
All in the XL Family: Theory and Practice

Bo-Yin Yang1,� and Jiun-Ming Chen2

1 Department of Mathematics, Tamkang University, Tamsui, Taiwan
by@moscito.org

2 Chinese Data Security, Inc., & National Taiwan U
jmchen@math.ntu.edu.tw

Abstract. The XL (eXtended Linearization) equation-solving algo-
rithm belongs to the same extended family as the advanced Gröbner
Bases methods F4/F5. XL and its relatives may be used as direct at-
tacks against multivariate Public-Key Cryptosystems and as final stages
for many “algebraic cryptanalysis” used today. We analyze the applica-
bility and performance of XL and its relatives, particularly for generic
systems of equations over medium-sized finite fields.

In examining the extended family of Gröbner Bases and XL from the-
oretical, empirical and practical viewpoints, we add to the general un-
derstanding of equation-solving. Moreover, we give rigorous conditions
for the successful termination of XL, Gröbner Bases methods and rela-
tives. Thus we have a better grasp of how such algebraic attacks should
be applied. We also compute revised security estimates for multivariate
cryptosystems. For example, the schemes SFLASHv2 and HFE Challenge
2 are shown to be unbroken by XL variants.

Keywords: algebraic analysis, finite field, Gröbner Bases, multivariate
quadratics, multivariate cryptography, XL.

1 Introduction

Public Key Cryptography depends on the intractibility of “hard problems”. Solv-
ing a system of quadratic equations over a finite field is one such (known to be
NP-hard, [33]) problem. Further, often in a cryptographical primitive we find
a polynomial system of equations to hold with good probability. This is called
algebraic cryptanalysis, currently a very hot topic. Ergo, knowing how fast we
can solve polynomial systems is important.

XL is an equation-solving method related to Gröbner Bases ([2, 54]). It was
proposed1 by Courtois-Klimov-Patarin-Shamir ([20]). Claims of cryptanalysis in-
volving XL-like system-solving have been made against many primitives: stream

� Supported by National Science Council of Taiwan under grant NSC 93-2115-M-032-
008.

1 XL is often regarded as a descendant of Kipnis-Shamir’s relinearization ([37]), used
in an algebraic attack on HFE, but we will discuss only XL-related methods from
now on.

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 67–86, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 B.-Y. Yang and J.-M. Chen

ciphers like Toyocrypt ([15]) and E0 (the Bluetooth protocol, [16]), block ci-
phers like Rijndael/AES and Serpent ([21]), and multivariate PKC’s like HFE
and SFLASHv2 ([17]).

XL does not operate on underdetermined systems, we must first take guesses
to make it determined or over-determined. Henceforth we concern ourselves with
solving the system �1(x) = �2(x) = · · · = �m(x) = 0 of m ≥ n (quadratic unless
otherwise specified) equations in n variables x = (x1, x2, . . . , xn) over a field
K = GF(q).

We will study the time complexity of XL- and Gröbner-Bases-related algo-
rithms. For generic systems, this depend primarily on the minimum degree of
operation, which varies with m and n and other parameters. We hope to achieve
the following:

– obtain exact and asymptotic time complexity of several XL-like methods;
and hence:

– show some previous claims of cryptanalysis to be over-optimistic, and give
updated security estimates for the primitives of SFLASHv2 and HFE chal-
lenge 2 (neither of which now decreasing below 280) by various methods;

– demonstrate that XL with the XL2 adjunct is a primitive version of F5.

2 The XL Algorithm

The “Basic XL” ([24] terms it “reduced XL”) at degree D proceeds as follows:

1. “X” is for eXtend (or multiply). Generate equations R(D) = {xb�i(x) =
0 : i = 1 · · ·m, |b| ≤ D − 2}. |b| =

∑
i bi is the degree of monomial xb =

xb1
1 xb2

2 · · ·xbn
n .

2. “L” is for Linearize. Run an elimination on the equations R(D), treating
each monomial xb in the set T = T (D) of monomials of total degree ≤ D
as a variable. The number of variables and equations are denoted T and
R respectively. The number of independent equations (i.e., the rank of the
system, denoted I) cannot exceed T −1 if the original system has a solution.
Indeed, if I = T − 1 we expect the algorithm to terminate with a unique
solution. However, it is sufficient that the elimination results in an equation
to solve for (say) x1.

3. If necessary, solve the univariate equation giving x1, and repeat as needed.

If solving M linear equations in N variables takes E(N,M), then XL runs in time

Cxl = E(T,R) = E
((

n+D
D

)
,m

(
n+D−2

D−2

))
, (1)

for larger fields because R = m
(
n+D−2

D−2

)
and T =

(
n+D

D

)
. If we are dealing with

small fields, then both T and R would be smaller. A reasonable terminating con-
dition is then I ≥ T − min(D, q − 1), as this final equation may have up to the
D + 1 terms 1, x1, . . . , xD

1 (or up to xq−1
1 if q ≤ D) instead of T = I − 1). Sur-

prisingly (cf. Sec. 6.2) this may offer little practical improvement over T −I = 1.

All in the XL Family: Theory and Practice 69

3 The Family of XL Variants

When proposing XL ([20]) the authors noted that we need m − n ≥ 2 for good
performance. Which brings us the “FXL” method as the first of several XL
variants.

3.1 FXL: Guessing as Aid to Equation-Solving

The “F” in FXL stands for “fix” ([20]). The attacker assigns random values to f
variables, in effect guessing at them, hoping to decrease (cf. also XL’, Sec. 3.3)
the degree D needed for XL. After guessing, we run XL and test at the end if
any solution found is valid. The complexity for f variables fixed at degree D is

Cfxl = qf
[
C0 + E

((
n−f+D

D

)
, m

(
n−f+D−2

D−2

))]
, (2)

where C0 is a presumed small cost of collation. We will establish the worthiness
of FXL by demonstrating its gains, and give some guidelines for its profitable
application in Sec. 6.3. We note the fixing concept applies almost verbatim to the
F4 and F5. I.e., we may also guess at a few variables before applying a Gröbner
Bases method. We shall show that this can be a good idea in general.

3.2 XL2: Gaining Extra Equations via the T ′ Method

This was first proposed ([22]) as an addendum to XL over GF(2), to add useful
equations. Let T ′ count the monomials that when multiplied by a given variable
will still be in T = T (D). I.e. T ′ = |T ′

i |, where T ′
i = {xb : xixb ∈ T } for each i.

Suppose I is not as large as T −D, but C ≡ T ′ + I −T > 0 (i.e. we have enough
equations to eliminate all monomials not in T ′

i), then:

1. Eliminate from the system R = R(D) the monomials not in T ′
1 first. We

are then left with relations R1 that gives each monomial in T \ T ′
1 as a

linear combination of those monomials in T ′
1 , plus C equations R′

1 with only
monomials in T ′

1 .
2. Repeat for T ′

2 to get the equations R2 and R′
2 (we should also have |R′

2| =
C).

3. For each � ∈ R′
1, monomial in the equation x1� = 0 are either in T ′

2 or can
be reduced (using R2) into T ′

2 . Ditto each x2� (� ∈ R′
2) and we get 2C new

equations.

XL2 is described as a sequence of Buchberger relations by [54]. It is important
it is similar to the final stage (T ′-method) of the related XSL (extended sparse
linearization, [21]) method that purports to break block ciphers with sparse
quadratic structure, including AES. We do not analyze XSL itself here. [22]
claims that most of the 2C equations “are likely” to be linearly independent,
and that XL2 can be repeated for an eventual solution. We seek to clarify the
heuristics below.

70 B.-Y. Yang and J.-M. Chen

3.3 XL’: Searching as the Final Step

XL’ ([22]) is XL except that we come down to a system in r variables and at
least r equations, then end by brute-force search. The total time complexity for
large q is

Cxl’ ≈ E
((

n+D
D

)
, m

(
n+D−2

D−2

))
+ qrD

1− 1
q

(
r+D

D

)
. (3)

The new terminations conditions are: instead of requiring T − I ≤ D, we only
require T −I ≤

(
r+D

D

)
−r. Note: It is usually 1-in-q for any polynomial to vanish

on random inputs, and we must test degree-D polynomials with r variables and
up to

(
r+D

D

)
terms. We need a suitably small qr and make some changes. This

D is smaller than the D0 for regular XL. We will check how much smaller in
Sec. 7.

3.4 XLF: Using the Field Relations

[17] proposes to use the field relations xq = x to advantage when q = 2k:

– Consider (x2
i), (x4

i), . . . , (x2k−1

i) independent variables in K in addition to
xi.

– Equations are generated as in every other XL method, then each generated
equation is raised to the second, fourth,. . . powers easily (since this is a linear
operation) as equations in (x2

i), . . ., (x2k−1

i), for k times as many variables
and equations.

– That all equivalent monomials are ipso facto equal become new equations,
which may let the algorithm execute with a lower D (see Sec. 7).

3.5 XFL: Guessing with a Twist

Another variant proposed with the name “improved FXL” and later XFL ([17,
59]):

1. Choose f (“to fix”) variables. Multiply the equations by all monomials up
to degree D − 2 in the other n − f variables only.

2. Order the monomials so that all monomials of exactly degree D with no “to-
fix” factor comes first. Eliminate all such monomials from the top-degree
block.

3. Substitute actual values for “to-fix” variables, then collate the terms and try
to continue XL, re-ordering the monomials if needed, until we find at least
one solution.

There are
(
n−f+D−1

D

)
monomials of degree D with no “to-fix” variable, so T ′ =

(
n−f+D

D

)
−

(
n−f+D−1

D

)
=

(
n−f+D−1

D−1

)
variables remain and the complexity is:

Cxfl = C ′′
0 + qf

[
C ′

0 + E
((

n−f+D−1
D−1

)
, m

(
n−f+D−2

D−2

)
−

(
n−f+D−1

D

))]
. (4)

C ′′
0 the cost of the initial elimination. What happens is that the max-degree

block of the elimination need not repeat with the guessing. We shall see how
this does later.

All in the XL Family: Theory and Practice 71

4 Gröbner Bases Algorithms F4-F5

Gröbner Bases have come a long way since the early days of Buchberger. The
reader is referred to [6, 10, 11, 40] for general theory on the topic, although the
speed estimates there can be considered superseded. The most advanced imple-
mentations are detailed in [29, 30, 31]. Summaries can also be found in [2, 54],
here we only give a synopsis:

0. Initialize: The original are reduced according to some (usu. Degree Reverse
Lexicographic) monomial order to a system in row-echelon form.

1. Multiply/Extend: Increase the maximal degree by 1. The resulting equations
are multiplied by all monomials such that the product does not exceed the
maximal degree. In F5 the Frobenius selection criteria avoids redundant
equations.

2. Linearize/Reduce: Run a Gaussian-like elimination to row-echelon form, such
that every row/equation is only reduced against preceeding rows.

3. Repeat: If we do not yet have a Gröbner Basis, go to Step 1. We will find a
Gröbner Bases as in x1 = f1(x2, x3, . . . , xn), x2 = f2(x3, . . . xn), . . . , maybe
ending with fk+1(xk+1, . . . , xn) = 0 when the system variety has positive
Krull dimension.

Please refer to the abovementioned articles for technical details. Lazard (cf. [40])
notes long ago that a Gröbner Basis for a set of equations �i may be found by
a reduction on the extended version of the Macaulay matrix at some degree
D. This matrix contains exactly the coefficients of the equations R(D), and the
reduction of this matrix is exactly XL. Hence [2] and [54] explains XL as a special
case of Gröbner Algorithms.

5 Termination Conditions of XL and Gröbner Bases

How many independent equations do we get in the basic XL? Not all equations
are independent: If we write �i(x) =

∑
j≤k aijkxjxk +

∑
j bijxj + ci, then

[�i�i′] =
∑

j≤k

aijk[xjxk�i′] +
∑

j

bij [xj�i′] + ci [�i′]

=
∑

j≤k

ai′jk[xjxk�i] +
∑

j

bi′j [xj�i] + ci′ [�i],

where [xj�i] denotes the equation xj�i(x) = 0 in the XL system, etc., i.e., two
ideals spanned by each pair of (�i, �j) intersect, hence there will be a corre-
sponding dependency at every degree D > 4. We may compute the number of
free equations assuming no other source of dependencies than the above:

Proposition 1 ([24, 58]). If all dependencies result from �i[�i′] = �i′ [�i] then

T − I = [tD]
{
(1 − t)m−n−1 (1 + t)m

}
=

∞∑

j=0

(−1)j

(
m − n − 1

j

)(
m

D − j

)

,(5)

72 B.-Y. Yang and J.-M. Chen

for all D < min(q,Dreg). Here Dreg is the degree of regularity given by

Dreg := min{D : [tD]
(
(1 − t)m−n−1 (1 + t)m

)
≤ 0}, (6)

and [tk] p means “ the coefficient of tk in the expansion of p”. E.g. [x2](1+x)4 =
6. This implies that the minimum D required for the reliable termination of XL
is given by

D0 := min{D : [tD]
(
(1 − t)m−n−1 (1 + t)m

)
≤ D}. (7)

Historical Remark: The [58] proof was faulty and did not prove D0 to be a
lower bound. T. Moh ([44]) states without proof a result similar to this one.
C. Diem has the first and only derivation ([24]) showing D0 to be a lower bound
if the Maximum Rank Conjecture (originally due to Fröberg, [32]) is generally
valid.

Corollary 2. When there are no extraneous dependencies (i.e., Eq. 5 holds),
then D0 is: 2n if m = n, m if m − n = 1, and �(m + 1)/2� if m − n = 2.

Proof. If m − n = 0, then T − I = [tD] ((1 + t)m/(1 − t)) =
∑D

j=0

(
m
D

)
, which

increases rapidly. It stays constant after reaching 2m at D = m, so D0 ≥
max(2m, q).

If m − n = 1, then T − I = [tD] (1 + t)m =
(
m
D

)
> D up to and including

D = m−1 (whence T − I = m > D). Finally at D = m we have T − I = 1 < m.
The D0 = m − 1 = n of [17, 20] is due to a slightly different XL in [20].

If m − n = 2, then T − I = [tD] ((1 − t) (1 + t)m) =
(
m
D

)
−

(
m

D−1

)
=

(
m

D−1

)
m−2D+1

D . Obviously T − I ≤ 0 iff D ≥ (m + 1)/2, and T − I > D
early on. So D0 ≤ �(m + 1)/2�. When D is incremented by 1, T − I increases
by

((
m
D

)
−

(
m

D−1

))
−

((
m

D−1

)
−

(
m

D−2

))
=

(
m

D+1

)
− 2

(
m
D

)
+

(
m

D−1

)
, which starts

out positive and when D > 1
2 (m −

√
m + 2) turns negative (see below), so we

only need to check the case of D = �(m + 1)/2� − 1 first, which is the last
D before T − I decreases down to or past 0. Combinatorics texts (e.g. [52])
tell us that

(
2D
D

)
−

(
2D

D−1

)
= (2D)!

D!(D+1)! is the Catalan number cD, which satisfy

c0 = 1, cn =
∑n−1

j=0 cjcn−1−j . Since c2 = 2, cD for D > 2 will be the sum of D
positive integers, not all of them 1, so cD > D. Similarly for even m we have(
2D+1

D

)
−

(
2D+1
D−1

)
= (2D+2)!

(D+1)!(D+2)! = cD+1 > D.
So the bounds are tight. Eqs. 5 and 7, says that as described in [20], as m−n

increases D0 decreases, although formulas are more complicated for larger m−n
(Tab. 1).

Corollary 3. Good approximations to D0 for fixed small f = m−n is given by
Tab. 1.

D0 is not easily expressed as a function of m (or n) for larger f = m − n. We
may approximately assume that D0 ≈ Dreg. D0 is then the smallest D such that

T − I = [tD]
(
(1 − t)f−1 (1 + t)m

)
=

f−1∑

j=0

(−1)j
(
f−1

j

)(
m

D−j

)
< 0.

All in the XL Family: Theory and Practice 73

or, after dividing out (m!)/ [D!(m − D + f − 1)!], we get this inequality in D:

f−1∑

j=0

(−1)j

(
f − 1

j

)
D!

(D − j)!
(m − D + f − 1)!

(m − D + j)!
≤ 0 (8)

From Eq. 8 we can find Dreg explicitly (and D0 approximately) for f ≤ 10 using
lots of roots. We tabulate (cf. Table 1) the results for smaller f = m − n. This
shows that the earlier estimate of D0 ≈ √

n ([20]) for small f is not very good.
Indeed, [24] points out for any fixed f , D0/n → 1/2.

Table 1. Relationship between f = m − n and minimal degree D0 = D0(m)

f D0 (as approximate function of m) 10 15 20 25 30 35

0 2m (but only up to q, cf. Sec. 5) 210 215 220 225 230 235

1 m 10 15 20 25 30 35

2 � 1
2
(m + 1)� 6 8 11 13 16 18

3 � 1
2
(m + 2 −√

m + 2)� 5 7 9 11 14 16

4 � 1
2
(m + 3 −√

3m + 7)� 4 6 8 10 12 14

5
⌈

1
2
(m + 4 −

√
3m + 8 +

√
6m2 + 30m + 40)

⌉
3 5 7 9 11 13

6
⌈

1
2
(m + 5 −

√
5m + 15 +

√
10m2 + 50m + 76)

⌉
3 4 6 8 10 12

The predictions of Eq. 5 is confirmed for random quadratics �i by simulations
due to N. Courtois ([18]) up to very high dimensions and degrees, including
all the parameters listed in [17] and earlier works. The public polynomials of
several PKC’s including SFLASHv2 also behaves like random polynomials at
low degrees. This verifies our own simulations, which are not so extensive.

5.1 XL2, Gröbner Bases, and Their Relationship

Corresponding to Eq. 7 for Gröbner Bases algorithms such as F5 we have ([4],
later [2]) is this result for semi-regular sequences of equations (i.e., no extra
dependencies):

Dg := min{D : [tD](1 − t)m−n(1 + t)m < 0}. (9)

Its resemblence to D0 for XL means that some results for XL can extend directly
to Gröbner Bases: We can think of this as corresponding to exactly one fewer
variable, or we can think of the extra factor of (1−t) to mean that the elimination
is run on the highest-ranked monomials only. One variant method of XL does
exactly that — the XL2 adjunct (Sec. 3.2), otherwise known as the T ′-method.
In [58, 59], it was pointed out that one can run XL2 on all variables to achieve
effectively going one degree higher. [59] comments that XL2 may not repeat even
if it works once. It may be possible using the original, overly optimistic estimate
(T−I < T ′) as opposed to one that focuses on the top degree monomials; indeed,
we prove below that it is not the case for large q.

74 B.-Y. Yang and J.-M. Chen

Proposition 4. XL2 (for large q) on all variables will run when D ≥ Dg, and
will then repeat until we find a solution or prove the system self-contradictory.

Proof. We need to eliminate all top-degree monomials ([59]), and can think of
regular XL being run on homogenized equations with one variable assigned to
represent the constant 1, and we may apply Eq. 6, we get the first half of the
statement.

We know that multiplying by (1−t)−1 represent taking the sum of coefficients
of a generating function up to some degree, i.e., gm,f (D) =

∑D
d=0 gm,f+1(d) (here

f = m − n). We know that the zeroes of gm,f (D) := [tD]
(
(1 − t)f−1(1 + t)m

)

and gm,f+1(D) alternate (see below) because their dominant terms are associ-
ated Hermite functions (which form an orthogonal sequence). So once D ≥ Dg,
gm,f+1(D) will not become positive until gm,f (D) becomes non-positive also.

We have shown that XL+XL2 and F5 operates at the same apparent degree Dg.
Further ([30]) the signature, i.e. the underlying degree, of the polynomials in the
matrix/system built by F5 is the same as the classical Buchberger algorithm,
which is the same as classical XL (this remark was also made in [2]). This is
scarcely surprising, given that Imai et al have shown that XL2 is equal to a
sequence of Buchberger-like operations. Therefore, we can think of XL+XL2 as
a less polished version of F5.

5.2 FXL and Asymptotic Estimates for D0

With m = n equations and variables in practice the attacker would most often
run the variant FXL, i.e., guesses at f variables, then attempts to run XL on
the remaining system. It is hence of particular interest to obtain asymptotic
behavior when m−n = f remains small compared to m or n. Eq. 7 is valid only
when D < q, but for GF(28) we can cover all m up to about 500, which is large
enough to bring in asymptotics. This requires first asymptotically estimating a
coefficient then approximating a sign-change position in the following manner
via Cauchy’s integral formula ([35]),

gm,f (D) := [tD]
(
(1 − t)f−1(1 + t)m

)
=

1
2πi

∮

z−D−1(1 − z)f−1(1 + z)mdz.

Standard asymptotic analysis recipes (cf. [12, 35, 57]) can be applied to find ([3])
that

Dreg =
m

2
− (hf−1,1)

√
m

2
+ O(1) ∼ m

2
−

√
fm. (10)

Here f = o(m1/3) and hk,1 is the largest zero of the Hermite polynomial Hk(x),
given by Szegö ([55]) as

√
2k + 1 + O(k−1/6). And when we have f ∼ cm

Dreg ∼
(

1
2
−
√

c +
c

2

)

m + O(m
1
3). (11)

All in the XL Family: Theory and Practice 75

via the Coalescent Saddle Point method ([3, 12]). We note that Eqs. 10 and 11
are compatible which is necessary if the asymptotics are uniform.

One consequence of the above is that that an optimal f for FXL (cf. Sec. 6.3)
exist, which also applies to F4-F5. Let us start with a medium-large m = n
(asymptotics come into play as low as in the teens), and start with the as-
sumption that D = m/2, then we may compute lg T = 1.377m + O(log m) via
Stirling’s formula:

T =
(

n + D

n

)

=
(

3m/2
m

)

=
(3m/2)!
m!(m/2)!

∼
√

3
2πm

(
(3/2)3/2

(1/2)1/2

)m

When guessing at f variables, Eq. 10 means that n and D goes down re-
spectively by f and roughly

√
fm. We find that T goes down by a factor of

≈
(
(3/2)f · 3

√
fm

)
, hence lg T ∼ 1.377m − 1.585

√
fm + 0.585f , and if we as-

sume small f , q = 28, E to be degree ω = 2 + ε (a Lanczos solver, see below)
and R ∼ T then FXL has

lg Cfxl ∼ 2 lg T + f lg q ∼ (lg q + 1.170)f − 3.170
√

fm + 2.755m. (12)

If Eq. 12 holds for all f , then lg Cfxl will take a minimum of lg Cfxl ≈ 2.63m
at f ∼ 0.014m, a significant gain. However, Eq. 12 is actually valid up for small
f , actually to only f = o(3

√
m). We may still conclude that for FXL, there is

some small ε > 0 and δ such that we should take at least f = δ ·m1/3−ε guessed
variables, and we can say more since we have compatible asymptotics, for which
we refer you to [59]. The result is that we should guess even more variables:
For q = 28 and ω = 2 the minimum occurs at around c := f/m ∼ 0.049,
when lg Cfxl ∼ 2.4m. Similarly when ω = lg 7 (Strassen blocking), the minimum
lg Cfxl ∼ 3.0m when f ∼ 0.096m.

Even supposing that our numbers are slightly off, this shows that FXL is
a better way to apply XL on non-small fields. As Gröber Bases methods theo-
retically and asymptotically resemble XL, the phenomena should be nearly the
same. I.e., starting from m = n, one should guess at a very small percentage
of the variables before starting the Gröbner Bases computations. Indeed, for
m = n and ω = 2.8 (Strassen Blocking), we see that lg T = lg

(
2n
n

)
∼ 2n, hence

lg CF4 ∼ lg CF5 ∼ 5.6n, as opposed to 4.2n for guessing at one variable, and
3.0n with the optimal guessing. For ω = 2, the coefficients are 4, 3.0 and 2.4
respectively. This seems very natural, but has not been seen in print previously.
Results for smaller q can be found in [4, 58, 59]. As C. Diem points out, a critical
proof in [58] is inaccurate, its results are not always valid lower bounds. However
[59] shows FXL (and likewise FF4/FF5 worthwhile for all values of (q, ω).

6 Pragmatic Issues in XL-Related Methods

We first mention some theoretical and practical aspects of XL-related method,
particularly the parameters we shall use when estimating the complexity (secu-
rity level).

76 B.-Y. Yang and J.-M. Chen

6.1 On a Pragmatic Cost of Elimination

Naive cubic-time elimination ([8]) is inadequate for large matrices, and a cost
estimate T lg 7 (where T counts the monomials) or even lower is cited in all XL
articles ([15, 17, 20, 21, 22]). However, Strassen’s ([53]) original 2lg 7 algorithm
does not reliably invert a known nonsingular square matrix. The XL situation
is even more complex: The matrix (with R > T) is not square, and we want
our elimination algorithm to (a) run despite the redundant rows (equations);
(b) compute a useful basis for the kernel (e.g. reduced row-echelon form) if
the matrix is not full-rank (i.e. T − I = 1). To pivot inerrantly around singular
submatrices in O(nlg 7) is quite nontrivial ([7]). Similar caveats apply to adapting
other sub-cubic matrix multiplications for equation-solving.

The best all-around result for dense matrices known to us is D. J. Bernstein’s
GGE (Generalized Gaussian Elimination, [9]) which computes the quasi-inverse,
which can (method “S”) solve a system of equations, and even (method “N”)
find a basis of the kernel of a matrix (a row-reduced echelon form)! Assume
M equations, N variables, and the time cost ∼ αNω to multiply two N × N
matrices, then GGE uses time

ES(N,M) =
2α(1 + γ)
(2ω − 2)

Mω−1N +
αMω

(2ω − 1)
; (13)

EN (N,M) =
2α(2 + γ)
(2ω − 2)

Mω−2N2 +
4αγ

7
Mω−1N +

αMω

(2ω − 1)
. (14)

Here the coefficient γ = (7α)/(2ω − 4). We shall look at how to do better in
Sec. 6.2.

6.2 A Need for Sparse-Matrix Algorithms

The systems generated by XL are obviously sparse. A respected textbook on
sparse matrices ([27]) remarks that in not using a matrix algorithms more tai-
lored for the situation “you would just be pushing milliards of zeros around”.
Moving around gigabytes full of zeroes not only slows down the computation dire-
cly, but increases the amount of memory required. With n = 15, m = 20, q = 28

and D = 7 (these are practical dimensions), we have T = 170544 monomials and
R = 310080 equations. A full elimination will take about 50 GB (≈ 236 bytes).
A normal procedure ([27]) is to find block structures with graph-coloring analy-
sis. The elimination cost is then dominated by E(N0,M0), the elimination cost
for the largest block. The XL equations are structured such that the largest block
comprise the equations with the highest degrees (and this naturally happen in F5).
Still, if we know that there is at most one solution, then it must be better to use
Lanczos, Conjugate Gradient (CG), or Wiedemann methods, each solving an N×
N system Mx = b using N multiplications of M to an N×1 vector. An M×N sys-
tem (M > N) in Lanczos (or CG) is converted to N ×N by solving (MT DM)x =
MT Db instead. Here D is invertible, diagonal, and suitably random. For sparse
systems with t terms per equation, the expected time cost drops to order 2 + ε:

EL(M,N) ≈ (c0 + c1 lg N) tMN. (15)

All in the XL Family: Theory and Practice 77

The log-factor is because accessing memory no longer take negligible time, and
tags are ∝ lg N long. Lanczos, CG and Wiedmann methods all have comparable
speeds. Consensus seems to peg the Wiedemann algorithm as intrinsically slower
but more reliable, and to get better results Lanczos methods must be randomized
which adds to the cost (cf. [8, 28, 38, 56]). Warning: Lanczos (or CG) is known to
terminate sometimes incorrectly over a finite field. Wiedemann is not known to
terminate always correctly for nonsquare matrices. Proper operating conditions
are not fully understood. However, we were informed ([13]) that such methods
are usable and widely used in practice.

6.3 Practical Parameters for Assessing FXL (for Large q)

Since we ultimately want reasonable security estimates, we need concrete values
for c0 and c1 in the Lanczos estimate EL. What are reasonable estimates? We
will use c0 = 4 and c1 = 1

4 in Eq. 15 to arrive at complexity estimates (for
Lanczos-like sparse solvers) in field multiplications. Calibrating against our own
test data, we should divide the number of multiplications by roughly 26 to get
numbers in 3DES encryption blocks (comparable to but a little longer than AES
blocks).

Furthermore, if the dimensions become very large, then asymptotically we will
eventually see R/T in the hundreds. However, we may generate fewer equations
([13, 18]), e.g., via a randomly picked set of equations (taking say 20% more
equations than variables) and solve ten such random systems to ensure not
missing a solution. Hence it makes much more sense to assume the equations
to have roughly as many equations as there are variables, and we may assume
R/T to be a constant on the order of “a few”. Of course, for smaller dimensions,
it may make more sense to run a more robust elimination. For Gröbner Bases
methods, obviously T = R and this is a smaller T because it is only the top
degree portion, but this contribution dominates the number of monomials for
large q and a typical case of XL/FXL anyway. With α = 7, ω = lg 7 ([41]), we
get

Esparse(N,M) = (
1
4

lg N + 4) · MN · (avg. # of terms per equation); (16)

Edense(N,M) = 51.33M0.8N2 + 65.33M1.8N + 1.167M2.8.

These numbers are for processors with enough cache only. We hear that some
IBM servers do have 100+GB of RAM and a mind-boggling 512MB cache per
CPU, so we assume that processing power, memory size and bandwidth all pose
no problems.

7 Practical Security Assessment of XL Variants

Infeasibility of the cryptanalysis against SFLASHv2 and HFE Challenge 2 as
mentioned in [59] is given, using some results that we prove rigorously for semi-
regular sequences.

78 B.-Y. Yang and J.-M. Chen

7.1 Inefficiency of XL’ and XLF for Small m − n and Large q

Proposition 5. The number of extra equations provided by XLF (Sec. 3.4) is
given by

∆T = k

(
n + �D/2
�D/2

)

− 1. (17)

Proof. We need not track the redundant monomials explicitly as in [17]. These
monomials are the degree ≤ D monomials in the (xi)’s that can also be written
as monomials of the (x2

i)’s at a lower degree, copied k times. So we just count
monomials in the (x2

i)’s of total degree ≤ D/2, which number
(
n+�D/2�
�D/2�

)
. The

final −1 comes from the fact that the monomial 1 is counted as duplicated k
times, once too many.

Corollary 6. When D < q, XLF can be expected to work (most of the time)
when

[tD]
(
(1 − t)m−n−1 (1 + t)m

)
−

(
n+�D/2�
�D/2�

)
< �D/2�. (18)

Note: This is likely only asymptotically correct (extra dependencies are possible).
If the elimination ends with all odd powers of (x2j

1) left we can still solve for x1.

Proposition 7. The following holds about XL’ and XLF for q large:

XL’: When m − n is 1 or 2, XL’ operates if and only if D > m − r; if m = n,
XL’ will not run at D = m + 1 − r, but will at D = m + 2 − r for r large
enough (around r > m/2). When r is small, we need a much larger D,
around 2m/r (r!)1/r.

XLF: When m − n ≤ 2, XLF need at least D > n/2 to operate.

Proof. We can use the approximations
(
2k
k

)
≈ 22k/

√
πk and k! ≈

√
2πk(k

e)k.

XL’: m = n: From the description of XL’ above and Eq. 5, we see that
(
r+D

D

)
−

r ≥
∑D

i=0

(
m
i

)
>

(
m+1

D

)
+

(
m+1
D−2

)
. Since

(
m
k

)
is increasing in m, we need

r +D > m+1 which suffices for r > m/2. For small r, we need
(
r+D

D

)
>

2m.
m = n + 1: Need

(
r+D

D

)
−

(
m
D

)
≥ r; when r + D = m + 1, the left hand side

becomes
(

m
D−1

)
≥ m > r, so it does the job, and no smaller r can do

that.
m = n + 2: Need

(
r+D

D

)
=

(
r+D+1

D

)
−

(
r+D
D−1

)
>

(
m
D

)
−

(
m

D−1

)
; again r + D =

m + 1 will do, and barely, because nothing smaller works.
XLF: Let m − n = 1. As we can presume D small, we have gives

(
n+1
D

)
<

(
n+�D/2�
�D/2�

)
. At D = n/2 we have the left side ≈ 2n+1√

πn/2
(1 − 1

n+2), and the

right

≈
√

2π · 5n/4 · (5n
4e)5n/4

(√
2π · n/4 · (n

4e)n/4
) (√

2πn · (n
e)n

) =

√
5

2πn

[
(5/4)5/4

(1/4)1/4

]n

.

All in the XL Family: Theory and Practice 79

We see
[

(5/4)5/4

(1/4)1/4

]
≈ 1.87 < 2 and 2√

πn/2
(1 − 1

n+2) >
√

5
2πn . For m = n we

need a higher D (we can check that D ≈ 3m/4 is needed).
Now consider m − n = 2. We want

(
n+2
D

)
−

(
n+2
D−1

)
=

(
n+1
D

)
−

(
n+1
D−2

)
<

(
n+�D/2�
�D/2�

)
, which we can verify to happen only when D ≤ n/2. The LHS is

about 1/D of what it was at m−n = 1, which is covered by the exponential
factor (1.87/2)n.

XL’ (designed for GF(2)) work suboptimally on a larger field. XLF is hindered
by the fact that the dependencies are multiplied along with the independent
ones ([18]).

7.2 XFL Is Really a Space-Time Tradeoff

XFL of Sec. 3.5 appears to be an improvement, but there are important draw-
backs. Essentially, for the initial elimination stage, the memory requirement is
increased (m − f)-fold. More importantly, once the initial substitution is made,
the resultant second-highest-degree block is no longer sparse and requires the
equivalence of GGE (Sec. 6.1).

There is no particular reason that XFL should fail. Indeed, it is better than
XL’ or XLF. However we believe that FXL works better due to the availability
of Lanczos.

7.3 Reassessing XL’/XLF/XFL Versus SFLASHv2 and HFE
Challenge 2

Proposition 8 ([58]). If 2q > D ≥ q, and the system is semi-regular up to
degree D, then T − I = [tD]

(
(1 − t)m−n−1 (1 − ntq) (1 − t2)m

)
. [Also similarly

for F4/F5.]

This is a yardstick we need for the complexity of some XL variants, and we
look at how three XL variants apply to extant schemes SFLASHv2 and HFE
Challenge 2.

Did XL Variants really break SFLASHv2 in 280? To recap, SFLASHv2

([51]) is a NESSIE finalist. It is an instance of C∗− ([49], descendant of C∗,
[43])) with K = GF(27), m = 26 and n = 37, and reputed to be very fast,
suitable for smart card implementations ([1]). Although the NESSIE writeup
contained some extraneous private data that can be recovered ([34]), SFLASHv2

was previously considered safe ([47]). It is claimed ([17]) that after n is reduced
to 26 by guessing at eleven variables, any of the variants XL’, XLF, and XFL can
provide a cryptanalysis within 280 3DES operations. None of the cryptanalysis
attempts can function as given:

XL’: [17] gives D = 7, r = 5. From Sec. 7.1, we can see that at r = 5, XL’
should not work until D = 92. We actually ([18]) need D = 93. By trial
and error, we get best result is around r = 16, which gives a complexity of
∼ 2118.

80 B.-Y. Yang and J.-M. Chen

XFL: [17] gives f = 4, D = 6. Actually we see from Table 1 that D0 ≥ 10.
With Strassen and Bernstein, we get 2104 multiplications (298 3DES blocks).

XLF: [17] gives D = 10. Using Sec. 7.1 and Prop. 8 we verify that XLF only
works at D = 18 (complexity ∼ 292 even with Lanczos).

Reports of the demise of SFLASHv2 is exaggerated and justifies the design
decisions of Patarin et al. This is significant as SFLASHv3 ([19]) is much slower
with bulkier keys, and has security concerns due to unlucky choice in dimensions
([18, 26], cf. also http://www.minrank.org/sflash/). The best cryptanalysis is
FF5 if it works with Lanczos (complexity � 281). Else the best try is likely FXL
(complexity ∼ 285). If an attack works, it probably will be an algebraic attack
resembling [26].

Did XL Variants really break HFE challenge 2 in 280? HFE Challenge 2
is an HFE instance with q = 24 and m = n = 32. We believe that the parameters
as given in [17] does not lead to cryptanalysis under 280, after double-checking
against Sec. 7.1:

XL’ [17] gives m = n = 32, D = 10, for which T − I = 107594213. We can do
(cf. Prop. 7) XL’ using (D, r) = (15, 19) or (14, 20), which is very sufficient.

XFL: D = 7 and f = 2 ([17]) won’t function (since T − I = 2459664). We
recommend (f,D) = (12, 6) with complexity ∼ 297 3DES blocks.

XLF: [17] gives D = 10, which we can verify not to work (as above). We need
(cf. Prop. 8) all the way to D = 23, with a complexity 2112 even for Lanczos.

8 Discussions and Conclusion

With all the results we have gathered, we may tabulate the complexity in various
schemes. Two points need explaining. F1F5 and F2XL means F5 guessing at one
variable and FXL always guessing at two variables respectively. The asterisk
means that we are assuming Lanczos-class speed solvers to work with F5, which
is not a given.

Table 2. Time Estimates (3DES blocks): Blocking (ω = 2.8) v. Lanczos (∗: may not
work)

Attack Method FXL F2XL F5 F1F5 FF5

n = 26 q = 27

(SFLASHv2)
b 2101 2104 2117 2102 299

l 285 287 295
∗ 285

∗ 282
∗

n = 32, q = 24

(HFE Chal. #2)
b 297 2106 2111 2105 293

l 287 292 298
∗ 289

∗ 282
∗

n = 20, q = 28 b 291 291 2109 288 286

l 278 278 284
∗ 277

∗ 274
∗

Asymptotic for
big m = n, q

b 23.0n 23.86n 25.6n 23.86n 23.0n

l 22.4n 22.75n 24.0n
∗ 22.75n

∗ 22.4n
∗

All in the XL Family: Theory and Practice 81

8.1 Comments on the Relationship of Gröbner Bases to XL

Imai et al ([54]) shows XL to be variation of the F4-F5 algorithms. However,
practical differences remain even if the theory of XL might be considered sub-
sumed by Gröbner Bases. Gröbner Bases is a general and elegant mathematical
theory that applies well to everything under the sun including symbolic compu-
tation. When F5 terminates , we should always obtain all solutions, including
those in extension fields. Shamir et al proposed XL as a cryptanalytical tool,
with one purpose: to find a known-or-conjectured-to-exist solution to a numeri-
cal set of equations. In FXL/Lanczos variant, this property is shown clearly: it
is possible to find all solutions in K, but not in extensions of K.

Wiedemann and Lanczos algorithms are not suitable for computing reduced
row-echelon forms; as a conclusion to XL, either works best with T − I = 1.
In a Gaussian, we need not know T − I beforehand and may come down to
any number of monomials (between 1 and min(q − 1,D)) with no speed penalty
and still terminate correctly; under Bernstein’s GGE, we are penalized by the
slower algorithm “N” (instead of “S”, cf. Sec. 6.1–6.2); using Lanczos requires
us to know T − I in advance, and to run exactly that many different iterative
sequences. [30, 31] seem to agree with the above assessment, and the critical step
of F4/F5 appears to be an elimination on the top block.

The aversion to Gaussion or Generalized Gaussian elimination is also why
we do not suggest XL2. We do not see how to link it reliably into a Lanczos-like
sparse solver.

[4] claims that Gaussian-like elimination in F5 can achieve time close to
Lanczos algorithms. At least, ω = 2 is “plausible”. We hasten to agree! It is
quite plausible that one can adapt these advanced Gröbner Bases methods for
Lanczos, or achieve ω = 2 + ε regardless. However, it is also plausible that
one cannot, because according to [30], the elimination is severely restricted in
the order of operations. We may also use guessing in F5, and the two methods
behaves very similarly (as expected). But in this event, the two methods could
be described as having largely converged. The entries that require running a
Lanczos-like sparse solver with F5 or Fix-then- F5 (denoted “FF5”) is marked
with an asterisk in Tab. 2. If effectively for F5 we will always have ω measurably
greater than 2, then these estimates are invalid. In this case FXL will eventually
dominate methods that always compute a Gröbner Basis.

There is one further situation where FXL might work better, which is when
we cannot hold the entire matrix of the F5 in memory. In turn, we can run
FXL without generating the whole Macaulay matrix. All the possibilities takes
further study.

8.2 Some Remarks on the Termination of Basic XL

Moh in [44] pointed out that Basic XL should not work if the system of equations
has a positive-dimensional solution at “at infinity”. It is our aim to help to clarify
this often-cited remark by Moh. We thank C. Diem for pointing out Prop. 9 to
us.

82 B.-Y. Yang and J.-M. Chen

As above, let �1, . . . , �m ∈ K[x1, . . . , xn]. Let �h
1 , . . . , �h

m ∈ K[x0, . . . , xn] de-
note the homogenizations of the �i. Let D ∈ N, and let us assume (without loss
of generality) that �1, · · · , �a have degree ≤ D and �a+1, · · · , �h

m ∈ K[x0, . . . , xn]
have degree > D. For example, for i = 1, . . . , a, the �i might be quadratic and
for i = a+1, . . . ,m, the �i might be the field equations which might have a much
higher degree.

Let VD be the projective algebraic set defined by the equations

�h
1 = 0, . . . , �h

a = 0.

We note that if the system �1 = · · · = �a = 0 defines a 0-dimensional algebraic set
and the “set at infinity” is non-empty, the dimension of VD equals the dimension
of the “set at infinity”. Let T and I be as above. Our want to relate T − I to
the dimension of VD.

Proposition 9. If dim(VD) = r, then T − I ≥
(
r+D

r

)
.

Proof. Let J be the homogeneous ideal defined by �h
1 , · · · , �h

a , and let (K[x0, . . . ,
xn]/J)D be the D-th homogeneous part of the quotient ring K[x0, . . . , xn]/J .

Note that dim(VD) = dim(K[x0, . . . , xn]/J)−1 (since VD is projective), and

T − I = dim((K[x0, . . . , xn]/J)D)

(see [24–Section 4] for a derivation of this formula). We can go from K to any field
extension L without changing the numbers T, I and dim(VD). By going to a suf-
ficiently large extension L/K, we can apply the Noetherian Normalization Theo-
rem in the form of [39–Theorem 2.2]. We obtain that the ring L[x0, . . . , xn]/(J)
contains a polynomial ring L[y0, . . . , yr] such that the images of the yi are linear
combinations of the xi, hence

dimK((K[x0, . . . , xn]/J)D) = dimL((L[x0, . . . , xn]/(J))D) ≥
dimL((L[y0, . . . , yr])D) =

(
r+D

r

)

Note that the proposition implies in particular that if r ≥ 1, then T − I ≥
D + 1, and if r ≥ 2, then T − I ≥ (D+2)·(D+1)

2 .
If T − I ≤ D, then XL will find a univariate polynomial, whereas if T − I

is greater than this number it will usually not find such a polynomial. The
interpretation of the proposition above is thus that usually XL does not ter-
minate if dim(VD) > 0. We would like to stress that VD is the variety defined
by �h

1 = 0, . . . , �h
a = 0, the equations �h

a+1 = 0, . . . , �h
m = 0 of higher degree are

disregarded.

Let us now set V as the projective algebraic set defined by all equations
�h
1 = 0, . . . , �h

m = 0. Then we have the following good news ([44–Lemma 2] is a
corollary).

Corollary 10. If V = ∅ or dim(V) = 0, then XL terminates for some D.

All in the XL Family: Theory and Practice 83

Proof. Let J be the homogeneous ideal defined by �h
1 , . . . , �h

m. We now have

T − I = dim((K[x0, . . . , xn]/J)D)

for all D (where T and I are defined with respect to D).
Now, under our assumptions on V , there exists a D̃ > 0 such that for D ≥ D̃,

dim(K[x0, . . . , xn]/JD) is equal to the number of non-trivial solutions (counted
with multiplicities) of the system �h

1 = 0, . . . , �h
m = 0. This is one of the state-

ments of Hilbert theory. It is essentially proven in [36–I, §7]. It follows that for
some D > 0, one has T−I ≤ D, and the algorithm finds a univariate polynomial.

Cor. 10 does not apply to XSL (cf. 3.2) or any other method in which an entire
ideal I = K[�1, . . . , �m, p1, p2, . . . , pκ] is not used (the pi’s are extra polynomials
added by the attacker). It also does not say what D is. Even if it always works,
it may be slow.

When XSL ([21]) proposes to break AES (and Serpent). The more optimistic
claims of cryptanlysis in 287 or 2100 is based on XSL applied to the Murphy-
Robshaw structural equations ([45, 46]) of AES. It is claimed ([17, 21]) that XSL
can sidestep the objections of [44] because M-R equations are formed with tech-
niques similar to Sec. 3.4, and the final (“T ′-method”) stage is similar to XL2.
But these variant methods may work correctly or not, independently of Cor. 10.

8.3 A Conclusion

With all the analysis given here we hope to have done a reasonable job in cover-
ing various aspects of XL. In passing we may have rehabilitated the reputation
of SFLASHv2 to some extent. In conclusion: XL is a simplified version of current
Gröbner Bases algorithms. Some prior claims about XL variants were clearly too
ambitious, and sometimes unrealistic claims were put forward. Yet, the inven-
tion of XL (and particularly FXL) is clearly an advance, justifying the insights
of Courtois, Klimov, Patarin and Shamir. We hope we have evaluated the capa-
bilities of XL algorithms in a more rational and pragmatical manner. Still, much
remains to be done in the practical arena. One important item is to settle the
question of the validity of XSL.

The results of this work along with [59] should go some ways to show that
FXL is the best XL variant, and the principle extends to F4/F5. We hope that
this study will lead to better equation-solving methods based on FF5 (or FF4).
On the theoretical side, there are also a couple of things that can use a little
further study. One is the identification of situations where F5 (and XL/FXL)
will work substantially better or much worse than the [4] bound. Another is a
correct way to implement sparse matrix arithmetic so that F5 can reliably run
with a solver with Lanczos-like speeds. While the MAGMA project ([42]) has
an implementation of F4 that is very well optimized, even faster than Faugère’s
own F5, it is not yet pushing the limits of what such a solver can do. This is an
area that can still be exciting and practically useful.

84 B.-Y. Yang and J.-M. Chen

Acknowledgements

The authors would like to thank Dr. Nicolas Courtois and Dr. Claus Diem for
helpful discussions, and the first author would like to dedicate this to the 65th
birthday and imminent retirement of his father, Prof. Wei-Zhe Yang of National
Taiwan University.

References

1. M. Akkar, N. Courtois, R. Duteuil, and L. Goubin, A Fast and Secure Implemen-
tation of SFLASH, PKC 2003, lncs 2567, pp. 267–278.

2. G. Ars and J.-C. Faugère, H. Imai, M. Kawazoe, and M. Sugita, Comparison of
XL and Gröbner Bases Algorithms over Finite Fields, Asiacrypt’04, lncs 3329,
pp. 338–353.

3. M. Bardet, Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie., Ph.D. thesis, Université Paris 6, 2004.

4. M. Bardet, J.-C. Faugère, and B. Salvy, Complexity of Gröbner Basis Computa-
tions for Regular Overdetermined Systems, INRIA Rapport de Recherche No. 5049;
a slightly modified preprint is accepted by the International Conference on Poly-
nomial System Solving.

5. M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang, Asymptotic Complexity of
Gröbner Basis Algorithms for Semi-regular Overdetermined Systems over Large
Fields, manuscript.

6. B. Barkee et al, Why You Cannot Even Hope to Use Gröbner Bases in Public-Key
Cryptography, J. Symbolic Computations, 18 (1994), pp. 497–501.

7. J. R. Bunch and J. E. Hopcroft, Triangular Factorizations and Inversion by Fast
Matrix Multiplication, Math. Computations, 24 (1974), pp. 231–236.

8. R. Burden and J. D. Faires, Numerical Analysis, 7th ed., PWS-Kent Publ. Co.,
2000.

9. D. Bernstein, Matrix Inversion Made Difficult, preprint, stated to be superseded
by a yet unpublished version, available at http://cr.yp.to.

10. L. Caniglia, A. Galligo, and J. Heintz, Some New Effectivity Bounds in Computa-
tional Geometry, AAECC-6, 1988, lncs 357, pp. 131–151.

11. L. Caniglia, A. Galligo, and J. Heintz, Equations for the Projective Closure and
Effective Nullstellensatz, Discrete Applied Mathematics, 33 (1991), pp. 11–23.

12. C. Chester, B. Friedman, and F. Ursell, An Extension of the Method of Steepest
Descents, Proc. Camb. Philo. Soc. 53 (1957) pp. 599–611.

13. D. Coppersmith, private communication.

14. N. Courtois, The Security of Hidden Field Equations (HFE), CT-RSA 2001, lncs
2020, pp. 266–281.

15. N. Courtois, Higher-Order Correlation Attacks, XL Algorithm and Cryptanalysis
of Toyocrypt, ICISC ’02, lncs 2587, pp. 182–199.

16. N. Courtois, Fast Algebraic Attacks on Stream Ciphers with Linear Feedback,
Crypto’03, lncs 2729, pp. 177-194.

17. N. Courtois, Algebraic Attacks over GF(2k), Cryptanalysis of HFE Challenge 2
and SFLASHv2, PKC ’04, lncs 2947, pp. 201-217.

18. N. Courtois, private communication.

All in the XL Family: Theory and Practice 85

19. N. Courtois, L. Goubin, and J. Patarin, SFLASHv3, a Fast Asymmetric Signature
Scheme, preprint available at http://eprint.iacr.org/2003/211.

20. N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient Algorithms for Solv-
ing Overdefined Systems of Multivariate Polynomial Equations, Eurocrypt 2000,
lncs 1807, pp. 392–407.

21. N. Courtois and J. Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations, Asiacrypt 2002, lncs 2501, pp. 267–287.

22. N. Courtois and J. Patarin, About the XL Algorithm over GF(2), CT-RSA 2003,
lncs 2612, pp. 141–157.

23. J. Daemen and V. Rijmen, The Design of Rijndael, AES - The Advanced Encryp-
tion Standard. Springer-Verlag, 2002.

24. C. Diem, The XL-algorithm and a Conjecture from Commutative Algebra, Asi-
acrypt’04, lncs 3329, pp. 323–337 and private communication.

25. W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Trans. Info. The-
ory, vol. IT-22, 6 (1972), pp. 644-654.

26. J. Ding and D. Schmidt, Cryptanalysis of SFlashv3, eprint.iacr.org/2004/103.
27. I. S. Duff, A. M. Erismann, and J. K. Reid, Direct Methods for Sparse Matrices,

published by Oxford Science Publications, 1986.
28. W. Eberly and E. Kaltofen, On Randomized Lanczos Algorithms, Proc. ISSAC ’97,

pp. 176–183, ACM Press 1997.
29. J.-C. Faugére, A New Efficient Algorithm for Computing Gröbner Bases (F4),

Journal of Pure and Applied Algebra, 139 (1999), pp. 61–88.
30. J.-C. Faugère, A New Efficient Algorithm for Computing Gröbner Bases without

Reduction to Zero (F5), Proceedings of ISSAC 2002, pp. 75-83, ACM Press 2002.
31. J.-C. Faugère and A. Joux, Algebraic Cryptanalysis of Hidden Field Equations

(HFE) Cryptosystems Using Gröbner Bases, Crypto 2003, lncs 2729, pp. 44-60.
32. R. Fröberg, An Inequality for Hilbert Series of Graded Algebras, Math. Scand.

56(1985) pp. 117-144.
33. M. Garey and D. Johnson, Computers and Intractability, A Guide to the Theory

of NP-completeness, W. H. Freeman New York 1979.
34. W. Geiselmann, R. Steinwandt, and T. Beth, Revealing 441 Key Bits of sflashv2,

3rd NESSIE Workshop, 2002.
35. H.-K. Hwang, Asymptotic estimates of elementary probability distributions, Studies

in Applied Mathematics, 99:4 (1997), pp. 393-417.
36. R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
37. A. Kipnis and A. Shamir, Cryptanalysis of the HFE Public Key Cryptosystem by

Relinearization, Crypto’99, lncs 1666, pp. 19–30.
38. B. LaMacchia and A. Odlyzko, Solving Large Sparse Linear Systems over Finite

Fields, Crypto’90, lncs 537, pp. 109–133.
39. S. Lang, Algebra (3rd edition), Addison-Wesley, 1993.
40. D. Lazard, Gröbner Bases, Gaussian Elimination and Resolution of Systems of

Algebraic Equations, EUROCAL ’83, lncs 162, pp. 146–156.
41. C. McGeoch, “Veni, Divisi, Vici”, Appearing in the “Computer Science Sampler”

column of the Amer. Math. Monthly, May 1995.
42. The MAGMA project, University of Sydney, see http://magma.maths.usyd.edu.

au/users/allan/gb

43. T. Matsumoto and H. Imai, Public Quadratic Polynomial-Tuples for Effi-
cient Signature-Verification and Message-Encryption, Eurocrypt’88, lncs 330,
pp. 419–453.

44. T. Moh, On The Method of XL and Its Inefficiency Against TTM, available at
http://eprint.iacr.org/2001/047

86 B.-Y. Yang and J.-M. Chen

45. S. Murphy and M. Robshaw, Essential Algebraic Structures Within the AES,
Crypto 2002, lncs 2442, pp. 1–16.

46. S. Murphy and M. Robshaw, Comments on the Security of the
AES and the XSL Technique, preprint available from the authors
http://www.isg.rhul.ac.uk/~sean/

47. NESSIE Security Report, V2.0, available at http://www.cryptonessie.org

48. J. Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
Two New Families of Asymmetric Algorithms, Eurocrypt’96, lncs 1070, pp. 33–
48.

49. J. Patarin, L. Goubin, and N. Courtois, C∗
−+ and HM: Variations Around Two

Schemes of T. Matsumoto and H. Imai, Asiacrypt’98, lncs 1514, pp. 35–49.
50. J. Patarin, N. Courtois, and L. Goubin, QUARTZ, 128-Bit Long Digital Signatures,

CT-RSA 2001, lncs 2020, pp. 282–297. Update at http://www.cryptonessie.org
51. J. Patarin, N. Courtois, and L. Goubin, FLASH, a Fast Multivariate Signature Al-

gorithm, CT-RSA 2001, lncs 2020, pp. 298–307. Update with SFLASHv2 available
at http://www.cryptonessie.org

52. R. Stanley, Enumerative Combinatorics, vol. 1, second printing 1996; vol. 2 in 1999.
Both published by Cambridge University Press, Cambridge.

53. V. Strassen, Gaussian Elimination is not Optimal, Numer. Math. 13 (1969) pp. 354-
356.

54. M. Sugita, M. Kawazoe, and H. Imai, Relation between XL algorithm and Groeb-
ner Bases Algorithms, preprint, http://eprint.iacr.org/2004/112. Part of this
merged with [2].

55. G. Szegö, Orthogonal Polynomials, 4th ed., publ.: American Math. Society, Provi-
dence.

56. D. Wiedemann, Solving Sparse Linear Equations over Finite Fields, IEEE Trans-
action on Information Theory, v. IT-32 (1976), no. 1, pp. 54–62.

57. R. Wong, Asymptotic Approximations of Integrals, Academic Press, San Diego,
1989.

58. B.-Y. Yang and J.-M. Chen, Theoretical Analysis of XL over Small Fields, ACISP
2004, lncs 3108, pp. 277-288.

59. B.-Y. Yang, J.-M. Chen, and N. Courtois, On Asymptotic Security Estimates in XL
and Gröbner Bases-Related Algebraic Cryptanalysis, ICICS ’04, lncs 3269, pp. 401-
413. Formerly titled Exact and Asymptotic Behavior of XL-Related Methods.

