A New Variant of 3GPP-MAC
With Provable Security and Higher Efficiency

LI-TING ZHANG1,2, WEN-LING WU1 AND PENG WANG2

1 State Key Laboratory of Information Security
Institute of Software
Chinese Academy of Sciences
Beijing, 100190 P.R. China
2 Graduate University of Chinese Academy of Sciences
Beijing, 100049 P.R. China

3GPP-MAC, also called f_9, is an integrity scheme adopted by Universal Mobile Telecommunication System as a standard for the 3rd generation wireless communications. In this paper, we investigate the feasibility of improving its efficiency, with the precondition that its security would not be compromised. As we show, the newly proposed f_9^- enjoys provable security under the solo PRP assumption; more importantly, f_9^- removes the last block-cipher invocation of f_9, which means it needs less time and resources to compute MACs than f_9, offering higher efficiency in practice. Furthermore, f_9^- keeps the main structure of f_9 almost unchanged, making it easy to update f_9 to f_9^- in reality.

Keywords: MAC, 3GPP, integrity, provable security, efficiency

1. INTRODUCTION

MAC: MAC is the abbreviation for Message Authentication Code, which is commonly used to provide data integrity and data origin authentication, e.g. in banking applications [1]. The sender and receiver of messages should agree on a secret key K first; to send a message M, the sender computes $T = MAC_\lambda(M)$; then, he/she sends (M, T) to the receiver. On receipt of them, the receiver re-computes $MAC_\lambda(M)$ to verify if the received T is corresponding to M. If so, M is deemed to be valid.

3GPP-MAC: The 3rd Generation Partnership Project (3GPP) is the body standardizing the next generation of mobile telephony. In the security architecture of 3GPP system there is a standardized MAC algorithm called 3GPP-MAC, with another name f_9 in the series of algorithms specified by 3GPP. f_9 is a MAC algorithm based on block ciphers as illustrated in Fig. 1, where COUNT, FRESH, DIRECTION are special parameters, MESSAGE stands for the message to be dealt with, and $1 \parallel 0\ldots0$ denotes the padded bits. For more details, see [2].

Received July 1, 2008; revised January 6 & February 24, 2009; accepted May 3, 2009.
Communicated by Chin-Laung Lei.

* This work was supported by the National High-Tech Research and Development 863 Plan of China (No. 2007AA01Z470), the National Natural Science Foundation of China (No. 60873259 and No. 60903219), the National Grand Fundamental Research 973 Program of China (No. 2004CB318004) and the Knowledge Innovation Project of the Chinese Academy of Sciences.
Fig. 1. Illustration of f_9, where $K' = K \oplus KM$ and $KM = 0 \times AA...AA$.

Fig. 2. Specification of f_9' and f_9^+, where Δ is a non-zero key modifier.

Algorithm $f_9'(K, M)$
\begin{align*}
M & \leftarrow \text{pad}(M) \\
M_1, M_2 \ldots M_t & \leftarrow \text{partition}(M) \\
Y_0 & \leftarrow 0^n \\
\text{for } i & \leftarrow 1 \text{ to } t \text{ do} \\
X_i & \leftarrow M_i \oplus Y_{i-1} \\
Y_i & \leftarrow E_K(X_i) \\
\text{end for} \\
T & \leftarrow F_{K'\oplus\Delta}(Y_1 \oplus Y_2 \oplus \ldots \oplus Y_t) \\
\text{return the leftmost } t \text{ bits of } T
\end{align*}

Algorithm $f_9^+(K, M)$
\begin{align*}
M & \leftarrow \text{pad}(M) \\
M_1, M_2 \ldots M_t & \leftarrow \text{partition}(M) \\
Y_0 & \leftarrow E_K(0^n) \\
\text{for } i & \leftarrow 1 \text{ to } t \text{ do} \\
X_i & \leftarrow M_i \oplus Y_{i-1} \\
Y_i & \leftarrow E_K(X_i) \\
\text{end for} \\
T & \leftarrow F_K(Y_1 \oplus Y_2 \oplus \ldots \oplus Y_t \oplus E_K(1^n)) \\
\text{return the leftmost } t \text{ bits of } T
\end{align*}

Variants of 3GPP-MAC: Based on the structure of f_9, researchers have given a generalized version of it, f_9' [3-6]. As specified in the left side of Fig. 2, f_9' removes COUNT, FRESH, DIRECTION in f_9, but keeps a key modifier Δ (like the KM in f_9), which makes it much more difficult to prove its security [3-5].

Then, f_9^+ was introduced as an enhanced version [6]. As in the right side of Fig. 2, f_9' removes the key modifier Δ from f_9' successfully, keeping its provable security with similar bound. What is more, f_9^+ is provably secure under the assumption that the underlying block cipher is a secure PRP-RKA (a PseudoRandom Permutation further secure against a class of Related Key Attacks, here the related key means two different keys having a known XOR-difference, i.e. $K_1 \oplus K_2 = \Delta$), while f_9^+ is provably secure under the solo assumption that the underlying block cipher is a secure PRP (PseudoRandom Permutation). Therefore, the assumption f_9' depends on is stronger than that of f_9^+, i.e. f_9' is weaker than f_9^+ in practice.

Regardless of this, f_9, f_9' and f_9^+ all can be seen as authentication modes of operation for block ciphers, which means the numbers of invocation of their underlying block cipher have great influence on their efficiency. However, we notice that every time authenticating a message M, f_9, f_9' and f_9^+ all call their underlying block cipher at least
A NEW VARIANT OF 3GPP-MAC

\[\lceil |M|/n \rceil + 1 \text{ times, which is 1 or 2 more times than the minimum. Considering their efficiency in practice, it stands to reason to ask, are there some ways to improve } f_9, \text{ keeping its security undamaged, to obtain higher efficiency? From an engineering point of view, we further hope the improvement on } f_9 \text{ is little, i.e. it would not change } f_9 \text{ too much, so as to update } f_9 \text{ naturally and easily in practice.} \\

Motivated by the reasons given above, we focus on improving the structure of } f_9, \text{ and propose a new variant } f_9^-, \text{ as illustrated in Fig. 3. } f_9^- \text{ removes the last block-cipher invocation and the key modifier } KM \text{ in } f_9, \text{ thus it saves one block-cipher computation and one key scheduling every time authenticating a message. At an expense, a secret mask } S \cdot x \text{ has to be added to the last block to keep } f_9^- \text{ provably secure. However, this additional step does not cost much computation since } S \cdot x \text{ can be pre-computed only once and then used for all messages. That is, the users of } f_9^- \text{ can compute } S \cdot x \text{ in advance, and then store it in memory. Every time authenticating a message, the users just call for } S \cdot x \text{ from the memory without any further computation.} \\

In a short, } f_9^- \text{ makes a relatively high computation save for } f_9 \text{ at a low expense, offering higher efficiency than } f_9 \text{ and its other two variants in practice. On the other hand, } f_9^- \text{ is provably secure for arbitrary length messages modeling its underlying block cipher as a secure PRP. This implies the security of } f_9 \text{ is not damaged after the improvement. Moreover, } f_9^- \text{ keeps the main structure of } f_9 \text{ almost unchanged, making it easy to update } f_9 \text{ to } f_9^- \text{ in the real world.}

\[S = E_K(Cst), \text{ } Cst \in \{0, 1\}^n \text{ is an arbitrary constant, and } \cdot \text{ denotes the multiplication in } GF(2^n). \]

2. PRELIMINARIES

\textbf{Notations:} \text{Denote } \{0, 1\}^\ast \text{ as the set of all strings with arbitrary lengths, and } \{0, 1\}^n \text{ as the set of all } n\text{-bit strings. If } a, b \in \{0, 1\}^\ast \text{ are strings of equal length then } a \oplus b \text{ is their bitwise XOR. For strings } a, b \in \{0, 1\}^\ast, a \| b \text{ denotes their concatenation. However, we sometimes write } ab \text{ for } a \| b \text{ if there is no confusion. Suppose } G \text{ is a set, then } \#G \text{ denotes the size of } G, \text{ and } x \overset{S}{\leftarrow} G \text{ denotes that } x \text{ is chosen from set } G \text{ uniformly at random. In the rest of this paper, every time we say “random”, we mean uniformly random”. For an } n\text{-bit string } a = a_{n-1}...a_0 \in \{0, 1\}^n, \text{ let } a << 1 = a_{n-2}...a_0a_0. \text{ For a string } M \in \{0, 1\}^\ast, |M| \text{ stands for its length in bits, while } \|M\|_n = \max\{1, \lceil |M|/n \rceil \}. \text{ For any string}
$M \in \{0, 1\}^*$, we let \(\text{pad}(M) = M10^{n-|M| \mod n} \); for any string \(M \in \{0, 1\}^l \), we let partition\((M) = M_1M_2\ldots M_l \) such that \(M_1 \ldots M_l = M \), and \(|M_i| = n \) for \(1 \leq i \leq l \).

The Field with \(2^n \) Elements: \(\text{GF}(2^n) \): This is a finite field with \(2^n \) elements, and an element \(a \) in \(\text{GF}(2^n) \) can be treated as: (1) an abstract element in the field; (2) an \(n \)-bit string \(a_{n-1}\ldots a_0 \in \{0, 1\}^n \); (3) a formal polynomial \(a(x) = a_{n-1}x^{n-1} + \ldots + a_0x + a_0 \) with binary coefficients. To add two elements \(a, b \in \text{GF}(2^n) \), take their bitwise XOR, i.e. \(a \oplus b \). To multiply these two elements, which we denote \(a \cdot b \), regard \(a \) and \(b \) as polynomials \(a(x) = a_{n-1}x^{n-1} + \ldots + a_0x + a_0 \) and \(b(x) = b_{n-1}x^{n-1} + \ldots + b_0x + b_0 \), form their product \(c(x) \) where one adds and multiplies coefficients in \(\text{GF}(2^n) \), then fix some irreducible polynomial \(p(x) \) with binary coefficients and degree \(n \), and finally take the remainder when dividing \(c(x) \) by \(p(x) \). See [7] for more details. It is fairly easy to multiply an element \(a \in \{0, 1\}^n \) by \(x \). We give an example for \(n = 128 \), where the irreducible polynomial \(p(x) = x^{128} + x^7 + x^2 + x + 1 \). Then multiplying \(a = an_{n-1}\ldots a_1a_0 \) by \(x \) yields \(a \cdot x = a \ll 1 \), if \(an_{n-1} = 0 \) and \(a \cdot x = (a \ll 1) \oplus 012010000111 \) if \(an_{n-1} = 1 \).

3. SPECIFICATION OF \(f9^- \)

\(f9^- \) is defined by a block cipher \(E: \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \), as illustrated in Fig. 3 (with \(\text{Cst} \in \{0, 1\}^n \)) and described in Fig. 4 (with \(\text{Cst} = 0^n \)). The key space of \(f9^- \) is the same as that of its underlying block cipher \(E \). \(f9^- \) takes a key \(K \in \{0, 1\}^k \) and a message \(M \in \{0, 1\}^* \), then returns \(T \in \{0, 1\}^n \). If necessary, \(T \) can be truncated to its leftmost \(t \) bits in practice; however, the security of \(f9^- \) would be damaged to some extent, depending on the size of \(t \). According to the specification of \(f9 \) [2], \(t \) is selected to be 32 and the block length of the underlying block cipher is 64. For simplicity, we would not consider the truncation of \(T \) in the rest of this paper.

<table>
<thead>
<tr>
<th>Algorithm (f9^- (K, M))</th>
</tr>
</thead>
<tbody>
<tr>
<td>01. (M \leftarrow \text{pad}(M))</td>
</tr>
<tr>
<td>02. (M_1M_2\ldots M_l \leftarrow \text{partition}(M))</td>
</tr>
<tr>
<td>03. (S \leftarrow E_K(0^n) ; Y_0 \leftarrow 0^n)</td>
</tr>
<tr>
<td>04. for (i \leftarrow 1) to (l - 1) do</td>
</tr>
<tr>
<td>05. (X_i \leftarrow M_i \oplus Y_{i-1})</td>
</tr>
<tr>
<td>06. (Y_i \leftarrow E_K(X_i))</td>
</tr>
<tr>
<td>07. end for</td>
</tr>
<tr>
<td>08. (X_l \leftarrow M_l \oplus Y_{l-1} \oplus S \cdot x)</td>
</tr>
<tr>
<td>09. (Y_l \leftarrow E_K(X_l))</td>
</tr>
<tr>
<td>10. (T \leftarrow Y_1 \oplus Y_2 \oplus \cdots \oplus Y_l)</td>
</tr>
<tr>
<td>11. return (T)</td>
</tr>
</tbody>
</table>

Fig. 4. Definition of \(f9^- \).

4. PROVABLE SECURITY OF \(f9^- \)

Security Definitions: Denote \(\text{Perm}(n) \) as the set contains all the permutations over \(\{0, 1\}^n \). We say \(P \) is a RP (Random Permutation) if \(P \leftarrow \text{Perm}(n) \). Normally, the security of a block cipher \(E: \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \) is measured in the following
model. There exists an oracle O who selects an RP or $E_K(K \leftarrow \{0, 1\}^k)$ with equal probability and keeps it secret. Then, adversary A is allowed to query O with any plaintext it chooses, and O returns to it with corresponding ciphertext. At last, A is asked to output a bit d (0 or 1). The security of E is qualified by $\text{Adv}_E^{\text{prp}}$ which can be seen as the probability difference between different situations (O is a RP or E_K) in which A outputs 1. To be concrete, we let

$$\text{Adv}_E^{\text{prp}}(A) \triangleq |\Pr(K \leftarrow \{0, 1\}^k: A^E() = 1) - \Pr(P \leftarrow \text{Perm}(n): A^P() = 1)|,$$

and

$$\text{Adv}_E^{\text{prp}}(t, q) \triangleq \max_A \{\text{Adv}_E^{\text{prp}}(A)\}.$$

We say that E is secure if $\text{Adv}_E^{\text{prp}}(t, q)$ is sufficiently small, where all adversaries are allowed to run in time at most t and make at most q queries.

The security of a MAC algorithm F is evaluated by how unforgeable it is. That is, an adversary A can adaptively query $F_K()$ with arbitrary messages, obtaining the corresponding outputs. Finally, A is asked to forge, i.e. to output a pair $(M, F_K(M))$ where M has never been input to $F_K()$ by A. Then we let

$$\text{Adv}_F^{\text{mac}}(A) \triangleq |\Pr(K \leftarrow \{0, 1\}^k: A^F()\text{ forges})|,$$

and

$$\text{Adv}_F^{\text{mac}}(t, q, \sigma) \triangleq \max_A \{\text{Adv}_F^{\text{mac}}(A)\}.$$

We say that F is secure if $\text{Adv}_F^{\text{mac}}(t, q, \sigma)$ is sufficiently small, where all adversaries are allowed to run in time at most t, and make at most q queries, having aggregate length of at most σ blocks ($\sigma = \sum_{i=1}^{t} ||M_i||_n$).

Denote Rand(\ast, n) as the set contains all functions from $\{0, 1\}^*$ to $\{0, 1\}^n$. We say R is a variable-length input random function if $R \leftarrow \text{Rand}(\ast, n)$. In other words, R behaves as follows, for any string $M \in \{0, 1\}^*$, $R(M)$ is a random string over $\{0, 1\}^n$. An adversary A is asked to distinguish $F_K()$ ($K \leftarrow \{0, 1\}^k$) from $R \leftarrow \text{Rand}(\ast, n)$. Similar to $\text{Adv}_E^{\text{prp}}(t, q)$, we define the advantage of A as

$$\text{Adv}_F^{\text{viprf}}(A) \triangleq |\Pr(K \leftarrow \{0, 1\}^k: A^F() = 1) - \Pr(R \leftarrow \text{Rand}(\ast, n): A^R() = 1)|,$$

and

$$\text{Adv}_F^{\text{viprf}}(t, q, \sigma) \triangleq \max_A \{\text{Adv}_F^{\text{viprf}}(A)\}.$$

We say that F is a viprf (Variable-length Input PseudoRandom Function) if $\text{Adv}_F^{\text{viprf}}(t, q, \sigma)$ is sufficiently small, where all adversaries are allowed to run in time at most t, and make at most q queries, having aggregate length of at most σ blocks ($\sigma = \sum_{i=1}^{q} ||M_i||_n$).

Without loss of generality, adversaries are assumed to never ask a query outside the domain of the oracle, and to never repeat a query.

Theorem Statements: First, we prove that f^9_p is a viprf if the underlying block cipher P is a random permutation (information-theoretic result).

Theorem 1 (Main theorem $f^9_p \approx R$) Suppose $P \leftarrow \text{Perm}(n)$ is used in f^9 as the underlying block cipher, and A is an adversary who asks at most q queries, having aggregate length of at most σ blocks, and assume $\sigma < 2^{n/2}$. Then
Before proving the main theorem, we first introduce a basic tool also used in [6, 9, 10]. Lemma 1 is a very useful tool to prove pseudorandomness for both block cipher structures and modes of operation.

Lemma 1 (General Lemma) Define set $M \triangleq \{(M_1, M_2, \ldots, M_q) | M_i \in \{0, 1\}^* \}$, where $M_i \neq M_j$, $1 \leq i < j \leq q$, if there exists a set $T = \{(T_1, T_2, \ldots, T_q)\}$, where $T_i = \{0, 1\}^n$, $1 \leq i \leq q$ and a function family $F: \{0, 1\}^k \times \{0, 1\}^* \rightarrow \{0, 1\}^n$ such that,

1. $\#T \geq 2^{qn}(1 - \epsilon_1)$,
2. $\forall (M_1, M_2, \ldots, M_q) \in M$, $\forall (T_1, T_2, \ldots, T_q) \in T$,
 $\Pr(K \leftarrow \{0, 1\}^k: T_i = F_k(M_i) \text{ for } i = 1, 2, \ldots, q) \geq (1 - \epsilon_2)/2^n$,

then for any computationally unbounded adversary A with q queries,

$$|\Pr(K \leftarrow \{0, 1\}^k: A^{f_{\{\cdot\}}(\cdot)} = 1) - \Pr(R \leftarrow \{0, 1\}^k: A^{R(\cdot)} = 1)| \leq \epsilon_1 + \epsilon_2.$$

For the proof of Lemma 1, refer to Appendix A.

Lemma 2 (Basic Lemma for f^9) Let $\text{Rand}(n, n)$ be the set of all functions from $\{0, 1\}^n$ to $\{0, 1\}^n$, define set M as in Lemma 1 and define $T \triangleq \{0, 1\}^q$ as the set containing all the different q-tuple elements (T_1, T_2, \ldots, T_q), where $T_i \in \{0, 1\}^n$ for $i = 1, 2, \ldots, q$. Let $g \in \text{Rand}(n, n)$ be the underlying function in f^9. Then the number of function g satisfying $\forall (M_1, M_2, \ldots, M_q) \in M, \forall (T_1, T_2, \ldots, T_q) \in T$, $T_i = f^9(g)(M_i)$, $1 \leq i \leq q$ is at least $N_g \geq (1 - (\sigma^2 + \sigma)/2^{n+1}) \times (2^n)^{2q-n}$, where $\sigma = \sum_{i=1}^q ||M_i||_n$.

The proof for Lemma 2 is given in Appendix B.

Based on the two lemmas given above, we can prove Theorem 1. According to Lemma 1, to prove f^9 is a viprf we have to (1) construct a set $T = \{(T_1, T_2, \ldots, T_q)\}$ whose size is large enough (then ϵ_1 would be sufficiently small) and (2) show that $\forall (M_1, M_2, \ldots, M_q) \in M, \forall (T_1, T_2, \ldots, T_q) \in T$,

$\Pr(K \leftarrow \{0, 1\}^k: T_i = F_k(M_i) \text{ for } i = 1, 2, \ldots, q) \geq (1 - \epsilon_2)/2^n$ holds, where ϵ_2 is sufficiently small. In Lemma 2, we have almost solved these two problems except that function g is not limited to permutations, and we fix this flaw in the end by the “PRP and PRF Switching Lemma” [8].

Proof: (of Theorem 1) According to Lemma 2, we get

$$\Pr(g \leftarrow \{0, 1\}^k: T_i = f^9(g)(M_i), 1 \leq i \leq q) \geq \frac{(1 - (\sigma^2 + \sigma)/2^{n+1}) \times (2^n)^{2q-n}}{(2^n)^{2q-n}} = 1 - \frac{(\sigma^2 + \sigma)/2^{n+1}}{2^n},$$

which indicates $\epsilon_2 = (\sigma^2 + \sigma)/2^{n+1}$ in Lemma 1.

Furthermore, applying Lemma 1, and noticing that $\#T = 2^m$ which means $\epsilon_1 = 0$, it
stands to reason that

$$| \Pr(g \leftarrow \text{Rand}(n, n): A_Y^{f(g)}(\cdot) = 1) - \Pr(R \leftarrow \text{Rand}(\cdot, n): A^{R(\cdot)}(\cdot) = 1) |$$

$$\leq \varepsilon_1 + \varepsilon_2 = (\sigma^2 + \sigma)/2^{n+1}.$$ (1)

Moreover, we claim that for any adversary A, it follows that,

$$| \Pr(g \leftarrow \text{Rand}(n, n): A_Y^{f(g)}(\cdot) = 1) - \Pr(P \leftarrow \text{Perm}(n): A_Y^{f(P(\cdot))}(\cdot) = 1) |$$

$$\leq | \Pr(g \leftarrow \text{Rand}(n, n): B_A^{g(\cdot)}(\cdot) = 1) - \Pr(P \leftarrow \text{Perm}(n): B_A^{g(P(\cdot))}(\cdot) = 1) |$$

$$\leq (\sigma^2 + \sigma)/2^{n+1},$$ (2)

where $\sigma + 1$ denotes the number of queries to the oracle ($g(\cdot)$ or $P(\cdot)$).

Inequality (2) holds because for any adversary A we can construct another adversary B_A run as in Fig. 5. Adversary B_A always returns the same bit as adversary A does. That is, no matter when adversary A outputs “1”, adversary B_A outputs “1”. Furthermore, notice that adversary B_A may have some other occasions (not by running adversary A) to output “1”. Consequently, inequality (2) follows.

Fig. 5. Construct adversary B_A by adversary A.

Following the “PRP and PRF Switching Lemma” introduced in [8], we get inequality (3) holds.

In the end, combining inequalities (1) and (3) by the triangle inequality, we get

$$| \Pr(P \leftarrow \text{Perm}(n): A_Y^{f(P)}(\cdot) = 1) - \Pr(R \leftarrow \text{Rand}(\cdot, n): A^{R(\cdot)}(\cdot) = 1) |$$

$$\leq | \Pr(g \leftarrow \text{Rand}(n, n): A_Y^{f(g)}(\cdot) = 1) - \Pr(P \leftarrow \text{Perm}(n): A_Y^{f(P)}(\cdot) = 1) |$$

$$+ | \Pr(g \leftarrow \text{Rand}(n, n): A_Y^{f(g)}(\cdot) = 1) - \Pr(R \leftarrow \text{Rand}(\cdot, n): A^{R(\cdot)}(\cdot) = 1) |$$

$$\leq \frac{\sigma^2 + \sigma}{2^{n+1}} + \frac{\sigma^2 + \sigma}{2^{n+1}}$$

$$= \frac{\sigma^2 + \sigma}{2^n}.$$ (3)

Thus, we conclude the proof of Theorem 1.

Next, we pass this information-theoretic result to the complexity-theoretic result (the following Theorem 2) in the usual way [8], and we claim that f_Y^E is a viprf if the underlying block cipher E is secure.
Theorem 2 ($f^9_E \approx R$) Suppose block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ is used in f^9, then we have $\text{Adv}_{f^9_E}^{\text{mac}}(t, q, \sigma) \leq (\sigma^2 + \sigma)/2^n + \text{Adv}_{E}^{\text{prp}}(t', q')$, where $t' = t + O(\sigma)$, $q' = \sigma + 1$, and $\sigma = \sum_{i=1}^{t} \|M^i\|_n$.

At last, we say that f^9_E is a secure MAC algorithm by Theorem 2, since pseudo-random functions are secure MACs [8].

Theorem 3 (f^9_E is a Secure MAC) Suppose block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ is used in f^9, then we have $\text{Adv}_{f^9_E}^{\text{mac}}(t, q, \sigma) \leq (\sigma^2 + \sigma + 1)/2^n + \text{Adv}_{E}^{\text{prp}}(t', q')$, where $t' = t + O(\sigma)$, $q' = \sigma + 1(\sigma)$, and $\sigma = \sum_{i=1}^{t} \|M^i\|_n$.

5. FURTHER CONSIDERATIONS

In fact, f^9 could be improved to be a more efficient version, still keeping provable security with the same security bound. That is, eliminate the bottom line in the structure of f^9, and we denote this new version as f^9_2. Obviously, f^9_2 is a completely Cipher Block Chaining mode, offering higher efficiency by saving multiple XOR operations compared with f^9. What is more, we can modify the proof of f^9 only a little (modify line 31 to $Y_i \leftarrow T$ in Fig. 6 to show that f^9_2 is also provably secure with the same bound as f^9. Alternatively, f^9_2 can be viewed as a special case in OMAC-family [9] (the padded messages input to f^9_2 is treated as the messages need not to be padded in OMAC-family); since OMAC-family is provably secure under the PRP assumption, so is f^9_2.

```plaintext
01. $c_r^i \leftarrow 1$ for $i = 1, 2, \ldots, q$ and $r = 2, 3, \ldots, l_i$
02. $\text{Domain} \rightarrow G_0 \cup G_1 \cup G_2$
03. for $r = 2$ to $\max\{l_1, l_2, \ldots, l_k\}$ do
04. for $i = 1$ to $q$ do
05. if $(c_r^i = 1 \land k \leq r \leq l_i)$
06. then $X \leftarrow \{X_r^i\}$
07. for $j = t + 1$ to $q$ do
08. if $(r \leq l_j \land \& \& D_r^i[|D_r^i| \ldots |D_r^{i-1}] = D_r^i[|D_r^i| \ldots |D_r^{i-1}])$
09. then $c_r^j \leftarrow c_r^j + 1; X \leftarrow X \cup \{X_r^j\}; c_r^j \leftarrow 0$
10. end if
11. end for
12. $Y_r^i \leftarrow (0, 1)^n; X_r^i \leftarrow Y_r^{i+1} \uplus D_r^i$
13. for all $X_r^i \in X, X_r^j \leftarrow X_r^j \uplus D_r^j \uplus D_r^i$
14. while $(X \cap \text{Domain} \neq \phi)$ do
15. $Y_r^i \leftarrow (0, 1)^n; X_r^i \leftarrow Y_r^{i+1} \uplus D_r^i$
16. for all $X_r^i \in X, X_r^j \leftarrow X_r^j \uplus D_r^j \uplus D_r^i$
17. end while
18. $\text{Domain} \rightarrow \text{Domain} \cup X$
19. end if
20. $Y_r^i \leftarrow \sum_{r=1}^{l_i-1} Y_r^i \uplus T^n$
21. end for
22. end for
23. end for
24. for $i = 1$ to $q$ do
25. $Y_r^i \leftarrow \sum_{r=1}^{l_i-1} Y_r^i \uplus T^n$
26. end for
Fig. 6. Evaluation of $X_r(i = 2, 3, \ldots, l_i)$ and $Y_r(i = 1, 2, \ldots, l_i)$ for $i = 1, 2, \ldots, q$.
```
However, we prefer f_9^- other than f_9^2 because the aim of our work is not only to improve f_9, based on the original scheme, to be a more efficient and provably secure version, but also to make sure that the modification is small, so as to update f_9 easily in practice. As a result, f_9^- successfully achieves all these goals, keeping the main f_9 structure almost unchanged; while f_9^2 destroys the main structure of f_9, although it offers higher efficiency. From an engineering point of view, it is much easier to update f_9 to f_9^- in practice, other than f_9^2.

6. EFFICIENCY COMPARISON

Note that all the f_9 variants f_9', f_9^- and f_9^- can be seen as authentication modes of operation for block ciphers. In this point of view, the number of block-cipher invocation to generate a MAC (#E invo.) has great influence on the efficiency of mode of operation. Moreover, the number of block-cipher key schedulings (#K sche.) and the number of block-cipher invocations during the preprocessing time (#E pre.) are also important parameters to evaluate the efficiency of different modes of operation.

In this section, we compare f_9^- with f_9' and f_9^+ in aspect of efficiency, and show the detailed results in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>f_9</th>
<th>f_9'</th>
<th>f_9^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>#K sche.</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>#E pre.</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>#E invo.</td>
<td>$(\lceil</td>
<td>M</td>
<td>+ 1 \rceil)/n$</td>
</tr>
</tbody>
</table>

By Table 1, it is clear that f_9' has one more “#K sche.” than f_9 and f_9^-, because there is an extra key scheduling $K \oplus \Delta$ in the last block-cipher invocation of f_9'; furthermore, there is one less “#E pre.” in f_9^- than f_9, because f_9^- has to pre-compute $S \cdot x = E_{A}(0^n) \cdot x$ only while f_9 has to pre-compute $E_{A}(0^n)$ and $E_{A}(1^n)$. Notice that $E_{A}(Cst) \cdot x$ can be done by $S = E_{A}(Cst)$ and $S \cdot x$, where the latter one is much faster than a block-cipher invocation.

More importantly, f_9^- saves one “#E invo.” compared with f_9' and f_9^+, which implies f_9^- can save one block-cipher invocation for every message. This improvement is more effective when lots of short messages have to be processed, e.g. in cellphone communications where f_9 is used.

Overall, Table 1 tells us f_9^- offers higher efficiency than the others.

7. CONCLUSION

In summary, we introduce a new variant of 3GPP-MAC, f_9^-, in this paper. f_9^- is provably secure for arbitrary length messages, modeling its underlying block cipher as a secure PRP (PseudoRandom Permutation). Compared with f_9, f_9' and f_9^-, f_9^- removes the last block-cipher invocation, offering higher efficiency in practice. What is more, f_9^- keeps the main structure of f_9 almost unchanged, making it easy to update f_9 to f_9^- if necessary.
REFERENCES

APPENDIX A

Lemma 1 is not a new tool in discussion of block cipher structures and modes of operation. The “Coefficients H Technique” developed by Jacques Patarin [11] and the decorrelation theory developed by Serge Vaudenay have similar forms [12].

Proof: Adversary A has access to oracle O which is either \(F_{α}(·) \) or \(R(·) \). We run \(A \) with oracle \(O \), and suppose \(A \) makes \(q \) queries \(M^1, M^2, \ldots, M^q, M' \in \{0, 1\}^n \) to \(O \), where these \(q \) queries are pairwise distinct. Since \(A \) is computationally unbounded, without loss of generality we can assume that \(A \) is deterministic. Therefore, the \(i \)th query \(M^i \in \{0, 1\}^n \) \(A \) makes is fully determined by the previous \(i - 1 \) answers \(T^1, T^2, \ldots, T^{i-1} \in \{0, 1\}^n \) from oracle \(O \). Thus, \(A \)’s queries are uniquely determined, \(q \) is uniquely determined, and the final output of \(A \) (0 or 1) is uniquely determined. In other words, the final output of \(A \)
fully depends on what the q-tuple (T^1, T^2, \ldots, T^q) is. Then, we let $V_{\text{one}} = \{V = (V^1, V^2, \ldots, V^q)| V^i \in \{0, 1\}^n, i = 1, 2, \ldots, q\}$ be the set of all q-tuple $V = (V^1, V^2, \ldots, V^q)$ such that A outputs 1 when given $V = (V^1, V^2, \ldots, V^q)$ by O, and we let $N_{\text{one}} = \#V_{\text{one}}$. Noticing that $\#T \geq 2^n(1 - \epsilon_1)$, i.e. condition 1) in this Lemma, we have $\#\{V \mid V \in V_{\text{one}} \cap T\} \geq N_{\text{one}} - \epsilon_1 2^n$.

$$P_{\text{rand}} = \Pr(R \leftarrow \Rand(\ast, n): A^R(\ast) = 1)$$

Evaluation of P_{rand}:

$$P_{\text{rand}} = \frac{\#\{R \mid A^R(\ast) = 1\}}{\#\Rand(\ast, n)} = \sum_{V \in V_{\text{one}}} \frac{\#\{R \mid R \text{satisfying } V^i = R(M^i) \text{ for } i = 1, 2, \ldots, q\}}{\#\Rand(\ast, n)}$$

Notice that $|\Pr(K \leftarrow \Rand(\ast, n): T^i = R(M^i) \text{ for } i = 1, 2, \ldots, q) = (1/2^n)^q$, so

$$P_{\text{rand}} = \sum_{V \in V_{\text{one}}} \frac{1}{2^n} = \frac{N_{\text{one}}}{2^n}.$$

Evaluation of P_{real}:

$$P_{\text{real}} = \Pr(K \leftarrow \Rand(\ast, n): A^F(\ast) = 1)$$

$$= \frac{\#\{K \mid A^F(\ast) = 1\}}{2^k} = \sum_{V \in V_{\text{one}}} \frac{\#\{K \mid F_k \text{ satisfying } V^i = F_k(M^i) \text{ for } i = 1, 2, \ldots, q\}}{2^k} \geq \sum_{V \in V_{\text{one}}(T)} \frac{\#\{K \mid F_k \text{ satisfying } V^i = F_k(M^i) \text{ for } i = 1, 2, \ldots, q\}}{2^k}$$

By condition (2), we get $P_{\text{real}} \geq \sum_{V \in V_{\text{one}}(T)} \frac{1 - \epsilon_2}{2^n} \geq (N_{\text{one}} - \epsilon_1 2^n) \times \frac{1 - \epsilon_2}{2^n}$. Then, it is not hard to obtain $P_{\text{real}} - P_{\text{rand}} - \epsilon_2 \leq \epsilon_1 + \epsilon_2 - \epsilon_1 + \epsilon_2$.

Now, it is easy to see that,

$$P_{\text{rand}} - P_{\text{real}} \leq \epsilon_2 P_{\text{rand}} + \epsilon_1 - \epsilon_2 \leq \epsilon_1 + \epsilon_2;$$

in the same way, if we define a set V_{zero} just as V_{one} and apply similar arguments, we will get

$$(1 - P_{\text{rand}}) - (1 - P_{\text{real}}) \leq \epsilon_1 + \epsilon_2.$$

By inequalities Eqs. (4) and (5), we know that $|P_{\text{rand}} - P_{\text{real}}| \leq \epsilon_1 + \epsilon_2$. In conclusion, for any computationally unbounded adversary A, it follows that,

$$|\Pr(K \leftarrow \Rand(\ast, n): A^F(\ast) = 1) - \Pr(R \leftarrow \Rand(\ast, n): A^R(\ast) = 1)| \leq \epsilon_1 + \epsilon_2.$$
APPENDIX B

Proof: (of Lemma 2) For generality, we prove Lemma 2 for \(f^9 \) with any fixed \(\text{Cst} \in \{0, 1\}^n \) (see Fig. 3). Notice that \(f^9 \) with \(\text{Cst} = 0^n \) is a special case of \(f^9 \) with any fixed \(\text{Cst} \), so our proof applies to \(f^9 \) with \(\text{Cst} = 0^n \) naturally.

Step 1: We pad the \(q \)-tuple \((M', M^2, ..., M^q)\) by the method given in \(f^9 \) algorithm, and then partition \(M' \) into \(M_1, M_2, ..., M_r \), where \(|M_i| = n\) for \(i = 1, 2, ..., q \) and \(r = 1, 2, ..., l_i \).

Step 2: Let \(D'_r = M'_r \) (for \(i = 1, 2, ..., q \) and \(r = 1, 2, ..., l_i - 1 \)) and \(D'_1 = M'_1 \oplus (S \cdot x) \). Notice that variable \(S = g(\text{Cst}) \) has not been evaluated, so \(D'_1 \) is a monomial of variable \(S \).

Step 3: We define \(X'_i \) for \(i = 1, 2, ..., q \) and \(i = 1, 2, ..., l_i \) as the inputs to function \(g \) and \(Y'_i \) as their corresponding outputs. According to the algorithm of \(f^9 \), it stands to reason that, for \(i = 1, 2, ..., q \),

\[
\begin{align*}
X'_i &= D'_i, \\
X'_i &= g(X'_{i-1}) \oplus D'_j = Y'_{i-1} \oplus D'_j, \text{ for } r = 2, 3, ..., l_i, \\
T'_i &= \sum_{r=1}^{l_i} Y'_r.
\end{align*}
\]

(8)

What is more, notice that if there exists \(M' \) such that \(|M'| \geq 2 \) and \(M'_i = \text{Cst} \), then \(X'_1 = D'_1 = M'_1 = \text{Cst} \) and \(X'_2 = g(X'_1) \oplus D'_2 = g(\text{Cst}) \oplus D'_2 = S \oplus D'_2 \). In such a case, we write \(X'_2 = S \oplus D'_2 \) directly. Finally, we let \(X'_1 = X'_1 || X'_2 || ... || X'_l || S \).

Step 4: Define some sets \(G_0 = \{\text{Cst}\}, G_1 = \{X'_1, i = 1, 2, ..., q\}, G_2 = \{X'_i, X'_{i+1}\} \mid 1 \leq i < j \leq q, l_i = l_j = 2, X'_1 || X'_2 || ... || X'_{i-1} = X'_1 || X'_2 || ... || X'_{i-1} = X'_1 || X'_2 || ... || X'_{i-1} \), and \(\text{Domain} = G_0 \cup G_1 \cup G_2 \). Then, we evaluate \(S = g(\text{Cst}) \in \{0, 1\}^n \) such that

\[
\begin{align*}
\text{the elements in Domain are pairwise distinct,} \\
X'_i \neq X'_j, \forall (X'_i, X'_j) \in G_3.
\end{align*}
\]

(9)

Noticing the fact that \(\#\text{Domain} + G_3 \leq q + 1 \), it is not hard to see inequality system (9) contains at most \(\binom{q + 1}{2} \) inequalities with variable \(S \). According to the properties of \(\text{GF}(2^n) \), inequality system (9) is resolvable (refer to [7] for more information). We fix any \(S \) satisfying inequality system (9), and the number of choices of such \(S \) is \(N_S \geq 2^n - \binom{q + 1}{2} \).

Step 5: In this step, \(X'_r \) (\(r = 2, ..., l_i \)) and \(Y'_r (r = 1, 2, ..., l_i) \) for \(i = 1, 2, ..., q \) are going to be evaluated by a pseudocode program (see Fig. 6). In the pseudocode program, set \(X \) contains all the \(X'_r \) related to \(X'_r \) by “related” we mean condition \(X'_r \oplus X'_r = D'_r \oplus D'_r \) holds (because of \(D'_r || D'_2 || ... || D'_{q-1} = D'_1 || D'_2 || ... || D'_{q-1} \)). In or-
der to count the number of X_i' related to X_i', we define a counter c_i' for X_i'. The counter c_i' works as follows: once condition $X_i' \oplus X_i' = D_i' \oplus D_i'$ holds, we let $c_i' + 1$, $X \leftarrow X \cup \{ X_i' \}$ and $c_i' \leftarrow 0$ (line 17). We let $c_i' \leftarrow 0$ because we will not consider the evaluation of X_i' independently. In other words, we will consider the evaluation of X_i' first and then let $X_i' = D_i' \oplus D_i' \oplus X_i'$.

Set Domain defines the domain of function g and it increases with our evaluation for X_i' ($i = 1, 2, ..., q$ and $r = 2, ..., l$) step by step. At the beginning of the program, we let $\text{Domain} \leftarrow G_0 \cup G_1 \cup G_2$ (line 02), because the elements in sets G_0, G_1, and G_2 are exactly the inputs has been (it is Cst) or are going to be (those except Cst) input to function g.

As long as we have found all the X_i' related to X_i', we start the evaluation of X_i' by line 20 in the program. That is, we randomly select Y_{r+1}', and then let $X_i' \leftarrow Y_{r+1}' \oplus D_i'$. In the meanwhile, we can obtain $X_i' = D_i' \oplus D_i' \oplus X_i'$, for all $X_i' \in X$ (line 21). Then, we check whether condition $X \cap \text{Domain} \neq \emptyset$ holds or not (line 22). If it holds, we randomly select Y_{r+1}' again (line 23) until condition $X \cap \text{Domain} \neq \emptyset$ does not hold. Obviously, there are at least $2^n - (\#\text{Domain} + (\#\text{Domain} + 1) + ... + (\#\text{Domain} + X - 1)) \geq 2^n - (\#\text{Domain} + (\#\text{Domain} + 1) + ... + (\#\text{Domain} + c_i' - 1))$ choices of Y_{r+1}' satisfying the condition in line 22. Once we have found a satisfying Y_{r+1}', we let $\text{Domain} \leftarrow \text{Domain} \cup X$ (line 26) which also means we have finished the evaluation of all the X_i' in set X.

Run the program until line 29, now we have obtained that X_i' are pairwise distinct and $Y_i' = g(X_i')$ have not been evaluated. Next, we let $Y_i' \leftarrow \sum_{i=1}^{r} Y_i' \oplus T'$ (line 31). Then the program finishes, all the $X_i', (r = 2, ..., l)$ and $Y_i', (r = 1, 2, ..., l')$ for $i = 1, 2, ..., q$ have been evaluated. Next, by the Eq. (9) in step 3, we can establish a bridge between M' and T' for $i = 1, 2, ..., q$. Finally, we successfully find a class of function g satisfying $T' = f 9_{r}(M')$ for $i = 1, 2, ..., q$.

Step 6: In this step, we count the number of function g found in the previous steps. Before the program starts, notice the facts that $N_0 = \#\text{Domain} \leq q + 1$ and $\sum_{i=1}^{r} \sum_{i=1}^{l'} c_i' = \sigma - q$, where $\sigma = \sum_{i=1}^{r} l_i$. When the program runs to line 29, suppose that the number of c_i' satisfying $c_i' \geq 1$ is z. We write these c_i' as $(c_i')_1, (c_i')_2, ..., (c_i')_z$, in the order of their first appearance in the program. By the lines 01 and 17 in the program, we know that $\sum_{i=1}^{z} c_i' = \sum_{i=1}^{z} \sum_{i=1}^{l'} c_i' = \sigma - q$.

Furthermore, we let $N_1 = N_0 + (c_i')_1, N_2 = N_1 + (c_i')_2, ..., N_z = N_{z-1} + (c_i')_z$. Here, $N_0, N_1, ..., N_z$ can be seen as $\#\text{Domain}$ in different stages when the program is running. Obviously, $N_r = N_0 + \sum_{i=1}^{z} c_i' = N_0 + \sigma - q \geq \sigma + 1$. What is more, we have $\#\text{Domain} = N_z \leq \sigma + 1$ after line 29. Then the program continues to run from line 30. Since we let $Y_i' \leftarrow \sum_{i=1}^{r} Y_i' \oplus T'$ (line 31), each Y_i' has a unique choice in $\{0, 1\}^n$.

Now we review the process from the beginning to the end. First, we fix S satisfying some inequalities (9) and the number of choices of S is $N_S \geq 2^n - \left(\begin{array}{c} q + 1 \\ 2 \end{array}\right)$. Then, we evaluate X_i' for $i = 1, 2, ..., q$ and $r = 2, ..., l$ by a program (Fig. 6). Notice the fact that $(c_i')_w \geq 1$ ($w = 1, 2, ..., z$) indicates its corresponding X_i' has $(c_i')_w$ related X_i' (including
itself); consequently, the with \(X'_r(w = 1, 2, \ldots, z) \) has at least \(2^a - (N_{w - 1} + (N_{w - 1} + 1) + \ldots + (N_{w - 1} + (c'_w - 1) - 1)) \) choices satisfying the condition \(X \cap \text{Domain} = \emptyset \). Next, we fix \(Y^r_i \) to \(\sum_{i=1}^{N-1} Y^r_i \oplus T' \) for \(i = 1, 2, \ldots, q \); that is, each \(Y^r_i \) has a unique choice in \(\{0, 1\}^w \). Finally, according to the Eq. (8), we establish a bridge between \(M' \) and \(T' \) for \(i = 1, 2, \ldots, q \), leaving function \(2^a - (z + q + 1) \) elements in its domain undefined. Since these \(2^a - (z + q + 1) \) elements have nothing to do with \(T' = f(M') \) for \(i = 1, 2, \ldots, q \), we randomly select a value from \(\{0, 1\}^w \) for each of them. In other words, these \(2^a - (z + q + 1) \) elements have \(2^a \) choices each.

Denote \(N_g \) as the number of function \(g \) found in the previous steps. Based on the former analysis, we know that \(N_g = N_5 \times N_{11-19} \times N_{31-33} \times (2^a)^{2^4(z+q+1)} \), where \(N_{11-29} \) is the number of choices of function \(g \) at some points \(g(X'_r) \) for \(i = 1, 2, \ldots, q \) and \(r = 2, \ldots, l_r - 1 \) from line 11 to 29 in Fig. 6, and

\[
N_{11-29} = [2^a - (N_0 + (N_0 + 1) + \ldots + (N_0 + (c'_1 - 1) - 1))] \\
\times [2^a - (N_1 + (N_1 + 1) + \ldots + (N_1 + (c'_2 - 1) - 1))] \times \ldots \\
\times [2^a - (N_{l_r - 1} + (N_{l_r - 1} + 1) + \ldots + (N_{l_r - 1} + (c'_l - 1) - 1))] \\
> 2^a - (N_0 + (N_0 + 1) + \ldots + N_{l_r - 1} - 1))2^{2(z+1)}.
\]

\(N_{31-33} = 1^9 \) is the number of choices of function \(g \) at some points \(g(X'_r) \) for \(i = 1, 2, \ldots, q \) from line 30 to 32 in Fig. 6. Consequently,

\[
N_g = N_5 \times N_{11-19} \times N_{31-33} \times (2^a)^{2^4(z+q+1)} \\
\geq 2^a \left(\frac{q + 1}{2} \right) \times [2^{2a} - (N_0 + (N_0 + 1) + \ldots + (N_{l_r - 1} - 1))2^{2(z+1)}] \times 1^9 \times (2^a)^{2^4(z+q+1)} \\
\geq [2^{2(a+1)} - (1 + 2 + \ldots + (N_{l_r} - 1))2^{2a}] \times (2^a)^{2^4(z+q+1)} \\
= (1 - \frac{\sigma^2 + \sigma}{2^{a+1}}) \times (2^a)^{2^{a+q}}.
\]

Li-Ting Zhang (張立婷) is currently a Ph.D. student in Graduate School of Chinese Academy of Sciences and Institute of Software, Chinese Academy of Sciences. His current research area includes provable security on block ciphers, message authentication codes and hash functions.

Wen-Ling Wu (吳文玲) is now a Professor at the State Key Laboratory of Information Security, Institute of Software, Chinese Academy of Sciences. She received her Ph.D. degree in Cryptography from Xidian University in 1997. Her current research interests include theory of cryptography, modes of operation, block ciphers, stream ciphers and hash functions.

Peng Wang (王鹏) is a Lecturer in Graduate University of Chinese Academy of Sciences (GUCAS). He received his Ph.D. degree from GUCAS in 2006. His current research interests include theory of cryptography, especially about symmetric cipher.