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Abstract. Electronic commerce fundamentally requires two di�erent
public-key cryptographical primitives, for key agreement and authen-
tication. We present the new encryption scheme MFE, and provide a
performance and security review. MFE belongs to theMQ class, an al-
ternative class of PKCs also termed Polynomial-Based, or multivariate.
They depend on multivariate quadratic systems being unsolvable.
The classical trapdoors central to PKC's are modular exponentiation
for RSA and discrete logarithms for ElGamal/DSA/ECC. But they are
relatively slow and will be obsoleted by the arrival of QC (Quantum
Computers). The argument for MQ-schemes is that they are usually
faster, and there are no known QC-assisted attacks on them.
There are several MQ digital signature schemes being investigated to-
day. But encryption (or key exchange schemes) are another story �
in fact, only two otherMQ-encryption schemes remain unbroken. They
are both built along �big-�eld� lines. In contrast MFE uses medium-sized
�eld extensions, which makes it faster. For security and e�ciency, MFE
employs an iteratively triangular decryption process which involves ra-
tional functions (called by some �tractable rational maps�) and taking
square roots. We discuss how MFE avoids previously known pitfalls of
this genre while addressing its security concerns.

Keywords: multivariate (MQ) public key cryptosystem, Galois �eld,
extended triangular form, tame-like map, tractable rational map, MFE

1 Introduction

Electronic commerce requires at least the following fundamental cryptological
primitives: one digital signature scheme, one public-key encryption or key ex-
change scheme, one hash function, and one symmetric cipher. The �rst two
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involve public-key cryptosystems which are based on computationally di�cult
problems. Currently deployed PKCs most often involve the integer factoring
problem (RSA, ESign, Rabin) or the discrete log problem (ECC, ElGamal/DSA).

We aim to introduce a new public-key encryption scheme that may be used
for key exchange. This is one of many schemes based on the di�culty of solving
a system of polynomial equations. PKCs of this class are usually described as
MQ, multivariate, or polynomial-based schemes.

Before we proceed, let us �rst answer the inevitable question of why research-
ing alternative schemes at all when RSA does just �ne. One reason is for diversity.
When quantum computers that can handle 4000 quantum bits becomes reality,
Shor's Algorithm [Sho94] can break all the abovementioned classical cryptosys-
tems very quickly.MQ-schemes are among the alternative PKCs that are weak-
ened by quantum computers (via Grover's Algorithm [Gro96]), but not fatally
wounded. Another is for better e�ciency in resource (time, power or chip area)
usage. This can let us do public-key cryptography in low-resource environments,
or make do with cheaper components where we already use PKI.

We will introduce MQ-schemes (Sec. 2), and discuss their state of the art in
Sec. 3. We construct the central map of our schemes in Sec. 4, and explain our
idea based on an overlay of two stepwise triangular systems. Further details are
given in Sec. 5 and the Appendices. Aspects of security are sketched in Sec. 6�8,
and we conclude with a discussion of performance and future possibilities.

2 About Multivariate or MQ-Schemes

An MQ-scheme is a cryptosystem whose security depend on this problem:

Solve the system p1 = p2 = · · · = pm = 0, where each pi is a quadratic

polynomial in x1, . . . , xn. All coe�cients and variables are in K = GF(q).

This problem is called MQ (for multivariate quadratics). The complexity
clearly depend on q, the size of the �nite �eld K (usually called the base �eld).
[GJ79] proved MQ to be generically NP-hard even over the smallest �eld, i.e.,
when q = 2. Of course, that does not necessarily imply MQ to be di�cult on

average, but prevailing expert opinion does expect it to be exponential-time.
The public map P is the set of quadratics (p1, . . . , pm). Of course, we need

a trapdoor to build a public-key cryptosystem. In every practical MQ-schemes,
this is accomplished by having a P that is composed of three maps as in P =
T ◦ Q ◦ S. Q is the central map and it is quadratic. S and T are linear (a�ne)
maps. We can write them as S : x 7→ x′ = MS x+ cS , T : y′ 7→ y = MT y′ + cT .

Some authors also represent this as P : x ∈ Kn S7→ x′ Q7→ y′ T7→ y ∈ Km. We may
set P(0) = 0. The public key is then the mn(n+3)/2 nonconstant coe�cients of
P (we assume q > 2). The secret key comprise the n(n + 1) + m(m + 1) entries
of (M−1

S ,M−1
T , cS , cT ), plus parameters in Q needed for taking its inverse.

If Q is a random quadratic, then P would be equally random and infeasible
to decompose. But that is impossible, since we need to invert Q e�ciently. Thus
the security of an MQ-scheme depends on the infeasibility of decomposing maps

in addition to that of solving large systems.



3 Current MQ-Schemes and Taxonomy

[WP05] is a good reference on the nomenclature and state-of-the-art on MQ-
schemes today. According to its classi�cation, known MQ-schemes (extant and
broken) are a handful of modi�ers applied to four di�erent basic trapdoors (all
must be modi�ed in practice) and two combinations:

C∗ or MIA: C∗ (and HFE below) can be used both for digital signatures
and for encryption. Proposed by Matsumoto-Imai [MI88], broken and re-
vamped by Patarin into the signature scheme C∗− or MIA− [Pat95,PGC98].
NESSIE-recommended SFLASH [Nessie,PCG01a] is an instance. Ding pro-
posed PMI+ (MIAi+) for encryption [DG05] (a modi�cation from its pre-
cursor MIAi [Din04] after the cryptanalysis of Fouque et al [FGS05]).

HFE: The basic scheme of Patarin's Hidden Field Equations [Pat96] is broken
([CDF03,FJ03]), but HFE− or HFEv− (or QUARTZ, [PCG01]) for signa-
tures and HFEi (or IPHFE, [DS05]) for encryption are not. This genre of
schemes are burdened by its slow private map.

UOV: Unbalanced-Oil-and-Vinegar by Kipnis et al [KPG99], a modi�cation of
the earlier and broken [KS98] Oil-and-Vinegar. Useful for signing only and
secure only for some awkward choices of parameters [BWP05], hence usually
appears in combination with STS.

STS: Stepwise Triangular System. Variables are solved one by one in domino
fashion. This basic trapdoor and its ± modi�cations is broken by techniques
of [GC00] (also [CSV93,WBP04,YC05]). Two useful combinations follow:

STS-UOV: A better name might be LuOV (Layered unbalanced Oil-and-Vinegar).
In segments, vinegar variables are added and linear systems are solved a

la UOV. All extant examples are very new signature schemes. The �rst
is enTTS (Enhanced Tame Transformation Signature, [YC05]), which is a
sparse variant just like TRMS (Tractable Rational Map Signature, [WHL+05]).
In the slightly later Rainbow [DS05a], Ding et al decide to omit the sparsity.

STS-R: Stepwise Triangular System Repeated. Iteration of triangular runs are
made to cover inevitable rank vulnerabilities in a triangular system.

[WP05] calls MIA/HFE mixed-�eld ([YC05] terms them big-�eld). These are run
mostly over one single large �eld even though the public map is over a smaller
�eld. STS/UOV is in contrast called single-�eld or true [WP05,YC05] because
we actually work with the �eld units. Note that in TRMS several �eld extensions
are used at once. But if we expand all products, we see that they only serve to
create an e�ciently-invertible sparse central map.

4 A Central Map for an MQ-Scheme, on Medium Fields

We now describe our idea, a central map Q with a very di�erent �avor:

1. We use throughout the private map one particular �eld extension L above the
base �eld K. But this �eld extension does not cover (nearly) all the variables.
Hence, we are not dealing with a big-�eld MQ-scheme like in MIA or HFE.
Hence the title �Medium Field� and the name MFE.



2. We are solving for the variables in stepwise fashion, without using vinegar

variables. Indeed, our scheme might be said to descend spiritually from TTM
[Moh99], which pioneered the STS-R approach, to combine two triangular
maps to cover the critical small end of the triangle. However, all implemen-
tations of TTM had fatal �aws, and our techniques and ideas are radically
di�erent, involving what have been called �tractable rational maps� [WC04].

3. Our intended as practical example will have a base �eld of K = GF(216).
While it is not unknown for multivariates to have such a base �eld, it is
usually the result of scaling up for security reasons. Here we are designing
from the ground up to use such a big �eld.

4. Our currently favored example scheme is also tame-like [YC05]. This makes
the key generation process more e�cient.

4.1 The Central Map

We de�ne Q : L12 → L15 as follows:

Y1 = X1 + X5X8 + X6X7 + Q1;
Y2 = X2 + X9X12 + X10X11 + Q2;
Y3 = X3 + X1X4 + X2X3 + Q3;
Y4 = X1X5 + X2X7; Y5 = X1X6 + X2X8;
Y6 = X3X5 + X4X7; Y7 = X3X6 + X4X8;
Y8 = X1X9 + X2X11; Y9 = X1X10 + X2X12;
Y10 = X3X9 + X4X11; Y11 = X3X10 + X4X12;
Y12 = X5X7 + X2X11; Y13 = X5X10 + X7X12;
Y14 = X6X9 + X8X11; Y15 = X6X10 + X8X12.

(1)

Here each Xi and Yi is in L = Kk. Since L = Kk. We split X1, X2, X3, Q1, Q2, Q3

into components in Kk, such that q1 = 0, q2 = (x′1)
2 and for i = 3 · · · 3k, qi is a

more or less a random quadratic in variables (x′1, . . . , x
′
i−1).

X1 =

26664
x′1
x′2
...

x′k

37775 , X2 =

26664
x′k+1

x′k+2

...
x′2k

37775 , X3 =

26664
x′2k+1

x′2k+2

...
x′3k

37775 ; Q1 =

26664
q1

q2

...
qk

37775 , Q2 =

26664
qk+1

qk+2

...
q2k

37775 , Q3 =

26664
q2k+1

q2k+2

...
q3k

37775 .

4.2 An Inverse to the Central Map

Idea:We may arrange X1, X2, . . . , X12, Y4, Y5, . . . , Y15 ∈ L, into 2×2 matrices:

M1 =
[

X1 X2

X3 X4

]
, M2 =

[
X5 X6

X7 X8

]
, M3 =

[
X9 X10

X11 X12

]
;

M1M2 =
[

Y4 Y5

Y6 Y7

]
, M1M3 =

[
Y8 Y9

Y10 Y11

]
, MT

2 M3 =
[

Y12 Y13

Y14 Y15

]
.

(2)



Q is inverted in three triangular steps, simple linear algebra gives that

Y4Y7 − Y5Y6 = det(M1M2) = det M1 det M2,

and similarly,

Y8Y11 − Y9Y10 = detM1 det M3, Y12Y15 − Y13Y14 = detM2 det M3.

Thus, knowing Y4, . . . , Y15, we can �nd det M1, det M2, and det M3, provided
that none of them is zero (we will need a square-root taking operation, which is
one-to-one and onto, and not very hard � as we shall show � in a char = 2 �eld,
and for appropriately chosen k). Further

Y1 = X1 + det M2 + Q1, Y2 = X2 + det M1 + Q2, Y3 = X3 + det M3 + Q3.

Therefore, having found det M1,det M2,det M3, we reduce the components of
Y1, Y2, Y3 to a triangular form in the xi:

X1 + Q1 = Y1 +
p

(Y4 × Y7 + Y5 × Y6)(Y8 × Y11 + Y9 × Y10)(Y12 × Y15 + Y13 × Y14)−1

X2 + Q2 = Y2 +
p

(Y4 × Y7 + Y5 × Y6)(Y8 × Y11 + Y9 × Y10)−1(Y12 × Y15 + Y13 × Y14)

X3 + Q3 = Y3 +
p

(Y4 × Y7 + Y5 × Y6)−1(Y8 × Y11 + Y9 × Y10)(Y12 × Y15 + Y13 × Y14)

then we apply a second triangular step to compute X1, X2, and X3 component
by component. If X1 6= 0, from det M1 we can also �nd X4. We can now obtain
the rest of the variables. However, it is not necessary to have X1 6= 0. This
will make a di�erence in the security analysis � we omit the details, please see
Appendix B.

It remains to �esh out our skeletal description, explain our design decisions,
and try to show how our approach avoids the mistakes made in earlier designs.

5 Sample Implementations Using a �Tower� Approach

We start by taking L = K4. We will use (for simplicity) qi = cixi−1xi−2 for
i = 3 · · · 11. S and T are respectively a�ne maps of L12 and L15, selected
according to Eq. 5 such that the resultant public map P = T ◦ Q ◦ S does not
have a constant term.

5.1 The Sample Scheme MFE-1

We will take K = GF(216). K is implemented as a degree-two extension of
GF(28), and L as a degree four extension of K that is a composition of two
degree-two extensions. We multiply in GF(28) via a 256× 256 (64kB) table. We
may alternatively use log-and-exp tables, which are somewhat slower.

From GF(28) to L we need to do three degree-two extensions. This can be
aided by the following observation: Let F ′ = F [x]/(x2 + x + α) be a valid deg-
2 extension of the char-2 �nite �eld F , then so is F ′′ = F ′[y]/(y2 + y + αx) a



valid extension of F ′. The arithmetic of the �tower� extensions may then be done
e�ciently using Karatsuba multiplication/inversion ([KO63]):

(ax + b)(cx + d) = [(a + b)(c + d) + bd] + [αac + bd] , (3)

similarly, (ax + b)−1 =
[
b(a + b) + αa2

]−1
[ax + (a + b)] ; (4)

where we are operating in a �eld extension from F to F [x]/(x2 + x + α). Mul-
tiplication by α is a lot easier than a regular multiplication because it is �xed.
Squaring is also easier than a regular multiplication. Indeed, we �nd a normal
basis of GF(28), i.e., an x such that (x, x2, x4, x8, x16, x32, x64, x128) forms a basis

of GF(28), and represent by a byte
∑7

i=0 bi2i the element
∑7

i=0 bix
2i ∈ GF(28).

Build a multiplication (or log-exp) table accordingly. Squaring then become no
more than a byte rotation. It is consistent with our own implementations that
with every extra stage in the tower, a multiplication or division takes a little

more than 3× time. A squaring always cost less than 1/10 of a multiplication.

Keys and Generation: The private key is the coe�cients in S, T and the ci's
for a total of 5,904 elements of K or about 12kB. The public key comprise the
60× 48× 51/2 = 73, 440 coe�cients of P or about 147kB.

While MQ-schemes typically use interpolation or a similar technique (cf.
[Wol04]) to generate the key, a faster method [YC05,YCCh04] applies here
because our scheme is tame-like [YC05]. Let P be given by the quadratics

yk =
∑

i

Pikxi +
∑

i

Qikx2
i +

∑
i>j

Rijkxixj , k = 1 · · ·m.

Expand each central equation in Yi into its 4 y′i components. Each central equa-
tion in y′γ has less than 20 cross-terms παβx′αx′β , where παβ 's are constants of
the system or one of the ci's (we keep these metadata in a precomputed table).

Pik =
m∑

γ=1

(MT )k,γ

[γ ≤ 12](MS)γi +
∑

παβ x′
αx′

β in y′
γ

παβ ((MS)αi(cS)β + (cS)α(MS)βi)


Qik =

m∑
γ=1

(MT )k,γ

 ∑
παβ x′

αx′
β in y′

γ

παβ (MS)αi(MS)βi


Rijk =

m∑
γ=1

(MT )k,γ

 ∑
παβ x′

αx′
β in y′

γ

παβ ((MS)αi(MS)βj + (MS)αj(MS)βi)


In the formula for Pik, the notation [γ ≤ 12] means a term that is only present
if γ ≤ 12. For every pair i < j, we �rst �nd

Rijk =
∑

πxαxβ is a term of yk

[π ((MS)αi(MS)βj + (MS)αj(MS)βi)]



for every k, then multiply the vector by the matrix MT to �nd all Rijk at once
([YC05,YCCh04]). We are then able to compute the entire key in less than 5
million K-multiplications, Finally, the constant part cT of T is computed thus:

(cT )k =
n∑

p=1

(MT )k,`

(cS)` +
∑

π xαxβ in y`

π (cS)α(cS)β

 . (5)

Details of encryption and decryption operations may be �lled in as above.

5.2 Other Sample Schemes

Aside from the �regular� scheme with K = GF(216) and k = 4. We will also
present contrasting data for other instances of MFE.

MFE-1′: Here we use k = 5 (L = GF(280)) instead of 4. The computations are
signi�cantly more complex and time-consuming.

MFE-0: In what we shall call the �mini�-implementation, we use K = GF(28)
and L = GF(232). Everything else is as in the above section.

MFE-0+: Run like MFE-0, but we use redundancy to make failure to decrypt
less likely. When encrypting, always treat two blocks (B,B′) by sending
P(B),P(B′),P(B′�B−1), where B−1 means to take the patched inverse in
K of every component, and � means addition modulo |K|.

GF(28) multiplications are three times faster than GF(216) multiplications. There-
fore, running the encryption function of MFE-0 three times is still faster than
one run of the encryption function of MFE-1, and let us have the smaller key
sizes of MFE-0. Other implications are given below.

6 Security: a Basic Overview

Security analysis for MQ-schemes are hampered by the lack of �provable secu-
rity�. As far as we know, the only attempt in this area is due to [Cou03], which is
not followed up actively. As a result, while it is easy to show that anMQ-scheme
is insecure by presenting a cryptanalysis. So far a cryptologist can only show that
current attacks don't work and are not likely to work. We try to do the best
we can under the circumstances. Currently known attacks on polynomial-based
PKCs can be roughly classi�ed into four kinds:

Correlation/Statistical Attacks: A common systemic attacks agains sym-
metric ciphers, but usually not applied against PKCs. We will describe how
known attacks do not apply.

Linear Algebra-Based (Rank) Attacks: There are several attacks that are
quite generic against when the target scheme is not of the big-�eld type. We
just give numbers below, please refer to Appendix.



Algebraic Attacks: Today this means any attack whose functionality comes
down to solving a system of equations, usually distilled out of the structure
of the system. We will summarize what is out there.

Very specialized Attacks: Obviously, an attacks has to focus on some aspect
or structural element of the cryptosystem. Some do have wide applicability to
a whole class of schemes. Others do not. While this does not detract from the
sheer intellectual worth or ingenuity of such cryptanalytic work, many ideas
(e.g., the Gilbert-Minier attack [GM02] on the original SFLASH) simply do
not work on other schemes.

We repeat that showing our scheme to resist known attacks does not guarantee
security. It is an �original sin� for MQ-schemes today. We only do what we can.

6.1 Cryptanalysis using Rank Attacks

�Rank Attacks� encompasses the High Rank, Low Rank, and Separation of Oil-
and-Vinegar attacks. These are basic attacks against the STS or UOV based
trapdoors in MQ-schemes. Summary: Rank Attacks do not work on any of our

sample encryption schemes.

Separation of Oil and Vinegar (UOV) Attacks: Security level for the �mini�
version (MFE-0) is about 2100; the �full� version (MFE-1) is about 2140.

High Rank (Dual Rank) Attack: Security level is about 2128 for the �mini�
version (MFE-0) and 2181 for the full-version (MFE-1).

Low Rank (Rank or MinRank) Attack: Security level is about 2128 for the
�mini� version (MFE-0) and 2172 for the full-version (MFE-1).

See Appendix A and references, particularly [GC00,YC05] for more details.

6.2 Cryptanalysis under Specialized Attacks

We tested our scheme not to succumb to any earlier known special attacks, and
will henceforth ignore specialized attacks without wider applicability.

One specialized attack that is speci�cally designed around is the Patarin
Relations, which can also be considered an algebraic attack or a linear-algebra
attack. It can defeat many systems that can be described as of intrinsic rank 2.

Eq. 2 speci�cally had its matrix products arranged M1M2, M1M3 and MT
2 M3.

This take full advantage of the incommutativity of matrix multiplication. Other
arrangements will create lots of Patarin relations. For example, if we have N =
M1M2 and N ′ = M2M3 as matrices with components linear in the Yi's, then we
will have the relations corresponding to NM3 = M1N

′. As the central equations
Eq. 2 are written, no such Patarin relations can be found. We should only need
to test this over GF(2); we actually tested it over GF(4).



7 Algebraic Cryptanalysis

Basically, an algebraic attack refers to any technique that ends with a system-
solving exercise. There may be guessing, or there may not be. The system
may be linear, as in Patarin relations vs. C∗ [Pat95], or non-linear, as in the
Courtois/Faugère-Joux attack on HFE [CDF03,FJ03].

As characterized above, eventually an algebraic attack comes down to solving
a system. At the moment, the state of the art is represented by the F5 Gröbner
Bases algorithm of J.-C. Faugère [Fau02] while the best in commercially available
software is a version of its predecessor F4 [Fau99]. Few know how to program
F5 correctly, and certainly the only known implementation of F5 is the one used
by Dr. Faugère to break HFE challenge 1.

The alternative methods of XL/FXL by Courtois et al [CKP+00] has been
analyzed in some depth [Die04,YC04]. Today XL is usually considered to be
a poor relative of F4-F5 [AFS+04]. The asymptotic behavior of the Gröbner
Bases-XL family is described by [BFS04,BFS+05,YCCo04].

7.1 On Extraction of More Tractable Systems

An important remark is that the attack against HFE challenge 1 involves an
algebraic extraction of the actual system to be solved, one that is signi�cantly
more overdetermined than the original.

Such an extraction method does not yet exist in general. At the moment, we
have no way of distinguishing our encryption scheme from random quadratics.
This conclusion is supported by some experiments that we ran, trying to solve
systems directly very miniaturized version of MFE, using GF(4) as the base �eld,
and the tool is MAGMA and the version of F4 built therein.

Finally, we cannot rule out the possibility that a method of extracting some
solvable system exists, as for example in [JKM+05]. However, we have checked
for it and as far as we can tell, no known method of such extraction works.

Let us describe the [JKM+05] attack brie�y. This is an attack on the encryp-
tion scheme TRMCv2 of Wang and Chang [WC04]. The scheme in question has
many variables and equations, but there is a subsystem of 7 variables and 11
equations. This was part of the trapdoor in TRMCv2. The weakness is that by
running a simpli�ed version of XL, the attacker can essentially isolate this cen-
tral subsystem. It transpires that the algorithm terminates at the degree that is
required to solve the central subsystem, instead of the much higher degree that
would be required of a generic system with as many equations and variables.

In addition to trying to execute the attack of [JKM+05] and determining that
it does not work at a su�ciently low degree, we ran a clique-�nding algorithm
on our central polynomials and found no such central subsystem.

7.2 On the Speed of Equation-Solving

It seems that the most e�ective XL-derived method is FXL [YCCo04], and the
same idea applies to F5 at least in the generic case. There are also cases [YC04]
where XL will not and F5 may not work.



Indeed, our formulation satis�es a lemma from [YC04] which says that XL
will not work and FXL will take longer. F5 is also expected to take longer.
However, in the following we still assume that FXL and F5 will function as if
the polynomials are generic.

Assuming generic equations, F4-F5 works at the smallest degree D where
the coe�cient of tD in (1 − t)m−n(1 + t)m is negative ([BFS+05,Die04,YC04]).

The dominant term of the time complexity is given by E
((

n+D−1
D

))
, where

E(N) is the cost of elimination on a N ×N matrix equation. Here we have 48
variables and 60 equations. Assuming a �eld size of q = 256 (our �mini� version
MFE-0), and E(N) = N2(4 + lg N/4) in cycles (a very optimistic assumption
that dense-matrix elimination can work asymptotically like sparse-matrix system
solving that we take from [YCCo04]), we get about 297 cycles or about a 293

multiplications security level.
The conclusion is, then, that even discounting the possibility that such meth-

ods don't function at all, Gröbner Bases and related methods should be more
e�ective than Rank Attacks against our schemes, but does not reduce them down
below 280, with a lot of safety margin.

8 Correlation or Statistical Cryptanalysis and Defenses

A correlation or statistical attack works by �nding imbalances of some kind in
the ciphertext. Not many attacks on public-key cryptosystems use correlation or
statistical artifacts. We comment on only two particular items speci�cally.

One is the attack [FGS05] on the scheme PMI. Fouque et al used di�erential
cryptanalysis with a one-sided statistical distinguisher. While ingenious, this
does not apply to our scheme and this is con�rmed by some empirical tests.

The other is much more relevant. Our system requires X1X4−X2X3, X5X8−
X6X7, and X9X12 − X10X11 all to be non-zero to get a successful decryption.
Thus a single block will fail to decrypt with the probability 3/|L|.

For the �mini� sample scheme MFE-0, this chance of failure is about 2−30

and for the �regular� sample scheme MFE-1, it is about 2−62. This results in a
possible attack by guessing at decryption failures. However, there are no ways
an attacker can easily check that two decryption faults correspond to a zero
in the same determinant. Nor can we generate easily from two samples where
X1X4 = X2X3 another such point to make use of the algebraic variety. We can
not guarantee that this takes care of all correlation attacks based on decryption
faults. However, we can expect any such attack to be signi�cantly more di�cult
than just �nding one such inscrutable ciphertext. Therefore, we can presume
that our �regular� schemes are quite secure enough under such attacks.

8.1 Possible Cryptanalysis via Correlation and Timings

Note that X1 = 0 is much more useful to an attacker than any of the determi-
nants being zero, since it is an a�ne formula. An adversary that can distinguish
whether X1 = 0 can execute the following attack:



Cryptanalysis: encrypt random blocks (vectors) and send to a decryption de-
vice (or oracle) for decryption continuously; register the blocks Bi whose corre-
sponding ciphertext result in decryption failures (or timing �tells�). Every time
a block Bi is registered, send aBi + (1 − a)Bj for decryption for a few random
a's and for each j < i to �nd out if it correspond to a vector where X1 = 0
(because such vectors form an a�ne subspace). Collect 12 such blocks in an
expected 12|L| attempts. With high probability we have found the a�ne sub-
space X1 = 0. Restrict the polynomials to this a�ne subspace, and we can
perform a MinRank attack on the reduced equations corresponding to Y3. Since
each evaluation takes about mn(n + 3)/2 multiplications, total time used is
12|L| · [mn(n + 3)/2K-multiplications + decryption time].

This idea of using decryption failures seems to have been proposed by Proos
et al [HNP+03]. The elegant cryptanalysis proposed in that paper resulted in
a revision in the current version of NTRU Encryption. The idea of using Min-
Rank after some other reduction may have been invented by J. Ding against the
predecessor version to enTTS [DY04].

The analysis above shows that the �mini� scheme MFE-0 cannot be used if a
Proos-like attack can execute. However, all is not lost. According to Appendix B
we can decrypt even when X1 = 0 without an appreciable speed di�erence,
and the same straightforward attack cannot function with X1X4 − X2X3 = 0,
say, because it is not an a�ne relation. Therefore, the method in Appendix B
guarantees that such a cryptanalysis will not operate.

Further, for MFE-1, we have |L| = 264, n = 48, m = 60, we �nd the com-
plexity of the cryptanalysis to be about 285 multiplications in L, which is just
about barely enough even if a good distinguisher exists for a Proos-like attack.
For MFE-1′, where L = K5 rather than L = K4, the system runs quite a bit
slower but the Proos-style attack will still have a cryptanalytic complexity above
290 even if it works. Finally, Even if we can �nd an alternative way to execute
the Proos attack on MFE-0, we can still use MFE-0+.

9 Performance Data

Having shown that our schemes safe under known attacks, it then becomes
meaningful to test performances. We compare our �rst implementations with the
Crypto++ library (benchmarks at www.eskimo.com/∼weidai/benchmarks.html).

We wrote our programs in plain C. The Crypto++ libraries are of course
highly optimized binaries. We think that the data above shows that the schemes
we propose are competitive with RSA and ECC. Of course, Crypto++ is not
nearly as well optimized for ECC as for RSA.

For comparison's sake, we recompiled our programs in C51 and tested for
performance on a 8051. One block decryption of MFE-1 (K = GF(216), L = K4)
can run on the following smart card development platform (24kB EEPROM,
including private key and code; 256 byte idata, 10 MHz basic Intel 8052, no
extra RAM) in 0.28s. MFE-0 or MFE-0+, if applicable, will be even faster.



Scheme BlockLen PublKey SecrKey Genkey SecrMap PublMap

RSA-1024 1024 bits 128 B 320 B 0.86 sec 4.75 ms 0.18 ms

RSA-2048 2048 bits 256 B 640 B 2.71 sec 28.13 ms 0.45 ms

ECIES-155 310 bits 40 B 20 B 0.02 ms 7.91 ms 12.09 ms

MFE-1 512 bits 12 kB 147 kB 9.90 ms 32 µs 0.86 ms

MFE-1′ 640 bits 18 kB 283 kB 23.40 ms 48 µs 1.79 ms

MFE-0 256 bits 6 kB 73 kB 2.21 ms 2.3 µs 0.12 ms

MFE-0+ 512 bits 6 kB 73 kB 2.21 ms 7.0 µs 0.39 ms
Table 1. Our Schemes on a 1.6GHz Opteron compared with Crypto++ library

Given that RSA-1024 on an In�neon SLE-66X64-2P (a costly card with 208
kB ROM, 5052 bytes RAM, 64 kB EEPROM, and 1100-bit Advanced Crypto
Engine) takes 0.4s at the same clock, this shows that the idea is of particu-
lar interest for situations where resources are scarce. This continues the trend
of [ACD+03,YCCh04], that is, multivariates are worth investigating for low-
resource and pervasive cryptography even without the interest of diversity.

We also note that usually decrypting is centralized at the servers while en-
crypting is done by those the masses sending data to the servers. So decrypting
is more likely to be resource-intensive. Conversely, someone who uses a smart
card to verify his or her identity is more likely to want to receive sensitive data,
so a smart card (a low resource item) is more likely to want to do decryption.

A lot of optimizations remains to be done for a new scheme, of course, in
particular the degree-�ve extension may be implemented better. We will of course
pursue this direction in the future.

10 Discussions and Summary

We make a few comments about history and speculate on the future.

10.1 A Little History

This is the triangular (or tame, or de Jonquiere) map of algebraic geometry:

y1 = x1, y2 = x2 +f2(x1), y3 = x3 +f3(x1, x2), . . . , yn = xn +fn(x1, . . . , xn−1).

A PKC based on a triangular central map is known to be weak early on. The idea
of using a composition of triangular maps to cover the vulnerability (Segmentwise
Triangular System Repeated, STS-R) is pioneered by TTM [Moh99]. However,
the execution was faulty and no rank-safe instances are available [GC00,YC05].

10.2 An Issue of Terminology

The seminal idea for our scheme is invented by L.-C. Wang [WC05]. The basic
approach is not limited to that of the original TTM. It is more versatile, e.g., in



a char = 2 �eld Eq. 2 may start like this without being really di�erent:

y′1 := [Y1]1 = p(x′1) + [
√
rational function in Y4, . . . , Y15]1,

where p can be any permutation polynomial.
This type of map is called the �Tractable Rational Map� according to Wang

et al [WC04,WC05], who term PKCs that uses compositions of �tractable ratio-
nal maps� as �tractable rational map cryptosystems� (TRMC) [WC04,WC05].
Of course, there is a �ne line between being nicely general and overly broad. For
example, the central maps of HFE and C∗ are both �tractable rational� maps
(just as they are �tame transformation� maps, which themselves are a subsets
of �tractable rational� maps; it must be added that the authors of TRMC do
not claim HFE as a TRMC). How to demarcate clearly between various cryp-
tosystems has not been agreed by all scholars of the MQ genre. An interested
reader can look up what is claimed as �Tractable Rational Map Cryptosystem�
in [WC04,WC05] as well as the eponymous pending patent application.

10.3 Conclusion

No other current instances of multivariates with the STS-R structure, such as
TTM (Tame Transformation Method), are being employed today. We think we
have shown that while the devil is in the details, there is some merit to the
idea of STS-R, in particularly. However, to make it useful, we have to generalize
by using more general operations than TTM. In particular, we need introduce
rational operations and square roots. Therefore it is not TTM any more.

The introduction of new tricks naturally may introduce vulnerabilities. We
showed how the failure of decryption may be enough of a discrepancy for crypt-
analysis as Proos et al did for the previous version of NTRU. We also show our
attempts at avoiding a similar fate. We leave to future historians to judge what
and how our scheme will be considered.

As is lamented in many discussions (e.g., [WP05]) aboutMQ-schemes, some
measure of provable security seems to be hard to come by. Many scholars are
studying this topic. But even so, we hope to have shown that there is some life
in MQ-schemes, in particular non-big-�eld types.
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A A Brief Description of Rank Attacks

We describe the linear algebra based attacks brie�y.

Separation of Oil-and-Vinegar: Consider a set of polynomials pi(x1, . . . , xn)
where the set of variables {x1, . . . , xn} can be partitioned into disjoint por-
tions V ] O, such that no quadratic term has both factors in the oil set O.
If we specify each variable in the vinegar set V, we can solve for variables in
O as a linear system. This is called a UOV structure.
Kipnis et al attacked UOV structures by distilling the oil subspace [KPG99,KS98].
If the size of the minimal vinegar set in the central equations is v, then we
can �nd the subspace spanned by the oil variables in q2v−n−1(n − v)4 �eld
multiplications.
We may have to manuever further, but such a distillation usually leads to a
cryptanalysis of the scheme. A program to �nd maximal cliques can verify
that if we ignore the qi terms and work with L, then m = 15, n = 12, v = 9.
So even for L = GF(232) of the �mini� version (cf. Sec. 5), the security level
way above 2100, high enough. This seems reasonable because the Kipnis
attack seems more inclined toward signature schemes.

High Rank Attack: We can associate with every quadratic polynomial a sym-
metric matrix. To be exact p =

∑
i≤j aijxixj +

∑
i bixi corresponds (for

char = 2) to Mp := [Aij ], where Aij = aij if i < j, aji if i > j, and 0 if i = j.
Usually r = rank Mp, if and only if we may write

∑
i≤j aijxixj =

∑
lalb for

a minimum independent set of linear forms l1, . . . , lr.
Equations in the public key tend to be full rank as are most of their linear
combinations. However, when a variable xi does not appear in a polyno-
mial p, the associated matrix will be singular, i.e., rank Mp < n. Thus, if
some variable appears in only one central equation, for most pairs of public
polynomials (pi, pj), we can �nd a linear combination pi + λijpj that is less
than full rank. The same goes for linear combinations of (u + 1)-tuples of
public polynomials if a variable appears only in u central equation. A simple
and a more algebraic (and complete) implementation of this idea is given by
[GC00] and [CSV93] respectively.

All told, this attack costs around
(
un2 + n3

6

)
qu multiplications if all goes

correctly. Here, each Xi appears at least in 4 equations, so even for L =
GF(232) in MFE-0 (our �mini� scheme) in Sec. 5, we have a security level
above 2128. It is quite a bit higher for the �regular� scheme MFE-1.

Low Rank Attack: This is approximately dual to the previous attack.
If p has rank r, then a random vector x satisfy Mpx = 0 with probability
q−r. We guess at x and try to solve for the linear combination that is Mp.
For encryption schemes m > n, so there are too many matrices spanned by



those corresponding to the public polynomials. In this case we must guess at
x1, . . . ,xk, where k = dm/ne. This makes the linear system

∑
λiMpi

xj =
0, j = 1 · · · k in the λi overdetermined. If there is a unique linear combination
with the minimum rank r, we expect to �nd it within qkr tries.
This is also known as the MinRank kernel attack. When there are more than
one kernel of the same minimal rank that are mostly disjoint, we can do
better [YC05]. If there are c such kernels, then we expect to �nd one within
qkrkmn(m + n)/c �eld multiplications.

Here, Y3 = X3 + detM3 + X1X2 + [
...], or rather its �rst component, cor-

responds to a single equation with the smallest rank where k = 2, r = 2,
q = 232 (for the �mini� version MFE-0). Thus the formulas of [GC00,YC05]
both gives more than 2128 as the security level.

Please refer to [GC00] for details on High and Low Rank attacks, [KPG99,BWP05]
on the unbalanced Oil and Vinegar scheme, and [YC05] for a recent summary.

B Inverting Q and Circumventing X1 = 0

Here is the last complete algorithm we implemented.

1. First �nd X1, X2, X3 in a triangular manner from

X1 + Q1 = Y1 +
√

(Y4 × Y7 + Y5 × Y6)(Y8 × Y11 + Y9 × Y10)(Y12 × Y15 + Y13 × Y14)−1

X2 + Q2 = Y2 +
√

(Y4 × Y7 + Y5 × Y6)(Y8 × Y11 + Y9 × Y10)−1(Y12 × Y15 + Y13 × Y14)

X3 + Q3 = Y3 +
√

(Y4 × Y7 + Y5 × Y6)−1(Y8 × Y11 + Y9 × Y10)(Y12 × Y15 + Y13 × Y14)

The actual pre-computations are:
(a) Calculate det(M1M2) = Y4 × Y7 + Y5 × Y6.
(b) Calculate det(M1M3) = Y8 × Y11 + Y9 × Y10.
(c) Calculate det(MT

2 M3) = Y12 × Y15 + Y13 × Y14.

(d) Calculate det M1 =
√

det(M1M2) det(M1M3)/ det(MT
2 M3).

(e) Calculate det M2 = det(M1M2)/ det M1, det M3 = det(M1M3)/ det M1.
(f) Calculate Y1 + Q1, Y2 + Q2, Y3 + Q3 and the triangular substitutions.

2. if X1 6= 0 compute M−1
1 and thereby M2 and M3, and we are done.

3. if X1 = 0, we let B = (det(MT
2 M3))−1 and compute A = X−1

2 , then

X7 = Y4A

X8 = Y6A

X11 = Y8A

X12 = Y9A

X9 = det(M3) B (Y12X8 + Y14X7)
X10 = det(M3) B (Y13X8 + Y15X7)
X5 = det(M2) B (Y12X12 + Y13X11)
X6 = det(M2) B (Y14X12 + Y15X11)
X4 = det(M3) B (Y6X6 + Y7X5)



Note that this avoids trouble if any other variable vanishes! We can also
see that this case takes 1 fewer multiplication and 4 fewer additions after a
careful count, and should pad the time upwards with some delaying action.


