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Abstract. The Hidden Field Equations (HFE) Cryptosystem as pro-
posed by Patarin is one of the best known and most studied multivariate
schemes. While the security of the basic scheme appeared to be very
weak, the HFEv- variant seems to be a good candidate for digital sig-
nature schemes on the basis of multivariate polynomials. However, the
currently existing scheme of this type, the QUARTZ signature scheme,
is hardly used in practice because of its poor efficiency. In this paper
we analyze recent results from Ding and Yang about the degree of reg-
ularity of HFEv- systems and derive from them design principles for
signature schemes of the HFEv- type. Based on these results we pro-
pose the new HFEv- based signature scheme Gui, which is more than
100 times faster than QUARTZ and therefore comparable with classical
signature schemes such as RSA and ECDSA.
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1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [25], DSA [16] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers arrive. The rea-
son for this is Shor’s algorithm [26], which solves number theoretic problems
like integer factorization and discrete logarithms in polynomial time on a quan-
tum computer. Therefore, one needs alternatives to those classical public key
schemes, based on hard mathematical problems not affected by quantum com-
puter attacks.

Besides lattice, code and hash based cryptosystems, multivariate cryptogra-
phy is one of the main candidates for this [1]. Multivariate schemes are in general
very fast and require only modest computational resources, which makes them
attractive for the use on low cost devices like smart cards and RFID chips [4,5].
Additionally, at least in the area of digital signatures, there exists a large number



of practical multivariate schemes [10,17].

In 2001, Patarin and Courtois proposed a multivariate signature scheme
called QUARTZ [21], which is based on the concept of HFEv-. While QUARTZ
produces very short signatures (128 bit), the signature generation process is very
slow (at the time about 11 seconds per signature [5]). The main reason for this
is the use of a high degree HFE polynomial (for QUARTZ this degree is given
by D = 129), which makes the inversion of the central map very costly.

At the time of the design of the QUARTZ scheme, very little was known
about the complexity of algebraic attacks against the HFE family of systems, in
particular, the HFEv- schemes. Therefore, the authors of QUARTZ could not
base their parameter choice on theoretical foundations. Recently, there has been
a fundamental breakthrough in terms of understanding the behavior of algebraic
attacks on the HFE family of systems [8,9,11], which gives an upper bound of
the degree of regularity of Gröbner basis attacks against those schemes.

In this paper, we review and analyze the results of Ding and Yang and de-
rive from these results design criteria for HFEv- based signature schemes. In
particular we show that we can, by increasing the numbers a of Minus equa-
tions and v of Vinegar variables, achieve adequate security even for low degree
HFE polynomials and that the upper bound on the degree of regularity given by
Ding and Yang is reasonably tight. Based on our analysis, we propose the new
HFEv- based signature scheme Gui 1, which uses an HFE polynomial of very
small degree, namely D ∈ {5, 9, 17}. This enables us to speed up the signature
generation process of QUARTZ by a factor of more than 100, without weakening
the security of the scheme. By doing so, we create a highly practical multivariate
signature scheme, whose performance is comparable to that of classical signature
schemes such as RSA and ECDSA.

The rest of this paper is organized as follows. In Section 2 we give an intro-
duction into the area of multivariate cryptography and in particular Big-Field
signature schemes. Section 3 introduces the HFEv- signature scheme and the
changes made to this scheme by Patarin and Courtois when defining QUARTZ.
Furthermore, in this section, we discuss the performance and the security of
HFEv- based signature schemes. In Section 4 we analyze the results of Ding
and Yang on the behaviour of direct attacks on HFEv- schemes by performing a
large number of experiments and present the design criteria we derive from that.
Based on these results, we propose in Section 5 our new multivariate signature
scheme Gui. Section 6 gives details on the implementation of the scheme and
compares the efficiency of Gui with that of some standard signature schemes.
Finally, Section 7 concludes the paper.

1 We call our new scheme Gui, after tripod earthenware pottery dating back to the
4000-year-old Longshan culture [28].



2 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate quadratic
polynomials. (see equation (1)).
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The security of multivariate schemes is based on the

MQ Problem: Givenmmultivariate quadratic polynomials p(1)(x), . . . , p(m)(x)
in n variables x1, . . . , xn, find a vector x̄ = (x̄1, . . . , x̄n) such that p(1)(x̄) = . . . =
p(m)(x̄) = 0.
The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic poly-
nomials over the field GF(2) [14].

To build a public key cryptosystem based on the MQ problem, one starts with
an easily invertible quadratic map F : Fn → Fm (central map). To hide the
structure of F in the public key, one composes it with two invertible affine (or
linear) maps S : Fm → Fm and T : Fn → Fn. The public key is therefore given
by P = S ◦ F ◦ T . The private key consists of S, F and T and therefore allows
to invert the public key.

Note: Due to the above construction, the security of multivariate schemes is
not only based on the MQ-Problem but also on the EIP-Problem (“Extended
Isomorphism of Polynomials”) of finding the composition of P.

In this paper we concentrate on multivariate signature schemes of the BigField
family. For this type of multivariate schemes, the map F is a specially chosen
easily invertible map over a degree n extension field E of F. One uses an isomor-
phism Φ : Fn → E to transform F into a quadratic map

F̄ = Φ−1 ◦ F ◦ Φ (2)

from Fn to itself. The public key of the scheme is therefore given by

P = S ◦ F̄ ◦ T = S ◦ Φ−1 ◦ F ◦ Φ ◦ T : Fn → Fn. (3)

The standard signature generation and verification process of a multivariate
BigField scheme works as shown in Figure 1.
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Fig. 1. General workflow of multivariate BigField signature schemes

Signature generation: To generate a signature for a message h ∈ Fn, one com-
putes recursively x = S−1(h) ∈ Fn, X = Φ(x) ∈ E, Y = F−1(X) ∈ E,
y = Φ−1(Y ) ∈ Fn and z = T −1(y). The signature of the message h is z ∈ Fn.

Verification: To check the authenticity of a signature z ∈ Fn, one simply com-
putes h′ = P(z) ∈ Fn. If h′ = h holds, the signature is accepted, otherwise
rejected.

A good overview on existing multivariate schemes can be found in [7].

Two widely used variations of multivariate BigField signature schemes are the
Minus variation and the use of additional (Vinegar) variables.

Minus-Variation: The idea of this variation is to remove a small number of
equations from the public key. The Minus-Variation was first used in schemes
like SFLASH [22] to prevent Patarins Linearization Equations attack [23] against
the Matsumoto-Imai cryptosystem [20].

Vinegar-Variation: The idea of this variation is to parametrize the central
map F by adding (a small set of) additional (Vinegar) variables. In the context
of multivariate BigField signature schemes, the Vinegar variation can be used
to increase the security of the scheme against direct and rank attacks.



3 The HFEv- Signature Scheme

In this section we introduce the HFEv- signature scheme, which is the basis of
QUARTZ and our new signature scheme Gui (see Section 5).
Let F = Fq be a finite field with q elements and E be a degree n extension
field of F. Furthermore, we choose integers D, a and v. Let Φ be the canonical
isomorphism between Fn and E, i.e.

Φ(x1, . . . , xn) =

n∑
i=1

xi ·Xi−1. (4)

The central map F of the HFEv- scheme is a map from E×Fv to E of the form

F(X) =

qi+qj≤D∑
0≤i≤j

αij ·Xqi+qj

+

qi≤D∑
i=0

βi(v1, . . . , vv) ·Xqi

+ γ(v1, . . . , vv), (5)

with αij ∈ E, βi : Fv → E being linear and γ : Fv → E being a quadratic
function.
Due to the special form of F , the map F̄ = Φ−1 ◦F ◦Φ is a quadratic polynomial
map from Fn+v to Fn. To hide the structure of F̄ in the public key, one com-
bines it with two affine (or linear) maps S : Fn → Fn−a and T : Fn+v → Fn+v

of maximal rank.

The public key of the scheme is the composed map P = S ◦F̄ ◦T : Fn+v → Fn−a,
the private key consists of S, F and T .

Signature generation: To generate a signature for a message h ∈ Fn−a, the signer
performs the following three steps.

1. Compute a preimage x ∈ Fn of h under the affine map S.
2. Lift x to the extension field E (using the isomorphism Φ). Denote the result

by X.
Choose random values for the vinegar variables v1, . . . , vv ∈ F and compute
FV = F(v1, . . . , vv).
Solve the univariate polynomial equation FV (Y ) = X by Berlekamp’s algo-
rithm and compute y′ = Φ−1(Y ) ∈ Fn.
Set y = (y′||v1|| . . . ||vv).

3. Compute the signature z ∈ Fn+v by z = T −1(y).

Signature verification: To check the authenticity of a signature z ∈ Fn+v, one
simply computes h′ = P(z) ∈ Fn−a. If h′ = h holds, the signature is accepted,
otherwise rejected.



3.1 QUARTZ

In 2001, Patarin and Courtois proposed the multivariate signature scheme QUARTZ
[21], which is based on the concept of HFEv-. Indeed, the public and private maps
of QUARTZ are HFEv- maps with the parameters

(F, n,D, a, v) = (GF(2), 103, 129, 3, 4).

Due to this choice, the public key P of QUARTZ is a quadratic map from F107

to F100. The public key size of QUARTZ is 71 kB, the private key size 3 kB.

The input length of QUARTZ is only n − a = 100 bit. Therefore, it is pos-
sible for an attacker to use a birthday attack to find two different messages m1

and m2 which map to the same input value h ∈ F100 and therefore to the same
signature.
To prevent this kind of attack, Patarin and Courtois developed a special pro-
cedure for the signature generation process of QUARTZ. Roughly spoken, one
computes four HFEv- signatures (for the messages h, H(h||0x00), H(h||0x01)
and H(h||0x02)) and combines them to a single 128 bit signature of the mes-
sage h. Analogously, during the signature verification process, one has to use the
public key P four times.

3.2 Performance

The most costly step during the signature generation process of HFEv- based
signature schemes such as QUARTZ is the inversion of the univariate polyno-
mial equation FV over the extension field E. This step is usually performed by
Berlekamp’s algorithm, whose complexity can be estimated by [24]

O(D3 + n ·D2). (6)

As can be seen from equation (6), the complexity of inverting FV and therefore of
the signature generation process of HFEv- based schemes is mainly determined
by the degree D of the HFE polynomial. Due to the high degree of the HFE
polynomial used in QUARTZ, the inversion of FV is very costly. Furthermore, we
have to perform this step four times during the signature generation of QUARTZ.
Additionally, the design of QUARTZ requires the central equation FV (Y ) = X
to have a unique root. Since, after choosing random values for Minus equations
and Vinegar variables, FV can be seen as a random function, this happens with
probability about 1

e . Altogether, we therefore have to run Berlekamp’s algorithm
about 4 ·e times during the signature generation process of QUARTZ. Thus, the
QUARTZ signature scheme is rather slow and it takes about 11 seconds to
generate a signature [5].

3.3 Security of HFEv- based schemes

The most important attacks against signature schemes of the HFEv- type are

– the MinRank attack and
– direct algebraic attacks.



The MinRank attack on HFE In this paragraph we describe the attack of
Kipnis and Shamir [18] against the HFE cryptosystem. For the simplicity of our
description we restrict ourselves to homogeneous maps F and P.
The key idea of the attack is to lift the maps S, T and P to functions S?, T ?

and P? over the extension field E. Since S and T are linear maps, S? and T ?

have the form

S?(X) =

n−1∑
i=1

si ·Xqi and T ?(X) =

n−1∑
i=1

ti ·Xqi , (7)

with coefficients si and ti ∈ E. The function P? can be expressed as

P?(X) =

n−1∑
i=0

n−1∑
j=0

p?ijX
qi+qj = X · P ? ·XT , (8)

where P ? = [p?ij ] andX = (Xq0 , Xq1 , . . . , Xqn−1

) . Due to the relation P?(X) =

S? ◦ F ◦ T ?(X) we get S? −1 ◦ P?(X) = F ◦ T ?(X) and

P̃ =

n−1∑
k=0

sk ·G?k = W · F ·WT (9)

with g? k
ij = (p?i−k mod n,j−k mod n)q

k

, wij = sq
i

j−i mod n and F being the n× n
matrix representing the central map F . Note that, due to the special structure
of F , the only non zero entries in the matrix F are located in the upper left r×r
submatrix (r = blogqD − 1c+ 1).

Therefore, the rank of the matrix W · F ·WT is less or equal to r, which means
that we can determine the coefficients sk of equation (9) by solving an instance
of the MinRank problem.
In the setting of HFEv-, the rank of this matrix can, for odd characteristic, be
bounded from above by [11]

Rank(P̃ ) ≤ r + a+ v. (10)

Under the assumption that the vinegar maps βi look like random functions, we
find that this bound is tight.
For fields of even characteristic we eventually have to decrease this rank by 1,
since over those fields, the matrix P̃ is always of even rank. The complexity of
the MinRank attack against HFEv- based schemes is therefore given roughly by

ComplexityMinRank = O(qn·(r+v+a−1) · (n− a)3). (11)

Direct attacks For the HFE family of schemes, the direct attack, namely the
attack by directly solving the public equation P(x) = h by an algorithm like XL
or a Gröbner basis method such as F4 [12] is a major concern due to which hap-
pened to HFE challenge 1. At the time of the design of QUARTZ, very little was



known theoretically about the complexity of algebraic attacks against the HFE
family of systems, in particular, the HFEv- schemes. The authors of QUARTZ
did not actually give an explanation for their selection of the parameters and
therefore the parameter selection of their scheme was not supported by theoret-
ical results. We need to point out that, as has been shown by experiments [19],
the public systems of HFEv- based schemes can be solved easier than random
systems.
Recently, there has been a fundamental breakthrough in terms of understanding
how algebraic attacks on the HFE family of systems work [8,9,11]. In particular,
we now have a solid insight what happens in the case of HFEv-. An upper bound
for the degeneration degree of a Gröbner Basis attack against HFEv- systems is
given by [11]

dreg ≤
{

(q−1)·(r−1+a+v)
2 + 2 q even and r + a odd

(q−1)·(r+a+v)
2 + 2 otherwise

, (12)

where r is given by r = blogq(D − 1)c+ 1.
Note: In [6] Courtois et al. estimated the complexity of a direct attack on
QUARTZ by 274 operations. However, they underestimated the degree of regu-
larity of solving an HFEv- system drastically.

4 Design principles for HFEv- based signature schemes

The theoretical breakthrough mentioned in the previous subsection indicates
that it might be possible to substantially improve the original design of QUARTZ
without reducing the security of the scheme, if we adapt the number of Minus
equations and Vinegar variables in an appropriate way. By reducing the degree
of the central HFEv- polynomial we can speed up the operations of Berlekamp’s
algorithm and therefore the signature generation process of the HFEv- scheme.
In this section, we analyze by experiments the behavior of direct attacks against
HFEv- schemes and the tightness of the upper bound given by equation (12).
From our results we derive design principles for the construction of our new
HFEv- based signature scheme Gui presented in the next section.
In particular, we answer in this section the following questions.

1. Equation (12) shows a tradeoff between the degree D of the HFE poly-
nomial and the sum a + v of minus equations and vinegar variables. This
would enable us to use low degree HFE polynomials in the construction of
HFEv- based signature schemes and therefore to improve their performance
drastically. Can we verify this by experiments?

2. Is the ratio between a and v important for the security of the scheme?
3. Is the upper bound on the degree of regularity given by equation (12) rea-

sonably tight?

To answer these questions, we performed a large number of experiments with the
F4 algorithm integrated in MAGMA. As we found, adding the field equations



x2
i − xi to the system makes a huge difference regarding the degree of regularity

and the running time of the system.

4.1 Can we use HFE polynomials of low degree D?

To improve the efficiency of the signature generation process we are interested
in decreasing the degree of the HFE polynomial in use as far as possible without
weakening the security of the scheme. Doing so will reduce the complexity of
Berlekamp’s algorithm (see equation (6)) and therefore improve the performance
of our scheme significantly. So, the first question we have to answer in this context
is the following.

Which value D should we choose to obtain secure and efficient HFEv-
based schemes?

– D = 2, 3: Such small values of D would lead to matrices F of rank 2. We
therefore do not think that these schemes can be secure.

– D = 5: Although the plain HFE scheme with an HFE polynomial of degree
5 (r = 3) is highly insecure, we believe that the modificated HFEv- scheme
provides adequate security.

– D = 9, 17: Other promising values for the degree of the HFE polynomial in
use are D = 9 and D = 17, which lead to values of r of 4 and 5 respectively.

In the first row of experiments we analyzed the behavior of direct attacks against
HFEv- systems over GF(2) with different values of D. For this, we fixed the
number n of equations in the system. For different values of D, a and v we
created HFEv- systems and fixed a + v variables randomly to get determined
systems. After adding the field equations x2

i − xi we solved the systems using
MAGMA’s implementation of the F4 algorithm. Table 1 shows the results of our
experiments with determined HFEv- systems of 20 and 25 equations respectively.
The degree of regularity of a random system of this size is 5 and 6 respectively.
The table shows, for different values of D, the minimal values of a and v needed
to reach this degree. Although, because of memory restrictions, we could not
perform our experiments for larger values of n, we expect that similar results
hold for arbitrary numbers of equations.

From the above experiments we obtain the following important observation

Let dreg be the degree of regularity of a direct attack against an
HFEv- system with parameters D1, n, a1, v1 and let D2 < D1.
By choosing large enough values for a2 and v2, we can obtain an HFEv-
scheme with parameters D2, n, a2, v2, such that the degree of regularity
of a direct attack against this system is dreg, too.



20 equations 25 equations

D r minimal a,v dreg time (s) memory (MB) minimal a,v dreg time (s) memory(MB)

129 8 a = v = 0 5 2.74 109.7 a = v = 1 6 286.2 8,021

65 7 a = 0, v = 1 5 2.69 110.7 a = v = 2 6 276.0 7,781

33 6 a = v = 1 5 2.75 109.7 a = 2, v = 3 6 260.4 7,762

17 5 a = 1, v = 2 5 2.72 109.7 a = v = 3 6 258.7 7,751

9 4 a = v = 2 5 2.73 110.7 a = 3, v = 4 6 266.4 7,693

5 3 a = 2, v = 3 5 2.73 109.6 a = v = 4 6 262.8 7,580

random system 5 2.85 110.8 6 286.3 7,683
Table 1. Experiments with F4 on determined HFEv- systems with 20 and 25 equations

From this observation we derive our first design principle for the construction of
HFEv- based signature schemes.

Design Principle 1: For the construction of HFEv- based
signature schemes we use for efficiency reasons HFE polynomi-
als of small degree D, namely D ∈ {5, 9, 17}. We then increase
the numbers of Minus equations a and Vinegar variables v to
obtain a secure scheme.

4.2 Is the concrete choice of a and v important for the security of
the scheme?

To answer this question, we performed experiments of the following type. For a
fixed degree D of the HFE polynomial, a fixed number of equations and a fixed
value s we created HFEv- systems with a ∈ {0, . . . , s} and v = s−a. After fixing
n−a variables to get a determined system and adding the field equations x2

i −xi
we solved the systems by the F4 algorithm integrated in MAGMA. The results
of these experiments are shown in Table 2 and 3.

a v dreg time (s) memory (MB)

0 4 5 2.77 109.7

1 3 5 2.78 110.8

2 2 5 2.73 110.7

3 1 5 2.73 110.8

4 0 5 2.79 108.7
Table 2. Experiments with F4 on determined HFEv- systems with D = 9, 20 equations
and a+ v = 4

As Tables 2 and 3 show, the concrete choice of a and v only plays a minor
role for the complexity of direct attacks against HFEv- schemes, as long as their
sum stays fixed. However, as the last row of Table 3 shows, it might not be a



a v dreg time (s) memory (MB)

0 7 6 248.9 7,582

1 6 6 247.4 7,582

2 5 6 258.0 7,580

3 4 6 266.4 7,693

4 3 6 258.3 7,578

5 2 6 248.5 7,579

6 1 6 253.3 7,581

7 0 5 99.5 1,380
Table 3. Experiments with F4 on determined HFEv- systems with D = 9, 25 equations
and a+ v = 7

good choice to choose v to be zero. From this observation we derive our second
design principle for HFEv- based signature schemes.

Design Principle 2: In the design of HFEv- based signature
schemes we choose the number of minus equations a and the
number of vinegar variables v to be as equal as possible, i.e.
v − a ≤ 1.

4.3 Is the upper bound on dreg given by equation (12) reasonably
tight?

In this section we check by experiments if the upper bound on the degree of
regularity given by equation (12) is tight. Due to memory restrictions, we can
show the tightness of equation (12) only for some small values of D, a and v.
However, for all values of D used in our scheme Gui (D ∈ {5, 9, 17}we could find
parameter sets for which the bound (12) is tight (see Table 4).

D a v upper bound for dreg (12) dreg (experimental)

5
0 0 3 3 for n ≥ 10
1 1 4 4 for n ≥ 23

9
0 1 4 4 for n ≥ 23
1 1 4 4 for n ≥ 21

17
0 0 4 4 for n ≥ 15
0 1 4 4 for n ≥ 12

Table 4. Parameter sets, for which the upper bound (12) is tight

For most of the other parameter sets, we missed the upper bound on the degree
of regularity given by equation (12) by at most 1. We believe that, by increasing
the number of equations in the systems, it would be possible to reach the upper
bound for arbitrary values of (D, a, v). However, due to memory restrictions,



we could not perform experiments with more than 38 equations. The degree of
regularity of a system with the n random quadratic equations in n binary variables
is also bounded by

dreg ≤ min{D : the coefficient of tD in
[
(1 + t)n(1 + t2)−n

]
is nonpositive},

by standard references (e.g. [1]). The degree of regularity of 40 random binary
quadratic equations in 40 variables is only 7. Therefore the upper bound of (12),
if more than 7, is not testable at n = 38. We do show (Table 5) that for all of
our proposed values of D a degree of regularity of at least 7 is reached. These
results are the basis of our parameter choice for Gui.
Figures 2 to 4 show the degree of regularity of the F4 algorithm on determined

D a v dreg (experimental) upper bound for dreg (12)

5 6 6 7 for n ≥ 38 9

9 5 5 7 for n ≥ 37 8

17 4 4 7 for n ≥ 37 8
Table 5. Parameter sets which lead to dreg ≥ 7

HFEv- systems over GF(2) with D ∈ {5, 9, 17} and a = v ∈ {0, . . . , 5}.

5 The New Multivariate Signature Scheme Gui

Based on our experiments presented in the previous section we propose three
different versions of our HFEv- based signature scheme Gui over the field GF(2):

– Gui-96 with (n,D, a, v) = (96, 5, 6, 6) with 90 equations in 102 variables,
– Gui-95 with (n,D, a, v) = (95, 9, 5, 5) with 90 equations in 100 variables and
– Gui-94 with (n,D, a, v) = (94, 17, 4, 4) with 90 equations in 98 variables.

The complexity of direct attacks against these schemes can be estimated as
follows.
According to our experiments (see Table 5), the degree of regularity of the F4

algorithm against these schemes will be at least 7.
The number T of top-level monomials in the solving step of the F4 algorithm is
therefore given by

T =

(
n− a
dreg

)
≥
(

90

7

)
≥ 233.6

The number of non zero elements in each row can be estimated by τ =
(
n−a

2

)
>

212. Therefore we get for the complexity of a direct attack against one of our
schemes

ComplexityF4/F5
≥ 3 · τ · T 2 > 280.7. (13)

Note that this number is very optimistic since we assume that the degree of
regularity will not rise above 7.
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Fig. 2. Degree of regularity of determined HFEv- systems (D = 5)
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Fig. 3. Degree of regularity of determined HFEv- systems (D = 9)



2 

3 

4 

5 

6 

7 

8 

5 10 15 20 25 30 35 40 

de
gr

ee
 o

f r
eg

ul
ar

it
y 

# equations 

D=17 

a=v=0 

a=v=1 

a=v=2 

a=v=3 

a=v=4 

a=v=5 

Fig. 4. Degree of regularity of determined HFEv- systems (D = 17)

Additionally, for better comparison to standard signature schemes, we propose
a fourth version of Gui, Gui-127, with the parameters (n,D, a, v) = (127, 9, 4, 6),
providing a security level of 120 bits.

5.1 Signature Generation

The central component of the signature generation process of Gui is inverting
the HFEv- core map.
To compute a pre-image of a (n − a) bit digest h, one first has to choose ran-
dom values for the Minus equations and the Vinegar variables. In our concrete
implementation, these values are the last a+ v bits of SHA-256(h). After that,
one computes recursively x = S−1(h), y = F−1

V (x) and z = T −1(y) (see Figure
5).

For the parameters of Gui, the length of the digest h is only n− a = 90 bits. To
prevent birthday attacks, we therefore have to perform the above process several
times (for different values of h). We denote this repetition factor by k and set
k = 3 for Gui-96 and Gui-95. For Gui-94 and Gui-127 the value k is chosen to
be 4.



The signature generation process of Gui works as shown in Algorithm 1 and
Figure 6.
We initialize the n− a vector S0 to be 0 and compute the SHA-256 hash value
h of the message. Let D1 be the bitstring consisting of the first (n − a) bits of
h. We compute the pre-image of D1 under the HFEv- core (see above) and split
the result into an (n− a) bit string S1 and an a+ v bit string X1.
We set D2 to be the string consisting of the first (n−a) bits of SHA-256(h) and
compute the HFEv- pre-image of D2⊕S1. Again, the result is split into the two
parts S2 (n−a bits) and X2 (a+ v bits). This process is repeated, until we have
values Si, Xi for i = 1, . . . , k.

The final signature of the message is given by σ = (Sk||Xk|| . . . ||X1). The re-
sulting signature sizes for our schemes can be found in Table 6.

A detailed description, how the inversion of the central HFEv- map is per-
formed in our implementation, can be found in Section 6.2. Due to some flaws in
the SHA-1 algorithm, we replace the SHA-1 hash function used in the original
QUARTZ design by SHA-256.

nonce

��

SHA-256

a

��
v

//Digest:
n− a bits

// •

//

// S−1
n
// F̄−1

V n+v
// T −1 // Output:

n + v bits

Fig. 5. Core operations of HFEv-

5.2 Signature Verification

To check the authenticity of a signature σ ∈ GF(2)
(n−a)+k(a+v)

we parse σ into
Sk, Xk, . . . , X1 and compute D1, . . . , Dk as shown in Section 5.1. For i = k−1 to
0 we compute recursively Si = P(Si+1||Xi+1)⊕Di+1. The signature is accepted,
if and only if S0 = 0 holds.

By the above construction of the signature generation and verification process
we prevent birthday attacks as follows. We consider an adversary A who wants
to find two messages m1 and m2 which lead to the same signature σ.



Algorithm 1 Signature Generation Process of Gui

Input: Gui private key (S, F , T ) message d, repetition factor k

Output: signature σ ∈ GF(2)(n−a)+k(a+v)

1: h← SHA-256(d)
2: S0 ← 0
3: for i = 1 to k do
4: Di ← first n− a bits of h
5: (Si, Xi)← HFEv−−1(Di ⊕ Si−1)
6: h← SHA-256(h)
7: end for
8: σ ← (Sk||Xk|| . . . ||X1)
9: return σ

Algorithm 2 Signature Verification Process of Gui

Input: Gui public key P, message d, repetition factor k, signature σ ∈
GF(2)(n−a)+k(a+v)

Output: TRUE or FALSE
1: h← SHA-256(d)
2: (Sk, Xk, . . . , X1)← σ
3: for i = 1 to k do
4: Di ← first n− a bits of h
5: h← SHA-256(h)
6: end for
7: for i = k − 1 to 0 do
8: Si ← P(Si+1||Xi+1)⊕Di+1

9: end for
10: if S0 = 0 then
11: return TRUE
12: else
13: return FALSE
14: end if

nonce

��

SHA-256

a

��
V

//Digest:
n− a bits

// •

//

// T −1 // F−1 // S−1 // Output:
n+ v bits

Fig. 2. Core operations of HFEv-

the results to a single signature. In particular, we apply the core HFEv- operation
4, 3, 3 and 4 times respectively for Gui-94, Gui-95, Gui-96 and -127.

A diagram of generating a signature is showed in figure 3. In Gui-95, for
example, the signing message is hashed to (D1||D2||D3) which 90-bit for each
Di and initialize S0 = 0. After inverting HFEv- core, one splits the 100-bit result
to S1||X1 which 90-bit for S1 and 10-bit for X1. S1 is fed back for next run
and X1 is output for comprising a full signature. The full signature is comprised
S3||X3||X2||X1 which is 120-bit in total. The hash function SHA-1 in the original
Quartz is replaced by SHA-256 in Gui due to some flaws of SHA-1.

Message // SHA-256
�� Di // ⊕ // HFEv- // split:

{Si||Xi}
//

Si

OO

Signature:
{S4||X4|| . . . ||X1}

or {S3||X3||X2||X1}

Fig. 3. Process of generating a signature

While verifying a signature, a public key P is comprised of quadratic equa-
tions for HFEv- core map (the reverse order of figure 2). Taking a scheme of
repeating HFEv- core 3 times as an example, for verifying the correctness of a
pair of (message,signature), the message is provide to a hash function for gener-

Fig. 6. Signature Generation Process of Gui



In the context of the plain HFEv- signature scheme it would be enough to find
two messages m1 and m2 such that SHA-256(m1)i=SHA-256(m2)i for the first
n − a bits. If (n − a) ≤ 160, the adversary can find m1 and m2 by a birthday
attack.

In the context of our scheme Gui, the adversary now has to find messages m1 and
m2 which lead to the same values of D1, . . . , Dk. For our values of the repetition
factor k, this corresponds to finding a collision for a hash function of length 270,
360 and 492 bit (Gui-95, Gui-94 and Gui-127 respectively). This is, in general,
assumed to be infeasible.

scheme core map public key private key repetition factor signature
HFEv-(n,D,a,v) size (byte) size (byte) k size (bit)

Gui-96 (96,5,6,6) 63036 3175 3 126

Gui-95 (95,9,5,5) 60600 3053 3 120

Gui-94 (94,17,4,4) 58212 2943 4 122

Gui-127 (127,9,4,6) 142576 5350 4 163

Quartz (103,129,3,4) 75515 3774 4 128

Table 6. Key and signature sizes of Gui-94,Gui-95,Gui-96, and Gui-127

6 Implementation and Comparison

In this section we present the details of our implementation of the Gui signature
scheme and compare the performance of our scheme with that of the original
QUARTZ and other standard signature schemes.

6.1 Arithmetics over Finite Fields

The first step in our implementation of the Gui signature scheme is to provide
efficient arithmetics over the large binary fields in use. To speed up these compu-
tations, we use a set of new processor instructions for carry-less multiplication:
PCLMULQDQ [27].

The instruction set PCLMULQDQ allows the efficient multiplication of two 64-
bit polynomials over GF(2) resulting in an 128-bit polynomial. The PCLMULQDQ

instructions are available on some new processors of Intel and AMD. Performance
data of PCLMULQDQ can be found in Table 7.

In the case of Gui, the extension field E has less than 2128 elements. We
represent an element of the field E as a polynomial over GF(2) which can be
divided into two 64-bits polynomials.



processor latency throughput
type cycles cycles/multiplication

Intel
Sandy Bridge 14 8

Ivy Bridge 14 8
Hashwell 7 2

AMD
Bulldozer 12 7
Piledriver 12 7

Steamroller 11 7

Table 7. Performance of PCLMULQDQ on different platforms (source: [15], [13])

A multiplication over the large field E is divided into two phases, namely a
multiplication and a reduction phase.

In the multiplication phase, the multiplication of two 128-bit polynomials can be
performed by 4 calls of PCLMULQDQ. With the help of the Karatsuba algorithm,
we can avoid one call of PCLMULQDQ and therefore its long latency (see Table 7).
To compute the square of one element of E, we need only two calls of PCLMULQDQ
since we are operating in a field of characteristic 2.

The reduction phase of the field multiplication heavily depends on the field rep-
resentation. For the original QUARTZ (GF(2103)) the authors used GF(2103) :=
GF(2)[x]/(x103 + x9 + 1) [21]. For Gui, we choose the field representations

– GF(294) := GF(2)[x]/(x94 + x21 + 1),
– GF(295) := GF(2)[x]/(x95 + x11 + 1),
– GF(296) := GF(2)[x]/(x96 + x10 + x9 + x6 + 1) and
– GF(2127) := GF(2)[x]/(x127 + x+ 1) respectively.

The baseline for the reduction phase is two calls of PCLMULQDQ since, after the
multiplication phase, the degree of the polynomial will be greater than 2 × 64.
The irreducible polynomials above are chosen to contain only few terms of low
degree. With few terms in the irreducible polynomials, we may replace the use
of PCLMULQDQ by a few logic shifts and XOR instructions.

In the GF(2127) case, for example, the reduction can be performed by only
two 128-bit shifts for the x128 part and one conditional XOR for the x127 term,
avoiding at least two calls of PCLMULQDQ while reducing the high 128 bit register.

Another technique is to represent elements as 128-bit polynomials while avoiding
full reduction. This allows us to perform the reduction of degree 128-191 and
192-255 terms using only two calls of PCLMULQDQ without data dependency. In
the GF(296) case, for example, we can perform the reduction phase by multiply-
ing the degree 128-191 terms by x128 = x42 + x41 + x38 + x32 and the degree
192-255 terms with x192 = x20 + x18 + x12 + 1. All the polynomials in use have
degree ≤ 64, and we can perform the reduction by two calls of PCLMULQDQ.



6.2 Inverting the HFEv- core

In this section we describe how we can perform the inversion of the central
HFEv- equation FV (Y ) = X efficiently. During the signature generation process
of Gui we have to perform this step several times to avoid birthday attacks (see
Section 5.1). Therefore it is extremely important to perform this step efficiently.

To invert the central HFEv- equation, we have to perform Berlekamp’s algorithm
to find the roots of the polynomial FV (Y ) − X. Since the design of QUARTZ
and Gui requires FV (Y )−X to have a unique solution, we only have to perform
the first step of Berlekamp’s algorithm, i.e. the computation of

gcd(FV (Y )−X,Y 2n − Y ).

We have

gcd(FV (Y )−X,Y 2n − Y )

= gcd(FV (Y )−X,
∏

i∈F2n ,i6=0

(Y − i))

=
∏

i:FV (i)=X

(Y − i).

Therefore the main process in creating a signature consists in computing
gcd(FV (Y ) −X,Y 2n − Y ). The number of roots of FV (Y ) −X (as well as the
only solution when that happens) can obviously be read off from the result.

Probability of a unique root Every time we choose the values of Minus
equations and Vinegar variables, we basically pick a random central equation
F(Y ) − X = 0. The probability of this equation having a unique solution is
about 1/e. Therefore, in order to invert the HFEv- central equation, we have to
perform the gcd computation about e times.

How do we optimize the computation of the gcd? The main computation
consumption in this step comes from the division of the extreme high power
polynomial Y 2n −Y mod FV (Y ). A naive long division is unacceptable for this
purpose due to its slow reduction pace. Instead of this, we choose to recursively
raise the lower degree polynomial Y 2m

to the power of 2.

(Y 2m

mod FV (Y ))2 mod FV (Y )

= (
∑
i<2m

biY
i)2 mod FV (Y )

= (
∑
i<2m

b2iY
2i) mod FV (Y )

By multiplying Y to the naive relation Y D =
∑

0≤i≤j,2i+2j<D aijY
2i+2j

, we can

prepare a table for Y 2i mod FV (Y ) first. The rest of computation of the raising



process is to square all the coefficients bi in Y 2m

mod FV (Y ) and multiply them
to the Y 2is in the table.
Although the starting relation FV (Y ) = Y D +

∑
0≤i≤j,2i+2j<D aijY

2i+2j

is a
sparse polynomial, the polynomials become dense quickly in the course of the
raising process. However, the number of terms in the polynomials is restricted
by D because of mod FV (Y ). We expect the number of terms to be in average
D during the computation.

The number of field multiplications needed to compute the Y 2i table is O(2 ·
D2). To raise Y 2m

to Y 2n

we need O((n−m) ·D) squarings and O((n−m) ·D2)
multiplications. We can further reduce the number of computations needed for
raising Y 2m

by using a higher degree Y i table. For example, if we raise Y 2m

to

Y 24m

in one step, we need only O((n − m) · D) squarings and O( (n−m)
2 · D2)

multiplications. However, the computational effort for preparing the Y i table
increases. Table 8 shows the time needed to compute gcd(Y 2n−Y,F(Y )) on two
different CPUs.

scheme security public key private key time needed for
level (bit) size (kB) size (kB) inverting F (kilo-cycles)

HFEv-(96,5,6,6) 80 61.6 3.1 72/76/55

HFEv- (95,9,5,5) 80 59.2 3.0 159 / 135 /79

HFEv- (94,17,4,4) 80 56.8 2.9 533 / 453/274

HFEv- (127,9,4,6) 120 139.2 5.2 170 / 156/128

HFEv- (103,129,3,4) 80 71.9 3.1 25,793 / 20,784/12,630

[1] AMD Opteron 6212, 2.5 GHz (Bulldozer)/ Intel Xeon CPU E5-2620, 2.0 GHz
(Sandy Bridge) / Intel Xeon E3-1245 v3, 3.4 GHz (Hashwell)

Table 8. Key sizes of HFEv- schemes and running time of gcd(X2n −X,F(X))

6.3 Experiments and Comparison

Table 9 shows key and signature sizes as well as the running times of signature
generation and verification of Gui and compares these data with those of some
standard signature schemes. The data are benchmarked according to specifica-
tions given by the eBACS project [3].



scheme security public key private key signature signing time verification time

level(bits) size (Bytes) size (Bytes) size(bits) (k-cycles) 1 (k-cycles) 1

Gui-96 (96,5,6,6) 80 63,036 3,175 126 603/569/238 97/70/62
Gui-95 (95,9,5,5) 80 60,600 3,053 120 1,417/1,441/602 91/60/58
Gui-94 (94,17,4,4) 80 58,212 2,943 124 5,800/5,480/2,495 118/74/71
Gui-127 (127,9,4,6) 120 142,576 5,350 163 2,368/2,183/1,080 220/121/122

QUARTZ (103,129,3,4) 80 73,626 3,174 128 302,882/315,716/128,736 145/84/86

RSA-1024 80 128 128 128 2,080/1,058/- 2 74/32/-
RSA-2048 112 256 256 256 8,834/5,347/- 138/76/-

ECDSA P160 80 40 60 320 1,283/558/- 1,448/635/-
ECDSA P192 96 48 72 384 1,513/773/- 1,715/867/-
ECDSA P256 128 64 96 512 830/388/- 2,111/920/-

1 AMD Opteron 6212, 2.5 GHz (Bulldozer) / Intel Xeon CPU E5-2620, 2.0 GHz (Sandy
Bridge) / Intel Xeon E3-1245 v3, 3.4 GHz (Hashwell)

2 For the classical signature schemes RSA and ECDSA, we do not have data for the Hashwell
processor

Table 9. Comparison between Gui and standard signature schemes

We should note that the timings for Gui given by Table 9 are for C programs
with a few intrinsic function calls of PCLMULQDQ. The PKCs benchmarked in the
eBACs project also do not represent optimal implementations of RSA and ECC.
We present these numbers in an effort to compare apples to apples by using only
reference implementations.

7 Conclusion and Future Work

In this paper, we analyzed the behavior of direct attacks against HFEv- based
signature scheme. Experiments show that, even for low degree HFE polynomials
in use, we can obtain adequate security levels by increasing the numbers a and v
of Minus equations and Vinegar variables. Furthermore we find that the upper
bound on the degree of regularity found by Ding and Yang in [11] is relatively
tight. From our results we derive design principles for the construction of HFEv-
based signature schemes, which lead to both secure and efficient schemes. We ap-
ply our principles in the construction of our new HFEv- based signature scheme
Gui, which is more than 100 times faster than the original QUARTZ scheme.
Furthermore we show that the performance of our scheme is highly compara-
ble to that of standard signature schemes, including signatures on elliptic curves.

The most obvious future work would be to create for every common existing
platform an optimal implementation of HFEv- (Gui) and compare it with some
of the best optimized code for ECC and RSA, such as Ed25519 [2]. The other
would be to verify such optimal Gui code for formal correctness. In short, we



believe that there is still much work to be done about the HFEv- digital signature
schemes.
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