As can be seen in this table, C4.5 gave 0.586 precision, 0.901 recall and 0.697 F-measure, whereas the SVM classifier gave better results, yielding 0.607 precision, 0.844 recall, and 0.706 F-measure.

<table>
<thead>
<tr>
<th>Approach</th>
<th># of Assigned terms</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed (C4.5)</td>
<td>15</td>
<td>0.568</td>
<td>0.901</td>
<td>0.697</td>
</tr>
<tr>
<td>Proposed (SVM)</td>
<td>15</td>
<td>0.607</td>
<td>0.844</td>
<td>0.706</td>
</tr>
<tr>
<td>Keyword Field</td>
<td>4</td>
<td>0.448</td>
<td>0.199</td>
<td>0.276</td>
</tr>
<tr>
<td>Hulth’s</td>
<td>15</td>
<td>0.378</td>
<td>0.584</td>
<td>0.459</td>
</tr>
</tbody>
</table>

But neither SVM nor C4.5 can achieve good performance on precision. One of the reasons is the large ratio of negative to positive examples. Another possible reason is due to term variation. For example, authors may use SVM approach and SVM method to describe SVM technique in the context. Since domain experts rigidly subsume one term as a gold standard, the precision resulted in low performance.

Although there is no existing work explicitly concentrates on the task of focused technical term recognition, there are some researches on automatic keywords extraction. Hence, we compare our term recognition with two keyword-based methods. The first one is called Keyword-Field, which takes the terms in keyword section (or terms appear in titles when keyword section is not available) as the focused technical terms. The second one is Hulth’s proposal in [11], which improves automatic keyword extraction through linguistic knowledge. We implement the proposed method with corresponding feature-value pair suggested in the paper to extract keywords from the same dataset as mentioned above. As we can see Keyword-Field has moderate precision (0.448), but low recall (0.199), which yields 0.267 F-measure. One explanation of the disappointing recall is the limited number of keywords assigned by authors. However, the keywords provided by authors not only contains focused technical terms, but also other concept terms. As for the Hulth’s method, it yielded much lower precision (0.378) with 0.459 F-measure. Since the selections of feature-value are devised for the task of keyword extraction, accordingly our performance can outperform theirs.

5.2 Experiment of Term Classification

For the term classification experiment, we use the result from term recognition in all

\(^6\) http://www.cs.waikato.ac.nz/ml/weka/.
the documents (656 papers) as the input. After automatic term recognition processing, 8624 terms were extracted. The goal of this experiment is to classify these terms into a suitable technology category according to their meaning. We adopt ACM’s computing classification system to select five technology categories: Artificial Intelligence (AI), Pattern Recognition (PR), Probability and Statistics (PS), Information Storage and Retrieval (IR) and Database Management (DBM). These not only correlate with SIGIR and KDD research topics but also encompass most research papers in these conferences. Each term is manually classified into either at most one category or discarded. For example, we classify “language model” and “text analysis” as AI since NLP is a subcategory under AI. In detail, AI, PR, PS, IR, and DBM contain 891, 750, 877, 1428 and 875 technical terms, respectively. In other words, domain experts discarded 3803 terms that were not related to these categories.

We use the SVM classifier with the $tf \times idf$ feature value model and conduct fourfold cross-validation in the following experiments. The first part of the experiments is to verify whether Web resources can improve the classification accuracy. For each focused technical term, we use the first three sentences containing the word to extract the features mentioned in section 4.2. As we concatenate the first $K (= 3)$ Web pages queried by the focused technical term to be our Web resource, the top three sentences would generally come from the first Web page. However, we already see a great difference between the original research paper (39.10 in terms of precision) and our Web resource (71.21). We then expand the contexts of these three sentences (one sentence before and after the sentences) to include further input. For Web resources, we have an increase to 74.63, but a decrease to 30.00 in original research paper. Finally, all the sentences including the focused technical terms are used such that all K pages have an influence in the experiments. Again, we have an increase to 77.87 using Web resource, but only 36.96 from the original research paper. We conduct an additional experiment that uses the entire context of K pages as the Web resource, finding that the precision is worse than using all sentences, but the recall is better. Overall, the performance using a Web resource is better than that using the original research papers. The values for precision, recall, and F-measure are shown in Table 4.

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Volume of Data</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>F-measure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Page</td>
<td>Top-three sentences</td>
<td>71.21</td>
<td>45.35</td>
<td>55.41</td>
</tr>
<tr>
<td></td>
<td>Top-three-sentences and its context</td>
<td>74.63</td>
<td>43.78</td>
<td>55.19</td>
</tr>
<tr>
<td></td>
<td>All sentences</td>
<td>77.87</td>
<td>44.20</td>
<td>56.40</td>
</tr>
<tr>
<td></td>
<td>Entire context</td>
<td>74.56</td>
<td>45.57</td>
<td>56.57</td>
</tr>
<tr>
<td>Research paper</td>
<td>Top-three sentences</td>
<td>39.10</td>
<td>28.60</td>
<td>33.03</td>
</tr>
<tr>
<td></td>
<td>Top-three-sentences and its context</td>
<td>30.00</td>
<td>23.59</td>
<td>26.41</td>
</tr>
<tr>
<td></td>
<td>All sentences</td>
<td>36.96</td>
<td>31.14</td>
<td>33.80</td>
</tr>
</tbody>
</table>

The results indicate that web resources and the original research papers can achieve F-measures of around 56.40% and 33.80, respectively. Clearly, with the assistance of Web resources, better performance can be achieved than by using the original research
papers alone. Since there probably exists an explicit definition for a particular term on the web, more discriminative features can be found in classification. On the contrary, since an original research paper generally focuses on its research topic, not a specific term, thus the sentences containing the term may include some noise. In addition to comparing different resources, we observed that using all sentences containing the term can generate the optimal performance in Web resources but not in original research papers. From this, it seems reasonable to conclude that using the web can collect more related information on a particular term to enhance performance.

The experiment that we consider next is how different types of POS features can affect classification performance. We use all sentences containing the focused technical terms as input; and then select only three syntactical types, namely adjective, noun and verb, as our feature words. The values for precision, recall, and F-measure are shown in Table 5.

<table>
<thead>
<tr>
<th>Data Source</th>
<th>POS feature</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>F-measure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Pages</td>
<td>Adjective</td>
<td>56.00</td>
<td>40.84</td>
<td>47.24</td>
</tr>
<tr>
<td></td>
<td>Noun</td>
<td>76.67</td>
<td>55.47</td>
<td>64.37</td>
</tr>
<tr>
<td></td>
<td>Verb</td>
<td>57.84</td>
<td>44.17</td>
<td>50.09</td>
</tr>
<tr>
<td></td>
<td>Combined (Adj.+ N + V)</td>
<td>74.85</td>
<td>47.70</td>
<td>58.25</td>
</tr>
<tr>
<td>Research papers</td>
<td>Adjective</td>
<td>25.61</td>
<td>19.29</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td>Noun</td>
<td>33.77</td>
<td>34.03</td>
<td>33.39</td>
</tr>
<tr>
<td></td>
<td>Verb</td>
<td>20.38</td>
<td>18.08</td>
<td>19.16</td>
</tr>
<tr>
<td></td>
<td>Combined (Adj.+ N + V)</td>
<td>20.58</td>
<td>40.37</td>
<td>24.65</td>
</tr>
</tbody>
</table>

Again, the web page resource could outperform the original research papers. Interestingly, both adjective words and verb words were unable to improve classification performance; and the F-measures have been dropped to around 47.24% and 50.08 for Web resources, respectively. However, noun words provided a significant improvement in terms of F-measure (from 56.40 to 64.37) in Web resources. That is because nouns are more relevant from an applicative viewpoint since they comprise a large portion of the document. In addition, nouns can conceptually match the focused technical terms (which are also nouns), while other words (e.g., verbs, adjectives, or adverb) tend to be more functional and general. From what has been discussed above, we can conclude that the combined use of a web resource can easily collect information on a specific keyword and that nouns can provide more discriminating power for improving term classification.

5.3 Experiment of Technical Trend Analysis

In this section, we integrate the results of term classification with temporal information to demonstrate the evolutionary technical trend in variant research topics using visual presentations. We select the results of term classification that are generated by the Web resource with a noun tag.
Research Domain and Technology Strength

In order to present the evolutionary technical trend clearly, we also need to consider the time variant. We regard conference names as our research topics, that is, SIGIR and KDD and use the publication dates as time-stamps. That is, all the papers published in one year are treated as one time interval. For a certain research topic in a particular year, the strength of a technology category is computed by the portion of focused technical terms in that year. For example, suppose we have 1000 focused technical terms in 2005 on SIGIR and 200 technical terms are classified into AI category. Then, the strength of AI in 2005 for SIGIR is 0.2.

Figs. 5 and 6 illustrate the overall (roll-up) evolutionary technical trend in these two research conferences, respectively. For each figure, five different color areas depict five technology categories, as mentioned in section 5.2. As we can see, in KDD conferences, the strengths of DBM and PS techniques are higher than other techniques. That is because KDD mainly concentrates on knowledge discovery and data mining, which combine with much more probability model. For AI and IR techniques, the strengths are presented in the smooth curves. Therefore, it seems reasonable to infer that there are no
significant differences on strength during this period from this figure. With the SIGIR research topic, the strengths of IR and AI technique are higher than other techniques since SIGIR focuses principally on information retrieval systems and natural language processing. In both figures, we can notice some slight bursts on PS (probability and statistics) technique from 2004 to 2005. Indeed, PS has become the major technique used in addition to database management (in KDD) and information retrieval (in SIGIR), especially in recent years. The different focuses of KDD and SIGIR on DBM and IR techniques, respectively, can also be observed clearly from our technical trend figure. Overall, these results roughly corresponded to contemporary research trends from the well-known conferences we selected.

For more detail analysis, we adopted the drill-down concept to represent the most often used techniques in each category with corresponding time interval, as shown in Tables 6 and 7. Each cell in table contains three popular technical terms with different font size showing their frequencies. That is, the larger sizes stand for the higher frequencies. We sampled some significant focused technical terms to explain the drill-down trends. For example, in SIGIR, although the “vector space model” and “KL divergence retrieval model” respectively are the most used techniques in AI and PR, they respectively declined in 2006 and 2005 according to the utility ratio. Besides, “TREC collection” is the most popular technical term in IR, but its usage has reduced year by year. For “svm”, it still kept one of the most widespread techniques in DBM. As for AI in KDD, “vector space model” only have the bursts in 2002 and 2006, whereas “singular value decomposition” significantly have high utility ratios in 2004 and 2005. In PR, “maximum entropy model” has a rising usage from 2003 to 2005; besides, “UCI repository” is represented in the most often used terms except 2003. For IR, the results indicated that

<table>
<thead>
<tr>
<th>Year</th>
<th>Category</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>language model</td>
<td>light stemmer</td>
<td>vector space model</td>
<td>latent semantic indexing</td>
<td>tdt2 corpus</td>
<td>vector space model</td>
</tr>
<tr>
<td>PR</td>
<td>kl divergence retrieval model</td>
<td>smoothing method</td>
<td>unsupervised approach</td>
<td>laplace distribution</td>
<td>maximum entropy model</td>
<td>kl divergence retrieval model</td>
</tr>
<tr>
<td>PS</td>
<td>generative model</td>
<td>hmm</td>
<td>multivariate bernoulli</td>
<td>prior distribution</td>
<td>gaussian distribution model</td>
<td>gaussian mixture model</td>
</tr>
<tr>
<td>IR</td>
<td>smart retrieval system</td>
<td>trec 8 web</td>
<td>tree collection</td>
<td>ohsumed collection</td>
<td>smart retrieval system</td>
<td>trec collection</td>
</tr>
<tr>
<td>DBM</td>
<td>linear svm</td>
<td>bayesian network model</td>
<td>expectation maximization</td>
<td>em approach</td>
<td>support vector machine</td>
<td>linear svm</td>
</tr>
</tbody>
</table>
The technical terms are concentrated on web related information, such as “xml”, “internet movie data”, “webkd data” and “sax”. There are strength variations in “association rule” from 2003 to 2006 in DBM. Finally, the identical result occurred in SIGIR and KDD is that “svm” is the most popular terms in DBM; however the main difference between SIGIR and KDD is that SIGIR mostly focus on the “trec collection” data, whereas KDD apply the machine learning dataset usually from UCI repository”.

To investigate the most often used techniques for each technology category from SIGIR and KDD; we list focused technical terms with high frequency in alphabetical order and depict them in different font sizes and colors both according to their frequencies (see Table 8). We have seen “language model”, “vector space model”, “singular value decomposition”, “tdt2 corpus” as the focused technical terms used in AI since it covers the text processing domain, including natural language processing, text analysis, language parsing, knowledge representation, etc. For the pattern recognition domain, “KL divergence retrieval model”, “maximum entropy model” and “smoothing methods” are the most used terms. In the probability and statistics domain, we found “dirichlet distribution” has become as important as “gaussian distribution” and “mixture model”. As for information retrieval and storage domain, not only did we found the commonly used IR systems such as Okapi and Smart, we also found that many studies have conducted experiments on web resources (e.g., msn web corpus, internet movie database, and webkd dataset) in addition to TREC collection. Finally, in the domain of database management, many data mining algorithms (e.g., SVM, decision trees, Bayesian network model, EM) can all be discovered as expected. Overall, we can easily comprehend basic techniques and detect the technique used in each category from this table.

Table 7. Drill-down analysis - technical trends of KDD.

<table>
<thead>
<tr>
<th>Year</th>
<th>Category</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>name entity</td>
<td>neural network</td>
<td>vector space model</td>
<td>tf idf scheme</td>
<td>boolean model</td>
</tr>
<tr>
<td>AI</td>
<td></td>
<td>maximum entropy model</td>
<td>dna microarray</td>
<td>information gain</td>
<td>maximum entropy model</td>
<td>uci repository</td>
</tr>
<tr>
<td>PR</td>
<td>ensemble approach</td>
<td>euclidean distance</td>
<td>uci repository</td>
<td>joint distribution</td>
<td>markov model</td>
<td>mixture model</td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td>html page</td>
<td>url</td>
<td>web page</td>
<td>internet movie data</td>
<td>webkd data</td>
</tr>
<tr>
<td>IR</td>
<td>linear svm</td>
<td>decision tree</td>
<td>svm classifier</td>
<td>association rule</td>
<td>linear svm</td>
<td>svmlight</td>
</tr>
<tr>
<td>DBM</td>
<td></td>
<td>linear svm</td>
<td>decision tree</td>
<td>svm classifier</td>
<td>association rule</td>
<td>mining</td>
</tr>
<tr>
<td>Technology Categories</td>
<td>Popular techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>bootstrap method, gov2 collection, idf, language model, language modeling approach, lemur toolkit, light stemmer, lsi method, mushroom dataset, named entity recognizer, neural network, plsi model, principal component analysis, self organization, singular value decomposition, svd, tdt2 corpus, unigram language model, vector space model.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pattern Recognition</td>
<td>cosine similarity, distance function, kernel method, dna microarray, ensemble approach, euclidean distance, graphical model, greedy approach, information gain, js divergence, kl divergence retrieval model, maximum entropy model, pyramid method, rbf kernel, smoothing method, uci repository, unsupervised approach, wavelet based approach.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td>binomial distribution, dirichlet distribution, gaussian distribution, gaussian mixture model, generative model, hidden markov model, hmm, joint distribution, logistic regression model, markov model, mixture model, multinomial distribution, mutual information, normal distribution, poisson distribution, posterior distribution, probabilistic model, roc curve, uniform distribution, wilcoxon test, t test, zipf distribution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Storage and Retrieval</td>
<td>document object model, html page, html parser, html tag, internet movie database, ir system, mean average precision, msn web corpus, ohsumed collection, okapi method, okapi retrieval model, pagerank citation ranking, question answering track, ranking function, ranking method, smart retrieval system, search engine, tf idf, trec collection, trec data, trec evaluation, url, web page, webkd dataset, wt10g collection, xml tree.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database Management</td>
<td>association rule, bayesian network model, dblp dataset, decision tree, decision tree classifier, em approach, expectation maximization, frequent itemset, frequent pattern, gui, information bottleneck method, knn, linear svm, rule based classifier, sequential pattern, sql query, subgraph isomorphism, support vector machine, svm classifier, umls metathesaurus.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. CONCLUSIONS

In this paper, we propose the task of exploring applied techniques in academic research papers and use these focused technical terms for technical trends analysis. Our proposed frameworks first recognize the focused technical terms and then combine web resources to conduct term classification. Next, we use the strength of each technology category in each time period to find the evolutionary technical trends through visual representations. This information allows researchers to grasp the trends of technology strength and the latent popular technical terms in each research topic.

We evaluate our proposed approaches using full-text ACM conferences (SIGIR and KDD) papers from 2002 to 2006. For the extraction of focused technical terms, the proposed approach can achieve 60.8%, 84.4%, and 70.6, for precision, recall, and F-measure, respectively. For term classification, the approach can achieve 76.67%, 55.47% and 64.37% for precision, recall, and F-measure, respectively. By using the focused technical terms, researchers can easily identify what technique has been used in a paper and to which category it belongs via term classification. In addition, we can better understand contemporary research trends and techniques through the technology strength figure and most frequent terms in each category.
For future work, classification of papers by the problems that they solve will be helpful for users to better understand the techniques or algorithms used in specific problems.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for helpful comments on this study.

REFERENCES

12. A. Hulth and B. B. Megyesi, “A study on automatically extracted keywords in text

Teng-Kai Fan (范登凱) is a Ph.D. student in Computer Science and Information Engineering department at National Central University in Taiwan. He received his M.S. in Management Information System from National Kaohsiung First University of Science and Technology, Taiwan in 2005. His research interests include information extraction, text analysis, knowledge discovery from databases, and machine learning.

Chia-Hui Chang (張嘉惠) is an associate professor at National Central University in Taiwan. She received her B.S. in Computer Science and Information Engineering from National Taiwan University, Taiwan in 1993 and Ph.D. in the same department in Jan. 1999. Her research interests include Web information integration, knowledge discovery from databases, machine learning, and data mining.