
Operating Degrees for XL vs. F4=F5 for GenericMQ
with Number of Equations Linear in that of Variables

Jenny Yuan-Chun Yeh, Chen-Mou Cheng, and Bo-Yin Yang

Academia Sinica, Taipei, Taiwan, {jenny,doug,by}@crypto.tw

Abstract. We discuss the complexity of MQ, or solving multivariate systems
of m equations in n variables over the finite field Fq of q elements. MQ is an
important hard problem in cryptography. In particular, the complexity to solve
overdetermined MQ systems with randomly chosen coefficients when m = cn
is related to the provable security of a number of cryptosystems.
In this context there are two basic approaches. One is to use XL (“eXtended
Linearization”) with the solving step tailored to sparse linear algebra; the other is
of the many variations of Jean-Charles Faugère’s F4=F5 algorithms.
Although F4=F5 has been the de facto standard in the cryptographic community,
it was proposed (Yang-Chen, 2004) that XL with Sparse Solver may be superior
in some cases, particularly the generic overdetermined case withm=n = c+o(1).

At the Steering Committee Meeting of the Post-Quantum Cryptography workshop
in 2008, Johannes Buchmann listed several key research questions to all post-
quantum cryptographers present. One problem in MQ-based cryptography, he
noted, is “if the difference between the operating degrees of XL(-with-Sparse-
Solver) and F4=F5 approaches can be accurately bounded for random systems.”

We answer in the affirmative when m=n = c+o(1), using Saddle Point analysis:
1. For instances with randomly drawn coefficients, the degrees of operation

of XL and F4=F5 has the most pronounced differential in the large-field,
“barely overdetermined” (m�n = c) cases, where the discrepancy is/ pn.

2. In most other types of random systems with m=n = c+ o(1), the expected
difference in the operating degrees of XL and F4/F5 is constant which can
be evaluated mathematically via asymptotic analysis.

Our conclusions are partially backed up using tests with Maple, MAGMA, and
an XL implementation featuring Block Wiedemann as the sparse-matrix solver.

Keywords: sparse solver, Gröbner basis, XL, MQ, asymptotic analysis, F4, F5

1 Introduction

MQ (Multivariate Quadratic), or finding variables x = (x1; x2; : : : ; xn) 2 (Fq)
n from

quadratic equations p1(x) = p2(x) = � � � = pm(x) = 0, is an important hard problem.
Instances of MQ appear in cryptographic situations such as a key step of many attacks
known collectively as algebraic cryptanalysis.

J.-C. Faugère’s F4/F5 algorithms are excellent system-solving algorithms both for
MQ and for even more generalized problems with higher-degree polynomials with
general applicability — that is, they work well for a large variety of systems including



random ones — and are recognized as the de facto standard in the crypto community.
Good commercially available implementations of generic F5 being still sadly lacking,
the F4 implementation in MAGMA [21] is the usual yardstick against which equation-
solving is measured [18].

If we limit ourselves to a somewhat theoretic context, cryptographers would like
to find the best estimate of complexity of solving a random MQ when m=n = c +
o(1). It is generally believed [4] that the probability of any sub-exponential algorithm
solving such random systems becomes negligible as the pameters increase. Such an
algorithm would be the most important generic attack for what is known as multivariate
quadratic PKCs (cf. [5]), and (iii) it determines the security of several provably secure
constructions such as QUAD [4].

1.1 Questions

Despite a near monopoly of Faugère’s F4/F5 algorithms in the crypto community, other
algorithms has been proposed over F4/F5 in various contexts:

1. it has been noted that SAT solvers excel in specific cases;
2. other variants of Gröbner Basis methods, such as MutantXL [22, 23] or GGV [17],

have been claimed to have better general performance; and
3. it has was suggested that the complexity of MQ might be better estimated via XL

with sparse-matrix solvers when m=n = c+ o(1).

While the superiority of “Sparse XL” variants has been suggested since 2004 [28, 30],
the issue of their merit has never been comprehensively settled.

In determining what circumstances favor Sparse XL over F4/F5, and vice versa, it
is clear that systems which have a smaller difference between operating degrees of XL
and F4/F5— smaller fields, generic (“semi-regular”) systems, and more rather than less
overdetermined — are better for XL. By late 2008, system-solving experts understood
that if this difference is small, then XL with Sparse matrices will dominate F4/F5 to
hold as the problem sizes get larger for generic MQ instances with n m=n = c+ o(1),
provided that that certain heuristic conditions continue to hold.

With the Second Post-Quantum Cryptography Workshop at the University of Cincin-
nati (Oct. 17-19, 2008, Cincinnati Ohio, USA), a meeting of the Steering Committee of
the workshop series was held during which Johannes Buchmann named some key re-
search questions in PQCrypto, one being whether the difference between the operating
degrees of XL and F4=F5 approaches can be accurately bounded for random systems.

1.2 Results

We are able to show, using saddle point asymptotic analysis that

1. in many cases of cryptographic interest, the difference in the degrees of operation
for XL and F4/F5 is bounded tightly by a constant;

2. as n increases, the expected value of the difference approach a constant which can
be rigorously determined;



3. the difference is at most 1 for many types of generic systems with m=n = c+o(1),
which means that the degrees of operation are usually the same for XL and F4/F5;

4. a specific case where the difference is unbounded is the large-field case with f =
m� n =constant, which is mathematically expected and explainable.

Example: For most generic large-field systems with m=n = 2, the degree of operation
for XL and F4/F5 are equal — actually about 80% of the time — and in the remaining
cases the difference is 1.

Example: For direct attacks on QUAD-like ciphers (where provable security reduces to
an m=n = 2 generic MQ), the degree of operation for XL and F4/F5 also differs by 1
about half of the time, and are equal the rest of the time.

1.3 Prior and Related Work

Matrix Techniques in Gröbner-Basis Computations: Most modern system-solvers com-
pute Gröbner Bases. In the 1965 original Buchberger algorithm [8], we take equations
two at a time and eliminate around their lead terms by some ordering strategy. Lazard
[19] noted that since each successive step involves linear combinations of the original
equations, we save work by computing and storing a batch of monomial-equation prod-
ucts. Further, by making each equation a row in a matrix, we enable the use of efficient
and well-studied elimination algorithms in linear algebra. This is the initial appearance
of the algorithm now known as XL, and leaves open the use of sparse matrix algorithms.

Initial Appearances of XL with Sparse Solver: In 2004, Yang et al mentioned the pos-
sibility that despite a higher operating degree, XL with a sparse matrix solver would be
better than F4/F5 with a conventional solver (such as Strassen with ! � 2:8) and can
when q = 2 it can potentially outdo a brute force search when m = n [28]. Later that
year, it was noted that in by adding the “F” (“fix”, or guessing) approach [29], FXL with
a sparse solver would be the method with the best time complexity and discusses how
to compute the optimal number of guesses. In 2006 we see an initial implementation of
such an algorithm in [31], now using standard Wiedemann as the solver.

Actual Use of Sparse XL for Cryptanalysis: 2006 marks the initial cryptanalytic paper
[30] where the sparsity of the matrices plays a role. In this work it was noted that using
Wiedemann allows an attack to be carried out with a practical computer in Sparse XL
but not in MAGMA [21] of the time, due to the smaller memory footprint.

Parallelization of Sparse XL: In [15], the authors use a tailored XL algorithm with a
parallelized standard (not block) Wiedemann using a large computer and OpenMP in
defeating a Rainbow/TTS scheme with a suboptimal structure.

In [24], the authors implement an XL algorithm using block Wiedemann for 32
equations and 32 variables using just 8GB of main memory (this runs out of memory in
MAGMA [21] at the time, and as late as 2012).

In [9] we find a block Wiedemann optimized for XL for a variety of different fields,
including F16, F2, and F31, using both contiguous and MPI pragmas.



Legitimatization of Sparse XL: [3] introduces an algorithm termed BooleanSolve but
is effectively the same as XL using a sparse solver and guessing (fixing). The formula
for evaluating monomials is also one that would be used for FXL, not one corresponding
to “the Hybrid Approach” [6] which advocates guessing with F4/F5 instead of XL.

[3] after nearly a decade of denial of neglect against XL still does a poor job of
describing prior art, but it effectively vindicates Sparse XL and affirms the asymptotic
superiority of Sparse XL than F4/F5 for generic systems. While we cannot pretend to
read minds one practical reason for this late concession is precisely the fact pointed out
in this work, i.e., that the degree of operation for XL and F4/F5 are often the same and
has a bounded difference in most random cases.

1.4 Future Work

There are several issues identified by our study.

– Complexities previously evaluated with F4/F5 may need to be recomputed with
Sparse XL variants. [3] does this to some extent but is incomplete in this aspect.

– An obvious improvement to Sparse XL for many situations would be Sparse F4

(XL2). However, an straightforward implementation of that approach would be
wasteful in that it throws away previously performed work with each raised degree.
A better combination between a Wiedemann-like solver and F4 would instantly
lead to great advances.

– The number of columns that actually appear in the final F4/F5 matrix, a parameter
that would determine a cut-off size when XL with sparse matrices catches up to
F4/F5, is still yet to be determined conclusively.

2 History and the Status Quo of XL vs. F4/F5

Notations: We will denote by xb the monomial xb11 x
b2

2 � � �xbnn , and its degree by jbj =Pn
i=1 bi. We will choose a degree of operation D, and let T = T (D) = fxb : jbj � Dg

be the set of degree-D-or-lower monomials. Multiply each equation pi by all monomi-
als xb 2 T (D�deg pi) to form the set of relations R = R(D) = fxbpj(x) = 0 : 1 �
j � m; jbj � D�deg pig at degree� D. T := jT (D)j is the number of terms, and we
will use the combinatorial notation [tk]s(t) for the coefficient of tk in the Maclaurin se-
ries expansion of the function s(t) in t, so T = [tD]

�
(1� tq)n=(1� t)n+1

�
. We denote

also by ! the exponent in the complexity of matrix multiplication/inversion. The infi-
mum of this complexity exponent has recently been shown to be as low as 2:3727 [26],
but for practical purposes is likely to be log2 7 � 2:8.

Basic XL: Solve R(D) as a linear system in monomials xb 2 T (D), with complexity
/ �T (D)

�!
.

The original XL article [12] mentioned the possibility of the Macaulay matrix re-
ducing to a univariate equation. This happens when I = spanR � T � D, then
brute force or Berlekamp’s algorithm will find the solution. However, in the over-
determined case we usually either see that T � I = 0 with a self-contradictory sys-
tem or 1 with exactly 1 solution. Indeed, XL’, or reducing to r equations in r variables



when 1 < T � I <
�
r+D
D

�
, is not known to makes a difference in any practical case

known [27, 29].

XL with Sparse Matrices: The Macaulay matrix M(D) has total weight � Rn2=2,
where R = jR(D)j = mjT (D�2)j is the number of equations. Hence, the linear
system may be solved via (Block) Wiedemann or some similar sparse matrix solver
[11, 25] in � 3

2RTn
2 multiplications. A heuristic variant [30] discards rows randomly

to come down to only T rows and then solve using (Block) Wiedemann, using only
� 3

2T
2n2 multiplications. [30] notes that this produces a single solution for most “ran-

dom” overdetermined systems. If the nullity ` > 1, then perhaps we dropped an essen-
tial equation, or if the system started with more than one solution. Here we must check
below at every vectors of a subspace with an entry of 1 in the slot correspond to the
monomial 1 (“normalized”), about q`�1 points.

Why would randomly tossing rows work? Heuristically, N random vectors in (Fq)
N

span the entire space with non-zero probability� 1� 1
q�1 even asN %1. Empirically,

in many runs failures are even fewer and farther in between, and most singular matrices
are further only of small nullity (1 or 2).

XL2 (a.k.a. MutantXL [14]): Consider starting XL at degree D and performing some
kind of elimination on the equations R(D) to attempt eliminating all the highest-degree
monomials. If we fail, then raise the degree by multiplying each remaining row by every
variable and repeat; if we succeed, then we have found lower-degree equations (“mu-
tants”) which can be multiplied by monomials to form new equations without raising
the operating degree. In this case, with more elimination and degree-raising stages, we
will usually continue to termination [27] without the degree increasing again.

F4/F5: It suffices to know that these are “better” versions of XL2 where the matrix-
building and row-operation sequences are run according to certain rules to avoid redun-
dancy, but F4/F5/XL2 all run at the same degree [27], which is Dreg for semi-regular
systems. The time complexity will be bound by

�
T (=D)

�!
, where T (=D) is the number

of degree-D terms, so
�
n
D

�
for q = 2,

�
n+D
D

�
for large q.

How Does Sparsity Matter? If the dimension of the matrix does not differ by a large
factor, then eventually the log-complexity of XL (with Sparse Matrix Solvers) would
be 2=! that of F4/F5, but only if the latter cannot work with very sparse matrices. The
main determining factor for the dimension of the matrix would then be the degree of
operation, which is the subject of this study.

2.1 Degrees of Operation

Small Fields Even though the claimed “proof” of the formula is mistaken, most experts
expect XL to operate at the degree indicated by the heuristic formula [28, Theorem 2]:

D0 := minfd : [td]
�
(1� t)�n�1 (1� tq)n (1� t2)m (1� t2q)�m

� � 0g:



Analogously, we expect F4/F5 to operate at what is known as “degree of regularity”
(cf. [1] for q = 2):

Dreg := minfd : [td]
�
(1� t)�n (1� tq)n (1� t2)m (1� t2q)�m

�
< 0g:

Large Fields F4/F5/XL2 and XL operate [13, 28] at (respectively)

Dreg := minfd : [td]
�
(1� t)m�n(1 + t)m

�
< 0g;

and
D0 := minfd : [td]

�
(1� t)m�n�1(1 + t)m

�
< 0g:

The former is assumed to be true from the definition of semiregularity; the latter is
proved assuming the Maximal Rank Conjecture.

As functions of n and m, it is obvious that almost always D0(n;m) = Dreg(n +
1;m). Exceptions occur when [tD0 ]

�
((1� t)m�n�1(1 + t)m

�
= 0, the most common

case being m� n = 2 and n odd.

Operating Degree as a Root of a Function via Integrals: The degree d coefficient of the
Maclaurin series of f(t) is given by a contour integral Sf (d) := (2�i)

�1 H �
f(z) z�(d+1)

�
dz.

The power of the first nonpositive (or resp. negative) coefficient of f(t) is then the
smallest integer no less (resp. greater) than the smallest positive real root of Sf . Here
we will denote by cD0 and dDreg the smallest positive roots of the corresponding integral
functions, hence D0 = dcD0e and Dreg = bdDregc+ 1.

Known Asymptotic Results [1, 2, 29]: For m = (c + o(1))n where c is a constant
and for any Fq , we have D0 and Dreg also equal to (w + o(1))n, where w depends
only on c and q. lg T will also asymptotically proportional to n. For any q and ! (i.e.,
algorithm of elimination), one guesses up to a c � m=n to optimize the number of field
multiplications one makes.

2.2 A Note on Why Is not XL Better?

[27, 29] advocated XL with Sparse solvers as asymptotically better than F4/F5 in the
generic case, especially as the memory size gets larger. Indeed, one might imagine that
F4/F5 is no match for XL with sparse matrices if the former works with degree 3 or
log2 7 complexity in matrix size, and the latter degree 2 + o(1). Yet, the question is, if
XL is fundamentally better, why is there not such a report?

Linear Algebra Implementation: It is understandable that the per-multiplication cost in
a sparse matrix solver is larger than that in solving a dense linear system, because linear
algebra with dense systems is a well-known subject. Even linear algebra in finite fields
are optimized very well using tricks like [20] (often known erroneously as the Method
of 4 Russians, due to Lupanov-Kronrod).



The Choice of Parameters However, the difference in speed caused by implementation
issues is usually a constant or at most polynomial factor. We will show later that the
decisive factor was a different one: Typically such investigations examined a large-
field, m � n =constant case, which as we will see below is exactly the worse case for
XL among generic systems with m=n = c+ o(1).

2.3 Matrix Operations in XL vs. F4/F5 if both D0

n
and Dreg

n
= w + o(1)

Difference in Operating Degree Means Difference in Size: If D0 > Dreg, then the
XL matrix dimension increases with respect to F4/F5/XL2 by an extra factor of

(n+Dreg)(n+Dreg + 1) � � � (n+D0 � 1)

(Dreg + 1)(Dreg + 2) � � �D0
�
�
1 +

1

w

�D0�Dreg

:

We could say each increment of D0 �Dreg costs XL (versus F4) a factor of � 3�.

Other Factors: The Sparsity and the structure of the extended Macaulay matrix works
in favor of XL with sparse solvers in terms of better memory footprint and lower com-
plexity. Everything else will be operating against XL. Here we list some differences of
XL vs. F4/F5.

Memory Use and Storage for Matrix: In F4/F5, recent lectures (ECC 2011 [16] and
earlier, Polynomial Equations Solving workshop at KTH, Stockholm, Sweden) gave
density of the non-zero entries involved in the matrix steps as about d�1

p
(6=�n) for

random systems, where d is the degree of the polynomials, so the matrix is fairly dense,
with total weight � T 2=poly(n).

As for the XL Sparse version, each row in the Extended Macaulay Matrix has essen-
tially the same number of entries, which is� n2=2. There are various ways to compress
a sparse system. To take it to the extremes, one could simply store the original equations
and generate all of the Macaulay matrix on the fly. In practice, one need to store col-
umn indices in each block of rows to avoid recomputation. The total Macaulay matrix
storage is thus Tn polylog(n).

However, there is one operational detail which sometimes offsets some of the ad-
vantages of XL which is that when parallelizing, memory needs to be handled in cache
lines and each core needs full vectors data each load in any parallelized solver like
Block Wiedemann, and storage is needed for source and destination. So the memory
footprint for Block Wiedemann vectors is 2T�sv where � is the number of cores and
sv is the vector length to fit cache lines. For small-to-medium cases this is often larger
than the matrix size.

Extra Columns: The number of terms in XL is larger by a factor of T (D)=T (=D) =�
n+D
D

�
=
�
n+D�1

D

�
= n+D

n � (1 +w+ o(1)) even if the two degrees are equal – but the
constant is not far removed from 1.

A more important issue: some terms may be completely eliminated (and with it
the associated columns and pivots) during F4/F5 and never appear again. To give an



example, there are 221 monomials of degree 9 where F4/F5 solves MQ with (n;m) =
(17; 19), but the MAGMA output indicates that the matrix is only about 234 bytes,
which indicates that the matrix is much emptier or smaller than the 242 bytes that a raw
extrapolation would indicate even taking into account the sparsity estimate given above.
This phenomenon was also described in [22, 23] (“the partial enlargement strategy”),
and noted in passing by F4/F5 investigators.

Extraneous Rows: In F4, there are some extraneous rows; in F5, there are no extrane-
ous rows (that will reduce to zero) generated at the cost of some restrictions on linear
algebra; in XL, there are many extra rows in the Macaulay matrix, but any random
row-tossing scheme would cut it down to a square matrix. We thus expect the matrix
dimensions to be relatively close at the same degree.

How and When XL might be Better than F4/F5 We expect that the ratio of the per-
multiplication cost in the linear algebra is going to be more or less constant with good
programming; it is also something that is harder for us to control. However, it is easier
to find cases that favor XL over F4/F5 if we choose cases where there is not a large
difference in the operating degrees.

The attacks in [30] dealt with random MQ where m = 2n, which is related to
the provable security of QUAD, is one such example. The XL-with-Block-Wiedemann
implementation of [9] on a 32-core Xeon E5620 2.4GHz mini-cluster, takes 577 sec-
onds with (n;m) = (24; 48) over F16. MAGMA-2.17 on a Xeon X7550 2.0GHz takes
68628 seconds when (n;m) = (24; 48). This is a good case for XL — the operating
degrees are the same; if we change to the parameters (n;m) = (23; 46), XL operates
at a higher degree (6 vs 5). This is consistent with the above impression that XL does
better where the difference D0 �Dreg is small, in particular zero. In the remainder of
this article, we try to find out which parameters tend to satisfy this property.

3 Degrees of Operation for F4/F5 vs. XL and Asymptotics

In this section, we examine the difference in the operating degree of F4/F5 vs XL.
Clearly dcD0 � dDrege � D0 � Dreg � bcD0 � dDregc � 0. We show that cD0 � dDreg

is asymptotically large in large-field, almost-square systems only. We then discuss how
this reflects on the practical complexities of XL vs F4/F5. All the details would be
included in a future full version.

3.1 Large Fields (q > D), Barely Overdetermined (m=n = 1 + o(1)) Cases

We observe empirically that D0 �Dreg is seldom zero. If m;n ! 1 while m � n =
f > 1 fixed, then the degree of regularity Dreg for a system of m quadratic equations
in n variables is asymptotically given by dDreg = m

2 �hf;1 �
p

m
2 � (1+o(1)) [2], where

hf;1 =
p
2f + 1 +O(f�1=6) is the largest zero of the Hermite polynomial of order f .

Hence cD0 � dDreg = (hf;1 � hf�1;1)
p

m
2 (1 + o(1)).



Practical Implication for XL vs. F4/F5: It is difficult for XL with Sparse solvers to
catch up to F4/F5, because cD0� dDreg � 1, and at some point (which for m�n = 2 is
(20; 22)) becomes always 2 or more, which means that the number of monomials in XL
is > 10� or more that of F4/F5, without taking into account the pivots that disappear
from the later stages of F4/F5. In fact, the only practical way that XL would be better
might be because the matrix would be too large to handle in F4/F5.

3.2 Large Fields (q > D), QUAD-like (m=n � � > 1) case:

The asymptotic expansion for dDreg for large q is given by [2]:

dDreg = (��1

2
�
p
�(�� 1))n+

�a1
2(�(�� 1))

1
6

n
1
3�
�
2� 2�� 1

4(�(�� 1))
1
2

�
+O(

1

n1=3
):

So in a typical case for QUAD, m = 2n (� = 2), and

dDreg(n; 2n) � 0:0858n+ 1:0415n1=3 � 1:4697 +O(n�1=3):

It is worth noting that in asymptotic analysis of the root of a function using coa-
lescent saddle points [10], due to the characteristics of the Airy integral expansions,
typically the expansion is a series in n�1=3 missing the second term, or f(n) :=
a0n

�+a2n
��2=3+a3n

��1+a4n
��4=3+� � � , so, on first thought we would expect a dif-

ference in the next-to-leading term, or cD0(n; 2n)�dDreg(n; 2n) = a2n
1=3+O(1)%1

as n!1, except that it doesn’t but rather approaches a constant near 0:207.
Indeed, we can carry through the same Coalescent Saddles computations to find that

cD0(n; 2n) � 0:0858n+ 1:0415n1=3 � 1:2626 + o(1); (1)

or � dDreg(n; 2n) + 0:2071 + o(1): (2)

We verified the 0:207 asymptotic for semiregular systems over the range n =
10 � � � 120000. Practically, this number starts at around 1/4 in the practical range and
decreases toward 0:207. The upshot is that when m=n � 2, more than three quar-
ters of the time XL and XL2/F4/F5 runs at the same degree.

Practical Implications for XL vs. F4/F5: D0(n; 2n) �Dreg(n; 2n) � 1 for almost all
n. Furthermore, if we regard the linear and n1=3 terms as supplying a random fractional
part between 0 and 1, we can expect that exactly 20:7% among all n have operating
degrees D0(n; 2n) and Dreg(n; 2n) differ by 1. This puts XL in a (relatively speaking)
good position compared to F4/F5. Degree increases (or drops) in XL/F4/F5 matter a lot
because the number of monomials increases by a factor that is often between 4� to 6�
but asymptotically a factor of � (1 + 0:0858)=(0:0858) � 12:66.

If we fix q and increase n, the system ceases to be “large-field” in that eventually
Dreg > q. However, for practical attacks we expect the degree drop D0 � Dreg to be
limited to 1 (see following sections). Empirically size of the matrix in the MAGMA F4

is also somehow larger for the same T for m=n = 2 cases than for m=n � 1 cases.
This is again understandable heuristically in the sense that n is larger but D is smaller



if we compare an m=n = 2 instance with an equal-T instance where m=n � 1, which
means far fewer eliminated columns and pivots.

We conclude that in QUAD (m=n = 2) type instances, estimation of cryptographic
complexities must take into account attacks using XL as opposed to F4/F5, if not using
the former outright.

An Explanation of 0:207: Why does it happen here that the n1=3 term coefficient does
not change? There is a good reason for that. A heuristic “proof” is that we can write the
uniform asymptotic expansion as follows

[Dreg =

�
1� ��1

2
�
p
(1� ��1)

�
m+

�a1 � (��1)2=3
2(1� ��1))

1
6

m
1
3�
 
2� 2� ��1

4(1� ��1)
1
2

!
+O(

1

m
1
3

):

Hence, if we write dDreg(n; �n) = f(��1;m), then

cD0(n; 2n)� dDreg(n; 2n) = f

��
1

2
+

1

2n

�
; 2n

�
� f

�
1

2
; 2n

�
� 1

2n
� @f

@(��1)

����
��1= 1

2
;m=2n

=

 p
2� 1

2

!
+ o(1);

which explains whyD0(n; 2n+k)�Dreg(n; 2n+k) is also on average 0:207 as soon as
n gets somewhat large. We verified this for integers from k = �10; : : : ; 10. Similarly,
we can verify that for m=n � 1:5 and 2:5, the degree drop converges to 0:367 and
0:145, respectively. This analysis can be made rigorous (and similarly for the heuristic
“proof” below) with some complex analysis.

The Distinctiveness of the m=n = 1 + o(1) case: The reason that the Large Fields
(q > D), Barely Overdetermined case is so different is that � = 1 is a singularity and
hence there is no way to take a differentiative at that point with respect to �.

3.3 Small-Field Cases

For F2, F3, and F4 and all � = m=n > 1, D0 �Dreg � 1 for all practical cases.

F2,m = n case: this resembles the large-field, m=n = 2 case in behavior. In part this
is because we can think of the “field equations” x2i = xi as n more equations. Note that
as the smallest field, the behavior of F2 is not truly representative of all small fields, but
F2 is so important in cryptography we simply have to use it as the example. If we carry
out the requisite coalescent saddle points computations, we find that

cD0 � dDreg = 0:2339 + o(1):

Just like for large q cases, this implies that (for all practical purposes)D0�Dreg � 1 and
is only non-vanishing on less than a quarter of possible n’s on average. We verified that
this average is roughly correct by using Maple to compute the series up to n = 10000.



Practical Implications: In the practical range, we expect that Sparse XL will do better
than F4/F5 as is first claimed in [28], verified by [24] and conceded in [3]. However,
this is not a good case for Sparse XL because XL will be comfortably outrun by brute
force searches. In the parallelized Block Wiedemann implementations of XL of [9],
it was seen that for 35 variables in 35 equations takes 45571s on a test machine with
64 2.3GHz AMD Bulldozer cores and 256GB of contiguous main memory. The same
machine would use < 1s on a brute-force search [7].

F2, m = 2n case: Similar to the previous case, we did Coalescent Saddle Point
analysis to find that cD0 � dDreg = 0:1169 + o(1):

This implies that D0 �Dreg � 1 in practice for all D0, and the proportion of n where
D0 �Dreg = 1 is a scant 15% within or less for n � 10000.

This is a more interesting case to be talking about XL because of two reasons. One
is that this is the security assumption for QUAD stream ciphers and variants. The other
is that it is easier for XL to beat brute force. Unfortunately, it is not that easy. For an
example, at n = 96; m = 192, Sparse XL is projected to take 294:6 field multipli-
cations. Each field multiplication takes about 1/20 of a cycle. But if we consider the
memory footprint, XL still loses badly to a brute-force attack. If we take memory size
into account, to use XL in F2, we should continue to guess until m=n is close to 3.

Other Small Fields We can verify that for F3 and F4 n-variables-n-equation systems
have D0 �Dreg � 1, just like F2. In fact,

cD0(n; n; 3)� dDreg(n; n; 3) = 0:3660 + o(1)cD0(n; 2n; 3)� dDreg(n; 2n; 3) = 0:1650 + o(1)cD0(n; n; 4)� dDreg(n; n; 4) = 0:4940 + o(1)cD0(n; 2n; 4)� dDreg(n; 2n; 4) = 0:1912 + o(1)

Using maple, one can check for m = n that for roughly 38% and 53% of all n < 5000
that D0 �Dreg = 1 for F3 and F4 respectively, and the other times the two degrees are
equal. What this means is that generic equations in smaller fields generally favor XL
over F4/F5. However (although a little surprising to begin with), when facing a system
with m = n in these small fields we need to check whether brute force is best also.

Heuristic Evaluation of cD0�
[Dreg for small fields: Without entering into the com-

plex analysis required to prove all of the above rigorously, we will compute an exam-
ple the asymptotic behavior of cD0(n; 2n; 2)� dDreg(n; 2n; 2). Here dDreg(n; 2n; 2) andcD0(n; 2n; 2) are respectively the smallest positive root of

S1(d) :=
1

2�i

I
(1 + z)n dz

zd+1 (1 + z2)
2n ; and S2(d) :=

1

2�

I
(1 + z)n dz

(1� z) zd+1 (1 + z2)
2n :



Let w = d=n and consider S1 and S2 as special cases of the following contour integral

S(n;w;�; �; ) :=

I
dz

2�iz

�
(1 + z)�

zw (1 + z2)� (1� z)

�n

:

To evaluate this we need the following equation in z to have double roots:

�w
z

+
�

1 + z
� 2�z

1 + z2
+



1� z
= 0:

If we let w := F (�; �; ) represent the smallest positive real w = d=n that allows
double roots for z, then we see that F (�; �; 0) is the coefficient of the �(n) term in
the asymptotic expansion of dDreg(�n; �n; 2) and cD0(�n; �n; 2), and if we skip all the
analysis, we eventually get to

cD0(n; 2n; 2)�dDreg(n; 2n; 2) =

�
F (1; 2;

1

n
)� F (1; 2; 0)

�
n =

@F

@

����
�=1;=0

+o(1);

(3)
which we may evaluate with implicit differentiation to obtain the 0:1169 above.

3.4 Direct Attacks on QUAD

In a direct attack against QUAD we face this problem: take random polynomials P =
(P1; : : : ; Pn) and Q = (Q1; : : : ; Qn) in the variables x = (x1; : : : ; xn). Solve `n
equations for x using vectors y1; : : : ; y`:

y1 = P(x); y2 = P(Q(x)); y3 = P(Q(Q(x))); : : : :

This arises from studying the security of the stream cipher QUAD [4]. [30] suggested
this direct attack in the known-plaintext setting and verified empirically that this system
behaves like random systems (i.e., a system with n random quadratic equations, n ran-
dom quartic equations, and so on) if one tries to solve it with Gröbner basis methods,
including XL.

Our investigations and tests show that the systems created in direct algebraic at-
tacks on QUAD-like systems also have D0 � Dreg � 1 if we assume semi-regularity,
and hence we expect XL to overtake F4/F5 as the best estimate of complexities for
moderately large n.

F2 cases: We compare the operating degrees of XL and F4/F5 as given by [30, Sec. 4.5]:

D0(QUAD(2; n; n)) = min

�
D : [tD] (1+t)n

(1�t)

�
(1 + t2)(1 + t4) � � � (1 + t2

`

)
�
�n

� 0

�
;

Dreg(QUAD(2; n; n)) = min

�
D : [tD] (1+t)n

((1+t2)(1+t4)���(1+t2` ))
n < 0

�
:

As ` % 1, we have
�
(1 + t2)(1 + t4) � � � (1 + t2

`

)
�

= (1 � t2)�1
�
1� t2

`

�
�!

(1� t2)�1, hence

D0(QUAD(2; n; n)) = D0(n; 2n; large q); Dreg(QUAD(2; n; n)) = Dreg(n; 2n; large q):

So the operating-degree difference of XL and F4/F5 bounded by 1 and average 0:2071.



Large-Field Cases: As found by [30, Sec. 4.4], using more than the quartics does not
lead to substantial gains. We will hence restrict ourselves to the direct attack using only
quadratics and quartics:

D0(QUAD(large q; n; n)) = min
n
D : [tD]

�
(1� t)�(n+1)(1� t2)(1� t4)

�n
< 0
o
;

Dreg(QUAD(large q; n; n)) = min
n
D : [tD]

�
(1� t)�n(1� t2)(1� t4)

�n
< 0
o
:

We discover thatD0(QUAD(large q; n; n))�Dreg(QUAD(large q; n; n)) is zero for roughly
half of all n and 1 for the other half. This might seem surprising but again this can be
explained as follows: Let R(�) be the smallest positive w that gives a double root to
d
dz (1 � z)�(1 + z)2(1 + z2)z�w = 0: Then as before dDreg(QUAD(large q; n; n)) =

n(R(1) + o(1)) while cD0(QUAD(large q; n; n)) = n(R(1 � 1
n ) + o(1)). The implicit

function theorem lets us find R0(1) and derive (heuristically, but can be made rigorous):cD0(QUAD(large q; n; n))� dDreg(QUAD(large q; n; n)) = 0:4843 + o(1):

We note here that the asymptotic result is similar if we include higher-order equations.

4 Discussion and Concluding Remarks:

In this paper, we discuss the difference in the degrees of operation of the XL and the
F4/F5 alforithms (and all similar algorithms such as MutantXL/XL2 [23], or the GGV
algorithm of [17]) for multivariate systems with randomly chosen coefficients, where
the ratio of the number of equations to the number of variables is nearly constant. We
show that usually the difference is small. In fact, for most cryptographically relevant
cases, it is at most one, and the expectation value over many possible set of parameters
can be evaluated precisely using asymptotic analysis.

The inevitable conclusion is that for generic/random and mildly overdetermined
systems with m=n = c + o(1), XL with sparse matrices may be a better way to find
roots than any of the more advanced methods. This vindicates the conjectures of [27,29]
regarding XL with Sparse solvers, and is consistent with the recent article [3] which
implicitly assumes a sparse matrix method and XL rather than F4/F5.

Future work remains to determine the best way to implement similar methods using
Wiedemann type solvers. Here practical study is made difficult as so much details about
F5 and MAGMA-F4 are unknown, but we believe that we have shed some light on
the comparison of XL vs. F4/F5 in theory. We are preparing a full version for journal
publication.

Acknowledgements

Thanks are due for their sponsorship to Academia Sinica (for an Career Advancement
Award to BY) and to the National Science Council of Taiwan for grant NSC100-2628-
E-001-004-MY3.

Many more thanks and appreciation are due from BY and CMC to Johannes Buch-
mann, who over many years had been a good friend who offers sage advice, an esteemed
and supportive elders of our trade, as well as a valued colleague and co-author.



References

1. M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of Gröbner basis computation
of semi-regular overdetermined algebraic equations. In Proceedings of the International
Conference on Polynomial System Solving, pages 71–74, 2004. Previously INRIA report
RR-5049.

2. M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang. Asymptotic expansion of the degree of
regularity for semi-regular systems of equations. In P. Gianni, editor, MEGA 2005 Sardinia
(Italy), 2005.

3. Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On the
complexity of solving quadratic boolean systems. Journal of Complexity, 29(1):53–75, 2013.
ISSN 0885-064X.

4. Côme Berbain, Henri Gilbert, and Jacques Patarin. QUAD: A practical stream cipher with
provable security. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes
in Computer Science, pages 109–128. Springer, 2006.

5. Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post Quantum Cryp-
tography. Springer-Verlag Berlin, 1st edition, 2008. ISBN 3-540-88701-6.

6. L. Bettale, J.-C. Faugère, and L. Perret. Hybrid approach for solving multivariate systems
over finite fields. Journal of Mathematical Cryptology, 3(3):177–197, 2010.

7. Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederha-
gen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial systems in F2.
In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of Lecture
Notes in Computer Science, pages 203–218. Springer, 2010.

8. B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck, 1965.

9. Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, and Bo-Yin Yang. Solving quadratic
equations with xl on parallel architectures. In Emmanuel Prouff and Patrick Schaumont, ed-
itors, CHES, volume 7428 of Lecture Notes in Computer Science, pages 356–373. Springer,
2012.

10. C. Chester, B. Friedman, and F. Ursell. An extension of the method of steepest descents.
Proceedings of Cambridge Philosophical Society, 53:599–611, 1957.

11. Don Coppersmith. Solving homogeneous linear equations over GF(2) via block wiedemann
algorithm. Mathematics of Computation, 62(205):333–350, January 1994.

12. Nicolas T. Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient al-
gorithms for solving overdefined systems of multivariate polynomial equations. In Ad-
vances in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, pages 392–407. Bart Preneel, ed., Springer, 2000. Extended Version: http:
//www.minrank.org/xlfull.pdf.

13. Claus Diem. The XL-algorithm and a conjecture from commutative algebra. In Advances in
Cryptology — ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Science, pages
323–337. Pil Joong Lee, ed., Springer, 2004. ISBN 3-540-23975-8.

14. Jintai Ding, Johannes Buchmann, Mohamed Saied Emam Mohamed, Wael Said Abd El-
mageed Mohamed, and Ralf-Philipp Weinmann. Mutant XL. talk at the First International
Conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, 2008.

15. Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing Chen, and Chen-Mou Cheng.
New differential-algebraic attacks and reparametrization of rainbow. In Applied Cryptog-
raphy and Network Security, volume 5037 of Lecture Notes in Computer Science, pages
242–257. Springer, 2008. cf. http://eprint.iacr.org/2008/108.

16. Jean-Charles Faugère. Solving efficiently structured polynomial systems and applications in
cryptology. http://ecc2011.loria.fr/slides/faugere.pdf, September 2011. Talk at ECC 2011,
9:30 AM on Sep. 20, 2011.



17. Shuhong Gao, Yinhua Guan, and Frank Volny. A new incremental algorithm for computing
groebner bases. In Wolfram Koepf, editor, ISSAC, pages 13–19. ACM, 2010.

18. Antoine Joux and Vanessa Vitse. A variant of the F4 algorithm. In Aggelos Kiayias, edi-
tor, CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 356–375. Springer,
2011.

19. Daniel Lazard. Gröbner-bases, Gaussian elimination and resolution of systems of algebraic
equations. In EUROCAL 83, volume 162 of Lecture Notes in Computer Science, pages 146–
156. Springer, March 1983.

20. O. B. Lupanov. On rectifier and contact-rectifier circuits. Akademii Nauk SSSR, 111:1171–
1174, 1956. ISSN 0002ąV3264.

21. MAGMA project, Computational Algebra Group, University of Sydney. The MAGMA
computational algebra system for algebra, number theory and geometry. http://magma.
maths.usyd.edu.au/magma/.

22. Mohamed Saied Emam Mohamed, Daniel Cabarcas, Jintai Ding, Johannes Buchmann, and
Stanislav Bulygin. MXL3: An efficient algorithm for computing Gröbner bases of zero-
dimensional ideals. In Donghoon Lee and Seokhie Hong, editors, ICISC, volume 5984 of
Lecture Notes in Computer Science, pages 87–100. Springer, 2009.

23. Mohamed Saied Emam Mohamed, Wael Said Abd Elmageed Mohamed, Jintai Ding, and
Johannes Buchmann. MXL2: Solving polynomial equations over GF(2) using an improved
mutant strategy. In Johannes Buchmann and Jintai Ding, editors, PQCrypto, volume 5299 of
Lecture Notes in Computer Science, pages 203–215. Springer, 2008.

24. Wael Said Abdelmageed Mohamed, Jintai Ding, Thorsten Kleinjung, Stanislav Bulygin, and
Johannes Buchmann. PWXL: A parallel Wiedemann-XL algorithm for solving polynomial
equations over GF(2). In Carlos Cid and Jean-Charles Faugère, editors, Proceedings of the
2nd International Conference on Symbolic Computation and Cryptography, pages 89–100,
June 2010.

25. Douglas Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions
on Information Theory, IT-32(1):54–62, 1976.

26. Virginia Vassilevska Williams. Breaking the Coppersmith-Winograd barrier. www.cs.
berkeley.edu/~virgi/matrixmult.pdf, 2011.

27. Bo-Yin Yang and Jiun-Ming Chen. All in the XL family: Theory and practice. In ICISC
2004, volume 3506 of Lecture Notes in Computer Science, pages 67–86. Springer, 2004.

28. Bo-Yin Yang and Jiun-Ming Chen. Theoretical analysis of XL over small fields. In ACISP
2004, volume 3108 of Lecture Notes in Computer Science, pages 277–288. Springer, 2004.

29. Bo-Yin Yang, Jiun-Ming Chen, and Nicolas Courtois. On asymptotic security estimates
in XL and Gröbner bases-related algebraic cryptanalysis. In ICICS 2004, volume 3269 of
Lecture Notes in Computer Science, pages 401–413. Springer, Oct. 2004.

30. Bo-Yin Yang, Owen Chia-Hsin Chen, Daniel J. Bernstein, and Jiun-Ming Chen. Analysis of
QUAD. In Alex Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Science,
pages 290–307. Springer, 2007.

31. Bo-Yin Yang, Owen Chia-Hsin Chen, and Jiun-Ming Chen. The limit of XL imple-
mented with sparse matrices. Workshop record, PQCrypto workshop, Leuven 2006.
http://postquantum.cr.yp.to/pqcrypto2006record.pdf.


