
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 28, 587-600 (2012)

587

Short Paper__

A New Concave Hull Algorithm and Concaveness Measure

for n-dimensional Datasets*

JIN-SEO PARK AND SE-JONG OH
Department of Nanobiomedical Science

WCU Research Center of Nanobiomedical Science
Dankook University

Cheonan, 330-714 South Korea

Convex and concave hulls are useful concepts for a wide variety of application areas,

such as pattern recognition, image processing, statistics, and classification tasks. Concave
hull performs better than convex hull, but it is difficult to formulate and few algorithms
are suggested. Especially, an n-dimensional concave hull is more difficult than a 2- or 3-
dimensional one. In this paper, we propose a new concave hull algorithm for n-dimen-
sional datasets. It is simple but creative. We show its application to dataset analysis. We
also suggest a concaveness measure and a graph that captures geometric shape of an n-
dimensional dataset. Proposed concave hull algorithm and concaveness measure/graph
are implemented using java, and are posted to http://user.dankook.ac.kr/~bitl/dkuCH.

Keywords: convex hull, concave hull, classification, dataset analysis, time complexity

1. INTRODUCTION

The term ‘convex hull’ indicates the boundary of the minimal convex set containing
a given non-empty finite set of points in the plane (or n-dimensional space), as shown in
Fig. 1 (a). A convex hull has been used in practical applications, in pattern recognition,
image processing, statistics, and so on [16-22]. Many algorithms are proposed to find a
convex hull in the 2-dimensional space (plane), and a few specialized algorithms for 3-
dimensional space are developed [8-15, 26]. Recently, researchers have applied the con-
vex hull to classification tasks. Jianjun et al. [7] proposed a new classification method
based on the convex hull. In this, convex hulls are produced for each class of known
objects and the distance between each convex hull and unknown object is then calculated,
with the nearest convex hull being the predicted class for the unknown object.

From the simple example shown in Fig. 1, we can know that the convex hull does
not fully reflect the geometrical characteristics of a dataset and that the ‘concave hull’ is
a better choice for geometrical evaluation. The concave hull approach is a more advanced
approach used to capture the exact shape of the surface of a dataset; however, producing
the set of concave hull is difficult. Little work has focused on concave hull algorithms.

Received August 19, 2010; revised December 4, 2010 & February 18, 2011; accepted February 22, 2011.
Communicated by Jen-Hui Chuang.
* This work was supported under Grant No. R31-2008-000-10069-0 from the World Class University (WCU)

Project of the Ministry of Education, Science and Technology (MEST) and the Korea Science and Engineer-
ing Foundation (KOSEF).

JIN-SEO PARK AND SE-JONG OH

588

 (a) Convex hull. (b) Concave hull.
 ★is belong to class B. ★is belong to class A.

Fig. 1. Classification using convex hull and concave hull.

Threshold = 1.5. Threshold = 3.0.

Fig. 2. Smoothness of concave hull by threshold.

Galton and Duckham [24] suggested ‘Swing Arm’ algorithm based on gift-wrapping al-
gorithm. The Swing Arm Algorithm may produce separated concave hulls instead of
single one. Adriano and Yasmina [26] suggested a concave hull algorithm based on the k-
nearest neighbors approach. The LOCAL project website (http://get.dsi.uminho.pt/local/)
supports an online version of the concave hull algorithm. Duckham et al. [25] suggested
‘χ-shape’ algorithm based on Delaunay triangle. Those algorithms are for 2-dimensional
datasets; extending to 3-or higher dimensions is difficult or impossible whereas a lot of
datasets for classification have three or more dimensions. If we want to apply a concave
hull for the areas such as bioinformatics, we need to develop a multi-dimensional con-
cave hull algorithm.

2. A NEW CONCAVE HULL ALGORITHM

2.1 Smoothness of Concave Hull

Our strategy to produce a set of concave hulls was to identify a convex hull using a

known algorithm, and ‘dig’ it to produce a concave hull with an appropriate depth. The
digging level was determined by the threshold value N. Using a smaller N induces a
sharper surface (see Fig. 2). If N has a sufficiently large value, our algorithm does not
dig, and will return a convex hull, instead of a concave hull. Threshold N determines the
smoothness of a concave hull, and the optimal value of N depends on applications and
characteristics of their datasets. Some applications need a sharp concave hull and others

A NEW CONCAVE HULL ALGORITHM

589

 (a) convexList before digging. (b) concaveList after digging.

Fig. 3. Example of ConcaveList.

 (a) before digging. (b) after digging.

Fig. 4. Example of decision distance and digging.

need a rounded concave hull. Therefore, planners of concave hull applications must se-
lect an approximate value of N.

The following sections describe a new concave hull algorithm, and concaveness
measure as an application of the concave hull.

2.2 2-Dimensional Concave Hull Algorithm

For easy understanding, we introduce 2-dimensional algorithm, and extend it to 3-

or higher dimensional algorithm. The proposed concave hull algorithm is composed of
four steps. First, a set of convex hull edges is selected (see Fig. 3 (a)) and the threshold
value N is chosen. Second, the nearest inner points from the convex hull edge are identi-
fied, after which the shortest distance between the nearest inner point and the edge’s
points is identified. This distance is called as a ‘decision distance’ (see Fig. 4 (a)). Third,
a decision to dig or not is made by comparing N with the decision distance. If (length of
edge)/(decision distance) > N, then we execute digging process (see Fig. 4 (b)). Fourth,
the second and third procedures are repeated until there is no inner point for digging. The
final output of this algorithm is a set of edges that forms a concave hull for the given
dataset (see Fig. 3 (b)). For clarity we define some terms that are used in our algorithm.

Definition 1 Input data G = {p1, p2, p3, …, pk, …, pn} is a set of points that belong to
given dataset where n is a number of elements.

If the given dataset is 2-dimensional, each point is expressed by a coordinate of (x,

y) in a plane.

JIN-SEO PARK AND SE-JONG OH

590

Definition 2 ConvexList(G) = {(c11, c12), (c21, c22), …, (cm1, cm2)} is a set of convex
edges where (ci1, ci2) is an edge consisting of two index numbers corresponding to points
in G.

In the example shown in Fig. 3 (a), ConvexList(G) = {(1, 2), (2, 5), (4, 5), (4, 1)},
and edges (1, 2) = 1 2 ,p p (2, 5) = 2 5 ,p p (4, 5) = 4 5 ,p p and (4, 1) = 4 1.p p

Definition 3 Assuming function D(x, y) returns a distance between point x and y, the
decision distance DD(p, q) between point p and set of points q = {q1, q2, q3, …, qn} is
defined by:

DD(p, q) = min{D(p, q1), D(p, q2), D(p, q3), …, D(p, qn)}. (1)

Definition 4 DE(p, (e1, e2)) is the distance from a point p to an edge (e1, e2), and is
defined by:

DE(p, (e1, e2)) = min{ek ∈ (e1, e2) | D(p, ek)}. (2)

Definition 5 DT(p, (t1, t2, t3)) is the distance from a point p to a triangle (t1, t2, t3) and is
defined by:

DT(p, (t1, t2, t3)) = min{tk ∈ (t1, t2, t3) | D(p, tk)}. (3)

The proposed concave hull algorithm is described as follows,

Algorithm 1 Concave hull algorithm for 2-dimensional dataset
/**

Input: G // target dataset
Output: ConcaveList // set of edges that forms 2 dimensional concave hull

**/

/* 1. Preprocessing */
 generate ConvexList(G); // using a known algorithm
 choose the threshold N;
 copy ConvexList(G) to ConcaveList;

/* 2. Digging convex */

for i = 1 to the end of the ConcaveList
{

find the nearest inner point pk ∈ G from the edge (ci1, ci2);
// pk should not closer to neighbor edges of (ci1, ci2) than (ci1, ci2)

calculate eh = D(ci1, ci2); // the length of the edge
calculate dd = DD(pk , {ci1, ci2});

if (eh/dd) > N // digging process
{

insert new edges (ci1, k) and (ci2, k) into the tail of ConcaveList;

A NEW CONCAVE HULL ALGORITHM

591

delete edge (ci1, ci2) from the ConcaveList;
}

}
Return ConcaveList;

As mentioned above, the N threshold influences the smoothness of the concave hull.

From the several experiments, we found that the valid range of N falls in [0, 5]. In most
of cases, if N > 5, digging process is not working and concave hull is same as convex
hull.

2.3 Extending to 3-Dimensional Concave Hull Algorithm

In general, the shape of the concave hull depends on the dataset dimensions. If a
dataset is 2-dimensional, then the concave hull looks like a polygon chain. The founda-
tional component of a concave hull is the ‘edge’, which is composed of two points. In the
case of a 3-dimensional dataset, the concave hull is solid and its foundational component
is a plane of a ‘triangle’ that is composed of three points. ConvexList or ConcaveList of
an n-dimensional dataset has n points for each component (see Fig. 5).

Fig. 5. Essential component of concave hull according to its dimension.

In the 3-dimensional dataset, each point of input data G is expressed by a coordinate

of (x, y, z) in a solid. Each element of ConvexList(G) is expressed by (ci1, ci2, ci3). The
concave hull algorithm for 3-dimensional dataset is as follows,

Algorithm 2 Concave hull algorithm for 3-dimensional dataset
/**

Input: G // target dataset
Output: ConcaveList // set of triangle that forms 3 dimensional concave hull

**/
/* 1. Preprocessing */

generate ConvexList(G) // using a known algorithm
 choose the threshold N;

JIN-SEO PARK AND SE-JONG OH

592

 copy ConvexList(G) to ConcaveList;

/* 2. Digging convex */
for i = 1 to the end of the ConcaveList
{

find the nearest inner point pk ∈ G from the triangle (ci1, ci2, ci3);
// pk should not closer to neighbor triangles of (ci1, ci2, ci3) than
// (ci1, ci2, ci3)

calculate eh = (D(ci1, ci2)) + D(ci2, ci3) + D(ci3, ci1))/3;
calculate dd = DD(pk , {ci1, ci2, ci3});

if (eh/dd) > N // digging process
{
 insert new planes (ci1,ci2, k), (ci2, ci3, k), and (ci3, ci1, k)

into the tail of ConcaveList;
delete plane (ci1, ci2, ci3) from the ConcaveList;

}
}

Return ConcaveList;

As we can see, 2-dimensional concave hull algorithm can be simply extended to 3-

dimensional algorithm. We also extend 3-dimensional algorithm to n-dimensional one (n
≥ 4) following the same principle. We post n-dimensional concave hull program imple-
mented using java to http://user.dankook.ac.kr/~bitl/dkuCH.

3. MEASURE OF CONCAVENESS

One of the goals of this study was to identify a method of expressing or visualizing
the geometrical shape of the n-dimensional dataset. We believe that the concave hull is a
useful concept to capture the geometrical shape. In this section, we propose the con-
caveness measure, which implies the degree of concaveness of a given dataset. We also
introduce concaveness to the graph.

The degree of concaveness is calculated based on the difference between the convex
hull and concave hull. In Fig. 7 (a), the dark area between the convex hull and concave
hull implies concaveness of the dataset. The concaveness measure CM is formulated as
follows,

CM(c) = (ConcaveTotalLength(c) − ConvexTotalLength(c))/ConvexTotalLength(c). (4)

In Eq. (4), c is a target class of a dataset, ConcaveTotalLength(c) produces the total
length of edges that form a concave hull on class c, and ConvexTotalLength(c) produces
the total length of edges that form a convex hull on class c. The range of values of CM is
≥ 0. If CM = 0, the concave hull is exactly the same as the concave hull. If CM(c1) > CM
(c2), class c1 has a higher concaveness than class c2.

The concaveness graph is a 2-dimensional graph that shows the degree of concave-
ness of each ‘edge’ of the concave hull. In the graph, the x-axis contains the edges of the

A NEW CONCAVE HULL ALGORITHM

593

Fig. 6. An example of corresponding convex edge.

 (a) Target class c. (b) Concaveness graph for class c.

Fig. 7. Target class and its concaveness graph.

concave hull and the y-axis expresses the degree of concaveness for each edge. The value
y is calculated by

y = DE(k, convexEdge(k)) (5)

where convexEdge(k) is corresponding convex edge to concave edge k.
Fig. 6 shows an example of corresponding convex edge to concave edges, and Fig.

7 shows an example of the concaveness graph. It is evident that the shape of the target
class can be estimated from its concaveness graph. Therefore, the concaveness graph is a
useful tool to analyze the shape of n-dimensional datasets.

4. DISCUSSION

4.1 Robustness of the Proposed Algorithm

Galton [24] suggested evaluation criteria for convex/concave hull algorithms. In this

section, we describe the evaluation of the proposed algorithm following Galton’s criteria.
In his criteria, S is a set of points and R(S) is a set of boundary points of the concave

hull of S.

(1) Should every member of S fall within R(S), as in Figs. 8 (a), (c)-(g), or are outliers

‘a’ is corresponding convex edge to concave edges ‘b’, ‘c’, and ‘d’

JIN-SEO PARK AND SE-JONG OH

594

Fig. 8. Examples to illustrate the evaluation criteria.

permitted, as in Fig. 8 (b)?
Outliers are not permitted in our proposed algorithm. The proposed algorithm starts
from a convex hull of S, and every members of S falls within the convex hull. Each
boundary points looks for the nearest inside points during digging process. If the
nearest point x is excluded from the digging process, then point y, farther than x, is
always excluded from the digging process. Therefore, there is no possibility that an
outliers may exist.

(2) Should any points of S be allowed to fall on the boundary of R(S), as in Figs. 8 (a),
(b), (d)-(g), or must they all lie within its interior, as in Fig. 8 (c)?
Any point of S is allowed to fall on the boundary of R(S). In the proposed algorithm,
a convex hull and concave hull are always formed by a point of S.

(3) Should R(S) be topologically regular, as in Figs. 8 (a)-(c), (e)-(g), or can it contain
exposed point or line elements, as in Fig. 8 (d)?
The concave hull is topologically regular in the proposed algorithm. In the algorithm,
if a point x becomes a boundary point, no other boundary points can try dig to x.
Therefore, there is no possibility that an exposed point or line element takes place.
Fig. 8 (d) is changed to Fig. 9 in the proposed algorithm.

(4) Should R(S) be connected, as in Figs. 8 (a)-(d), (f), (g), or can it have more than one
component, as in Fig. 8 (e)?
The proposed algorithm cannot produce more than one component, as in Fig. 8 (e),
for the same reason as in question (3).

(5) Should R(S) be polygonal, as in Figs. 8 (a)-(e), (g), or can its boundary be curved, as
in Fig. 8 (f)?
The proposed algorithm cannot produce a curved boundary.

(6) Should R(S) be simple, i.e., its boundary is a Jordan curve, as in Figs. 8 (a)-(c), (f), or
can it have point connections as in Fig. 8 (g)?
The proposed algorithm always produces a Jordan curved boundary, for the same
reason, as in question (3).

(7) How big is the largest circular (or other specified) sub-region of R(S) that contains no
elements of S like Fig. 10?
In the proposed algorithm, the size of the circular sub-region that contains no ele-
ments of S depends on threshold N. If we choose big N, the concave hull may contain
a large empty region, whereas small N produces a small empty region.

(8) How easily can the method used be generalized to three (or more) dimensions?
The proposed algorithm can be easily generalized to three (or more) dimensions (see
Algorithm 2).

(9) What is the computational complexity of the algorithm?

 (a) (b) (c) (d) (e) (f) (g)

A NEW CONCAVE HULL ALGORITHM

595

Fig. 9. Changed shape for Fig. 8. Fig. 10. Empty space as a criterion for region forming.

The time complexity of the proposed algorithm for 3-dimensional S is O(nlogn + rn).

Our proposed algorithm satisfies Galton’s evaluation criteria, with the exception of
question (5). The question has no relationship to the robustness of the proposed algorithm.

4.2 Comparison with Other Concave Hull Algorithms

Before we compare proposed algorithm with others, we discuss about time com-

plexity of our proposed algorithm. In our proposed concave hull algorithm, finding nearest
inside points – these are candidates of target spots for digging – from boundary edges is
a time-consuming process. Developing a more efficient method for this process is a fu-
ture research topic.

Time complexity of proposed algorithm includes two parts:

– T1: generation of convex hull
– T2: digging of convex hull

Time complexity for T1 is depends on used algorithm. As a case of QuickHhull al-

gorithm [23], approximate time complexity is known as O(n log n) for 2-dimensional data-
set. T2 process contains several sub parts, and their time complexity of 2-dimensional algo-
rithm is as follows,

– T2-1: finding nearest inner points for each convex edges: O(rn)
 (r is a number of points in convex/concave hull list)
– T2-2: calculate decision distance: O(r)
– T2-3: add/delete edge from concaveList: O(3)

Therefore, total time complexity is O(nlogn + rn). In the case of n-dimensional al-

gorithm, approximate time complexity for T1 is known as O(n(rm/m!)/r) [23] where n is
a size of dataset, r is a number of components in convex hull list, d is a dimension of
dataset, and m = ⎣d/2⎦. Time complexity for T2 is as follows,

– T2-1: finding nearest inner points for each convex edges: O(rn)

(r is a number of points in convex hull list)
– T2-2: calculate decision distance: O(r)
– T2-3: add/delete edge from concaveList: O(dC2)

JIN-SEO PARK AND SE-JONG OH

596

Total time complexity of proposed algorithm is O(n(rm/m!)/r + rn + dC2).
The number of points in the convex/concave hull list, r, depends on the dataset. If a

dataset is d-dimensional and has n points (instances), minimum value of r is d * (d + 1)
and maximum value is d * n. If every point of the dataset is located in the simplest region
− for example, a triangle is the simplest region for a 2-dimensional dataset − r has a
minimum value. If every point of a dataset is used to form boundary components, r has
maximum value. If r = d * n, the time complexity of T2-1 is O(dn2) and total time com-
plexity of the n-dimensional algorithm exceeds O(dn3). In general, if the dimension of a
dataset is increased, the required number of points to form boundary components of the
concave hull increases. For example, a 20-dimensional dataset needs 21 points for a boun-
dary component whereas a 2-dimensional dataset needs only two points. Therefore, if the
dimension of a dataset increases, r approaches d * n, and computation time increases rap-
idly.

Now we compare proposed algorithm with Swing Arm [24], KNN-based [26], and
χ-Shape [25] algorithms following Galton’s criteria. Table 1 summarizes the result. Pro-
posed algorithm shows good time complexity and extensibility to higher dimension. Other
algorithms are difficult or impossible to extend because of their limitations of foundational
method. For example, χ-Shape makes Delaunay triangulation and erases some outside
edges following threshold value. In that case, Delaunay triangulation can maintain dig-
ging points. In the case of 3-dimensional Delaunay triangulation, the shape of it is same
as convex hull, and it does not maintain digging points inside of Delaunay triangulation.
As a result, χ-Shape cannot extend to 3-dimensional algorithm.

Table 1. Comparison of concave hull algorithms.
 Swing Arm KNN-based χ-Shape Proposed

Concave hull includes line
region Yes No No No

Concave hull can be
separated to multiple regions Yes No No No

Boundary is a Jordan curve Yes No Yes Yes

Has large empty space inside
of concave hull

Depends on
length of swing

arm
Depends on parameter No Depends on

threshold

Possibility of extension
to higher dimension Difficult Difficult Impossible Easy

Time complexity* O(n3) O(n3) O(nlogn) O(nlogn + rn)
* described time complexity is case of 2-dimensional algorithm.

Fig. 11 shows 2-dimensional shapes of concave hulls derived from the χ-Shape and

the proposed algorithms. χ-Shape has a parameter ‘Edge Removal Length (EDL)’, like
the threshold of the proposed algorithm that determines the shape of the concave hull.
The change of shape following the threshold differs from the χ-Shape following EDL
due to the difference of forming algorithms. In general, a simple shape such as ‘A’ differs
slightly between the χ-Shape and proposed algorithms. In a complex case, such as ‘S’, χ-
Shape produces smoother shaped boundary than does the proposed algorithm. However
χ-Shape cannot extend to 3 or higher dimensional data.

A NEW CONCAVE HULL ALGORITHM

597

 (a) χ-Shape (ERL = 10). (b) Proposed (Threshold = 2.0).

 (c) χ-Shape (ERL = 20). (d) Proposed (Threshold = 1.8).

Fig. 11. 2-D concave hulls derived from χ-Shape and proposed algorithms.

Table 2. Summary of two datasets.
Dataset No. of instances No. of classes No. of features

Mammographic 961 2 6
Car Evaluation 1728 3 6

Benign (CM = 0.3009). Malignant (CM = 0.2921).
Fig. 12. Concaveness measure/graph for mammographic mass dataset.

4.3 Experiment of Concaveness Measure

We experiment with the concaveness graph and concaveness measure on two real
datasets. Table 2 summarizes the two datasets. We take the datasets from UCI machine
learning repository (http://archive.ics.uci.edu/ml/). We use threshold = 2.0. Figs. 12 and

JIN-SEO PARK AND SE-JONG OH

598

 Acc (CM = 0.1370). Good (CM = 0.0592). Unacc (CM = 0.5594).

Fig. 13. Concaveness measure/graph for car evaluation dataset.

13 show the experimental results. We can see each dataset class has different levels of
concaveness and concave location. The main advantage of the proposed concaveness
measure and graph is that they can visualize the geometric shape of an n-dimensional
class in a dataset. This visualized information can be used for feature selection [1-6] or a
classification task, because concaveness of a class has a relationship with classification
accuracy.

5. CONCLUSION

A concave hull can more precisely capture the geometric boundary of a dataset than
a convex hull. Here, we propose a new algorithm to produce a concave hull that is easy
to understand and implement. The application area of the concave hull is very wide.
Convex hulls are already widely used in geographic information processing, image pro-
cessing, pattern recognition, and feature selection in machine learning areas. If the con-
vex hull is substituted with a concave hull in those tasks, increased performance or ac-
curacy can be expected. Our contribution point is that we propose concave hull algorithm
for n-dimensional dataset whereas previous researches suggest for 2-dimensional data-
sets.

Concaveness measure and graph is one of application of concave hull. In the classi-
fication task, analysis of the dataset is important, but only basic statistical information
can be obtained from a dataset if it is highly dimensional. If a concaveness graph is used,
then information of geometric boundary can be obtained, and this information can be
applied for planning classification tasks.

We implement concave hull algorithm and concaveness measure/graph using java,
and post them to the website http://user.dankook.ac.kr/~bitl/dkuCH.

REFERENCES

1. P. M. Neil, S. Qiang, and R. Jensen, “Distance measure assisted rough set feature se-
lection,” in Proceedings of the 16th International Conference on Fuzzy Systems,
2007, pp. 1084-1089.

2. A. L. Blum and P. Langley, “Selection of relevant features and examples in machine
learning,” Artificial Intelligence, Vol. 97, 2007, pp. 245-271.

A NEW CONCAVE HULL ALGORITHM

599

3. R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial Intel-
ligence, Vol. 97, 1997, pp. 273-324.

4. I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” The
Journal of Machine Learning Research, Vol. 3, 2003, pp. 1157-1182.

5. W. S. Meisel, Computer-Oriented Approaches to Pattern Recognition, Academic Press,
New York, London, 1997.

6. M. Dash and H. Liu, “Feature selection for classification,” Intelligent Data Analysis,
1997, pp. 131-156.

7. J. Qing, H. Huo, and T. Fang, “Nearest convex hull classifiers for remote sensing
classification,” The International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Vol. 37, 2008, pp. 589-594.

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 2nd ed., The Messachusetts Institute of Technology Press, Cumberland, 2001.

9. X. Kong, H. Everett, and G. T. Toussaint, “The graham scan triangulates simple
polygons,” Pattern Recognition Letters, Vol. 11, 1990, pp. 713-716.

10. X. Yang and G. Wang, “Accelerating algorithm for 3D convex hulls construction,”
Journal of Zhehiang University, Vol. 33, 1999, pp. 111-114.

11. L. Cinque and C. Maggio, “A BSP realisation of Jarvis’s algorithm,” in Proceedings
of the 10th International Conference on Image Analysis and Processing, 1999, pp.
247-252.

12. B. Valentina, “Survey of algorithms for the convex hull problem,” Department of
Computer Science, Oregon State University, 1999.

13. F. Guo, X. Z. Wang, and Y. Li, “A new algorithm for solving convex hull problem
and its application to feature selection,” in Proceedings of the 7th International Con-
ference on Machine Learning and Cybernetics, 2008, pp. 369-373.

14. S. Kokichi. “Robust gift wrapping for the three-dimensional convex hull,” Journal
of Computer and System Sciences, Vol. 49, 1994, pp. 391-407.

15. B. Chazelle, “An optimal convex hull algorithm in any fixed dimension,” Discrete
and Computational Geometry, Vol. 10, 1993, pp. 377-409.

16. P. Szczypinski and A. Klepaczko, “Convex hull-based feature selection in applica-
tion to classification of wireless capsule endoscopic images,” in Proceedings of the
11th International Conference on Advanced Concepts for Intelligent Vision System,
2009, pp. 664-675.

17. L. Zhou, K. K. Lai, and J. Yen, “A new approach with convex hull to measure clas-
sification complexity of credit scoring database,” in Proceedings of the 2nd Interna-
tional Conference on Business Intelligence and Financial Engineering, 2009, pp.
441-444.

18. X. Zhou and Y. Shi, “Nearest neighbor convex hull classification method for face
recognition,” in Proceeding of the 9th International Conference on Computational
Science, 2009, pp. 570-577.

19. M. Stout, J. Bacardit, and J. D. Hirst, “Prediction of recursive convex hull class as-
signments for protein residues,” Bioinformatics, Vol. 24, 2009, pp. 916-923.

20. K. Lu and T. Pavlidis, “Detecting textured objects using convex hull,” Machine Vi-
sion and Applications, Vol. 18, 2007, pp. 123-133.

21. B. Yuan and C. L. Tan, “Convex hull based skew estimation,” Pattern Recognition
Letters, Vol. 40, 2007, pp. 456-475.

JIN-SEO PARK AND SE-JONG OH

600

22. R. Minhas and J. Wu, “Invariant feature set in convex hull for fast image registra-
tion,” in Proceedings of IEEE International Conference on Systems, Man and Cy-
bernetics, 2007, pp. 1557-1561.

23. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex
hull,” ACM Transactions on Mathematical Software, Vol. 22, 1996, pp. 469-483.

24. A. Galton and M. Duckham, “What is the region occupied by a set of points?” in
Proceedings of the 4th International Conference on Geographic Information Science,
LNCS 4197, 2006, pp. 81-98.

25. M. Duckham, L. Kulik, M. Worboys, and A. Galton, “Efficient generation of simple
polygons for characterizing the shape of a set of points in the plane,” Pattern Recog-
nition, Vol. 41, 2008, pp. 3224-3236.

26. A. J. C. Moreira and Y. M. Santos, “Concave hull: A k-nearest neighbors approach
for the computation of the region occupied by a set of points,” in Proceedings of In-
ternational Conference on Computer Graphics Theory and Applications, 2007, pp.
61-68.

Jin-Seo Park is a received his Bachelor degree in Computer Science from Dankook
University, Korea, in 2009. He is currently M.S. student in Department of NanoBio-
Medical Science at Dankook University. He is also researcher of WCU Research Center
of NanoBioMedical Science. His main research interests are machn learning algorithms
and bioinformatics. He developed n-dimensional concave hull algorithm.

Se-Jong Oh received Ph.D., Master, and Bachelor degrees in Computer Science

from Sogang University, Korea, in 2001, 1991, and 1989. From 2001 to 2003, he was a
postdoctoral fellow in the laboratory for Information Security Technology at George
Mason University, U.S.A. Since 2003 he joined the Department of Computer Science at
Dankook University, Korea, and is currently Associate Professor in WCU Research
Center of NanoBioMedical Science. His main research interests are bioinformatics, infor-
mation system, and information system security (Corresponding author).

