
Service Chain Embedding with Maximum Flow in
Software Defined Network and Application to the

Next-Generation Cellular Network Architecture
Jian-Jhih Kuo∗, Shan-Hsiang Shen†, Hong-Yu Kang‡, De-Nian Yang∗, Ming-Jer Tsai‡ and Wen-Tsuen Chen∗‡

Abstract—With software-defined network (SDN) and network
function virtualization (NFV) techniques, we can embed the
service chain consisting of a sequence of virtualized network
functions (VNFs), i.e., we can determine the flow path and deploy
the VNFs contained in the service chain at any place on the path.
In the literature, the methods of service chain embedding bound
the number of VNFs at a node, whereas the link capacities are
disregarded and the amount of flows is not considered, which
could cause serious congestion. In addition, according to our
experiment, the process overhead on a computation node is linear
to the total amount of flows processed. In this paper, we propose a
method of service chain embedding to maximize the total amount
of flows while bounding the process overhead of the flows on
a node by its computation capability and the total amount of
flows on an link by its bandwidth capacity. To our knowledge,
our method is the first approximation algorithm of service chain
embedding with considering flow in the literature. Simulations
show our algorithm has good performance in terms of the total
amount of flows.

I. INTRODUCTION

Recently, the IP traffic from mobile terminals is growing
rapidly since the mobile users tend to connect the Internet
anywhere anytime via wireless networks. However, in an
Long Term Evolution Advanced (LTE-A) network, which is
also known as the 4G mobile network, all the traffic should
pass through the packet data network gateway (P-GW) in the
core network, which makes the P-GW the bottleneck of the
network and limits the utilization of network bandwidth. In
addition, it takes advantage of specialized network components
(e.g., dedicated hardware) to perform network functions, which
makes it inflexible and difficult to add new services. Therefore,
the LTE-A architecture has become cumbersome to cope with
the upcoming traffic surge. Therefore, the adoption of a whole
new network architecture is inevitable [1]–[4].

This new architecture (termed C-SDN in [2], all-SDN in [3],
and OpenNF in [5]) takes advantage of the two promising tech-
nologies in next-generation networks, software-defined network
(SDN) and network function virtualization (NFV). The former
one, SDN, separates the control and data planes, providing the
flexibility of traffic routing while the latter one, NFV, replaces
the dedicated hardware with high-volume commodity servers,
leading to the elasticity of resource allocation and service
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deployment. With these two technologies, the allocation of the
sequences of network functions and the traffic route via SDN
switches becomes flexible.

The VNF placement problem has received considerable
attentions in recent years [4], [6]. However, each of these
methods for the VNF placement problem does not embed the
service chains, i.e., the method does not identify the routing
paths of the service chains. In the literature, several methods
of the service chain embedding problem have been proposed
[7], [8]. These methods bound the number of VNFs at a node,
whereas the link capacities are disregarded and the amount of
flows is not considered, which could cause serious congestion
when the total amount of flows demanded by admitted service
chains is unexpectedly large. In addition, we observe that
a node usually demands greater overhead to process larger
amount of flow and demands different overhead to provide
different types of services to process flow in actual practice.i

Moreover, the process overhead of flows demanded by service
chains on a node is accumulative.ii Thus, without considering
flow, a method of the service chain embedding problem can
only bound the number of VNFs at a node, and thus, the
computation capability of a node could be oversubscribed when

iWe implement two network functions, including the traffic optimizer and
packet encapsulation, in Click software router, which captures packets from
NIC and remove redundant bytes. The network functions run in an HP server
with Intel(R) Xeon(R) CPU E3-1230 3.3GHz and 4GB memory, and the
test traffics with different data rates are generated using iPerf. Based on
our observation, the performance bottlenecks of the traffic optimizer and the
packet encapsulation are the memory space and the CPU time, respectively.
Figure 1(a) shows the result for the relation between the memory usage and the
traffic data rate, where the memory usage denotes the occupied memory space
divided by the total memory space. The traffic data rate varies from 20 to 200
Mbps; the memory usage changes from 0.13% to 0.82% and is linear to the
traffic data rate. Figure 1(b) shows the result concerning the relation between
the CPU usage and the packet arrival rate, where the CPU usage denotes the
occupied CPU time divided by the total CPU time. The packet arrival rate
varies from 124 to 620 packets per second; the CPU usage changes from 11%
to 54% and is linear to the packet arrival rate.

iiWe conduct an experiment to examine the relation between the combination
of the number of flows processed by the traffic optimizer (≤ 2) and the number
of flows processed by the packet encapsulation (≤ 2) and the total amount of
flows able to be processed by the HP server. Table I shows the results. It
is observed that the maximum amount of flows able to be processed by the
traffic optimizer (or the packet encapsulation) is 451 (or 525) Mbps. Thus, for
the flows processed by the traffic optimizer (or the packet encapsulation), the
usage of the process capability of the HP server can be evaluated by the ratio
of the total amount of the flows processed to 451 (or 525) Mbps. It can be
seen that for any combination of the number of flows processed by the traffic
optimizer and the number of flows processed by the packet encapsulation, the
total usage of the process capability of the HP server is close to 100%. This
implies the overhead of distributing the flows to different VNFs is negligible,
and the process overhead of flows is almost accumulative.
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Fig. 1. The memory and CPU usage when two network functions traffic
optimizer and packet encapsulation are implemented in Click software router.
(a) The relation between the memory usage of network function traffic
optimizer and the traffic data rate. (b) The relation between the CPU usage of
network function packet encapsulation and the packet rate.

TABLE I
EFFECT OF THE COMBINATION OF THE NUMBER OF FLOWS PROCESSED BY

THE TRAFFIC OPTIMIZER (VNF1) AND THE NUMBER OF FLOWS PROCESSED
BY THE PACKET ENCAPSULATION (VNF2) ON THE TOTAL AMOUNT OF

FLOWS.

#flow Total Flow Total Flow Total Capability Usage
(VNF1/VNF2) (VNF1) (VNF2) (VNF1+VNF2)

1 / 0 451 Mbps 0 Mbps 100%
0 / 1 0 Mbps 525 Mbps 100%
2 / 0 448 Mbps 0 Mbps 99.5%
1 / 1 227 Mbps 254 Mbps 98.8%
0 / 2 0 Mbps 508 Mbps 96.9%
2 / 1 302 Mbps 170 Mbps 99.3%
1 / 2 149 Mbps 328 Mbps 95.6%
2 / 2 226 Mbps 254 Mbps 98.7%

the total amount of flows demanded by admitted service chains
is unexpectedly large. These observations provide the motiva-
tion for this paper. In this paper, we embed service chains to
maximize the total amount of flows of demands while ensuring
that the process overhead of the flows on a node is bounded
by its computation capability and the total amount of flows on
a link is bounded by its bandwidth capacity. To the best of our
knowledge, our method is the first approximation algorithm of
the service chain embedding problem with considering flow.iii

The remainder of this paper is organized as follows. We
first introduce the problem of service chain embedding with
maximum flow (SCEMF) in Section II. Then, since the number
of flow paths to be considered in the SCEMF problem is
exponential, we propose a linear program with a specific form
and design a separation oracle for the dual linear program to
obtain a fractional solution with bounded error in Section III. In
Section IV, we propose an approximation algorithm (to obtain
the solution by rounding the fractional solution) with optimum
approximation factor for the SCEMF problem and a heuristic
algorithm that follows the approximation algorithm to improve
the solution. We evaluate the performance of the algorithms
by simulations in Section V and discuss the related works in
Section VI. Finally, we conclude this paper in Section VII.

II. EMBEDDING OF SERVICE CHAINS WITH FLOW

Initially, we demonstrate the scenario in Section II-A. Sub-
sequently, based on the scenario described, we formally define

iiiRemark that the service chain embedding problem with considering flow
cannot be directly solved by transforming nodes to links and applying the
existing algorithms for multi-commodity flow problems since for a node, the
computation capability is a bound for the total process overhead of flows
(evaluated by the amount of flows and the number and types of services
provided) but not for the amount of flows.

the problem in Section II-B. Finally, we show the hardness and
optimum approximation factor of the problem in Section II-C.

A. The Scenario
Consider a software defined network comprising numerous

computation nodes that are connected by bi-directional physical
links, where each node and each link has limited computation
capability and limited bandwidth capacity, respectively. There
are several source-destination pairs with service chains. Each
service chain is associated with maximum flow (demand) and
the process overhead per unit of flow.iv Note that in SDN,
the process of the flow can be cooperated and the process
overhead of the flow can be shared by several computation
nodes.v And, a service chain between a source-destination pair
asks for a routing path with flow of amount not larger than the
corresponding maximum flow between the source-destination
pair such that the amount of flow does not exceed the remaining
bandwidth capacity of each link on the routing path and the
total process overhead of the flow does not exceed the total
remaining computation capabilities of the nodes on the routing
path, where the total process overhead of a flow is equal to the
product of the amount of the flow and the process overhead
per unit of the flow because the process overhead of a flow
is linear to the amount of the flow.i Our goal is to saturate
the demands (up to the corresponding maximum flow) of all
source-destination pairs as many as possible.

B. The Problem
We define the problem based on the studied scenario in

Definition 1.

Definition 1. Given a (undirected) network G = (V,E) with
link capacity c(e) ∈ R+ associated with each link e ∈ E
and node capacity c(v) ∈ R+ associated with each node
v ∈ V , and given a set of source-destination pairs I with
maximum flow f(i) ∈ R+ and process overhead per unit of
flow w(i) ∈ R+ associated with each source-destination pair
i ∈ I , the Service Chain Embedding with Maximum Flow
(SCEMF) problem asks for the maximum total amount of flows
between all source-destination pairs such that:

1) for each source-destination pair i, the total amount of
flows between the source (termed si) and the destination
(termed ti), where ti 6= si, does not exceed f(i) (pair
flow constraints);

2) for each node v, the total process overhead of the flows
on v does not exceed c(v) (node capacity constraints);

3) for each link e, the total amount of flows on e does not
exceed c(e) (link capacity constraints);

ivA service chain consists of a sequence of services (functions) required
to process the flow, and each function requires different overhead to process
unit of flow. According to our experiment, the process overhead of flow is
accumulative.ii Hence, for a service chain, the process overhead per unit of flow
can be estimated by accumulating the process overhead per unit of flow of each
function in the service chain. In addition, for simplicity of presentation, the
process overhead refers to either the memory overhead or the CPU overhead in
this paper. Our algorithm can be easily extended to the case where each service
chain is associated with both the memory overhead and the CPU overhead per
unit of flow.

vThe packets of a flow can be processed by different computation nodes
with the same function via a hash function on packet sequence number [9].



4) for each source-destination pair i, the number of routing
paths between the source and the destination does not
exceed one (path degree constraints).

Clearly, a flow only can be processed by the nodes on the
routing path of the flow. Let P (i) denote the set of all routing
paths between source-destination pair i. Let xip = 1 if and only
if p is a routing path of the flow between source-destination pair
i, and let yip,v denotes the fraction of processing f(i) on node
v on the routing path p. Then, the amount of flow routed on
path p between source-destination pair i is

∑
v∈p

yip,v · f(i) and

the process overhead of the flow between source-destination
pair i on node v is

∑
p:p∈P (i)∧v∈p

yip,v ·f(i) ·w(i). Thus, the total

amount of flows between source-destination pair i and between
all pairs is

∑
p∈P (i)

∑
v∈p

yip,v · f(i) and
∑
i∈I

∑
p∈P (i)

∑
v∈p

yip,v · f(i),

respectively, the total amount of flows (between all pairs) on
link e is

∑
i∈I

∑
p:p∈P (i)∧e∈p

∑
v∈p

yip,v · f(i), and the total process

overhead of flows (between all source-destination pairs) on
node v is

∑
i∈I

∑
p:p∈P (i)∧v∈p

yip,v · f(i) · w(i) since the process

overhead of flow is accumulative.ii The SCEMF problem is
formulated as a mixed integer program (1a − 1h). The object
function 1a accounts for the goal to maximize the total amount
of flows between all source-destination pairs. If constraints in
1e and 1g are satisfied, the number of routing path(s) for each
source-destination pair i is at most one. If constraints in 1f and
1h are satisfied, a flow only can be processed by the nodes on
the routing path of the flow. Constraints in 1b, 1c, and 1d ensure
that the total amount of flows between source-destination pair
i, the total process overhead of flows on node v, and the total
amount of flows on link e are not greater than the corresponding
maximum flow, node capacity, and link capacity, respectively.

maximize
∑
i∈I

∑
p∈P (i)

∑
v∈p

yip,v · f(i) (1a)

subject to
∑
p∈P (i)

∑
v∈p

yip,v · f(i) ≤ f(i), ∀i ∈ I (1b)

∑
i∈I

∑
p:p∈P (i)∧v∈p

yip,v · f(i) · w(i) ≤ c(v),
∀v ∈ V (1c)∑

i∈I

∑
p:p∈P (i)∧e∈p

∑
v∈p

yip,v · f(i) ≤ c(e),
∀e ∈ E (1d)∑

p∈P (i)

xip ≤ 1, ∀i ∈ I (1e)

yip,v ≤ xip, ∀i ∈ I, ∀p ∈ P (i),∀v ∈ p (1f)

xip ∈ {0, 1}, ∀i ∈ I, ∀p ∈ P (i) (1g)

yip,v ∈ [0, 1], ∀i ∈ I, ∀p ∈ P (i),∀v ∈ p (1h)

C. The Hardness

The following results show the hardness and optimum ap-
proximation factor of the SCEMF problem. Due to the page

limit, the proof of Theorem 1 is omitted and given in [10].

Theorem 1. The SCEMF problem is NP-hard and cannot
be approximated within a factor of 2O(log1−ε |V |) for any
ε > 0 unless unless NP is contained within quasi-polynomial
deterministic time.

III. THE FRACTIONAL SOLUTION WITH BOUNDED ERROR

Observe that in the original mixed integer program, the
number of constraints and the number of variables are expo-
nential (in the input size) due to an exponential number of
paths between each source-destination pair. Thus, the linear
program obtained by relaxing the constraints xip ∈ {0, 1} to
xip ∈ [0, 1] cannot be solved by a linear program solver in
polynomial time. Clearly, if we can obtain a relaxed linear
program with a polynomial number of variables (in the input
size), we can solve the linear program by designing a separation
oracle for the linear program to tell whether there is a violated
constraints (among an exponential number of constraints) in
the linear program in polynomial time. However, such a linear
program is hard to obtain because the number of paths between
a source-destination pair is exponential. On the other hand, by
[11], if a linear program is a standard form (see Definition 2)
and has a polynomial number of constraints (except for non-
negativity constraints of variables), the number of variables in
its dual linear program is polynomial (see Definition 2). And,
by combinatorial algorithm [12], we can obtain a near-optimum
solution of the (primal) linear program in polynomial time
by designing a separation oracle for the dual linear program
if each coefficient on the left-hand side of inequality is not
greater than the constant on the right-hand side of inequality
in each constraint except for the non-negativity constraints of
variables in the primal linear program (P1), and all coefficients
on the left-hand-side of inequality and the constant on the
right-hand-side of inequality are positive in each constraint
except for the non-negativity constraints of variables in the
dual linear program (P2). In Section III-A, we first obtain
the primal reformulated linear program such that the primal
linear program has the standard form, a polynomial number of
constraints (except for non-negativity constraints of variables),
and property P1 and the dual linear program has property P2.
Subsequently, we design a separation oracle for the dual linear
program in Section III-B.

Definition 2. [11] A standard form of a linear program is
written as:

maximize cTx

subject to Ax ≤ b
x ≥ 0 (non-negativity constraints of variables x),

where x is an n × 1 variable vector, and c, b, and A denote
n×1, m×1, m×n constant vectors, respectively, and its dual
linear program is:

minimize bT z

subject to AT z ≥ c
z ≥ 0 (non-negativity constraints of z),



where z is an m× 1 variable vector.

A. The Reformulated Linear Program

To obtain the desired relaxed linear program, we first replace
yip,v ∈ [0, 1] (the constraints in 1h) with yip,v ≥ 0 (the con-
straints in 2f) to meet the form of non-negativity constraints of
variables. The modified constraints do not change the original
(mixed integer) program because yip,v ≤ 1 for all i ∈ I , all
p ∈ P (i), and all v ∈ p due to the constraints in 1b, 1c, or
1d. In addition, to reduce the number of constraints (except for
non-negativity constraints of variables) to be polynomial, we
remove all constraints containing variables xip (the constraints
in 1e, 1f, and 1g) from the original program. This, however,
could not bound the number of routing paths between a source-
destination pair in the program. Note that

∑
p:p∈P (i)∧v∈p

yip,v ≤∑
p:p∈P (i)∧v∈p

xip ≤
∑

p∈P (i)

xip ≤ 1, ∀i ∈ I , ∀v ∈ V , where

the first and third inequalities directly follows the constraints
in 1f and 1e, respectively. Thus, we add constraints in 2e to
the program to bound the number of routing paths between
a source-destination pair. Note that since constraints in 2e
directly follows constraints 1e and 1f, the obtained linear
program is a relaxation of the original program. It is also noted
that property P1 does not hold in the (relaxed linear) program
since f(i) · w(i) ≤ c(v) and f(i) ≤ c(e) do not always hold
in constraints in 1c and 1d, respectively, for all i ∈ I , all
v ∈ V , and all e ∈ E. Thus, we use r(i, p, v) to denote
the maximum flow between source-destination pair i able to
be routed on path p through node v, where p ∈ P (i) and
v ∈ p; that is, r(i, p, v) = min{mine∈p{c(e)}, f(i), c(v)w(i)} is
the minimum among the minimum capacity of the links on the
routing path p, the maximum flow between source-destination
pair i, and the maximum flow between source-destination pair
i able to be processed by node v for source-destination pair i.
In addition, let yip,v denote the fraction of processing r(i, p, v)
(instead of f(i) in the original program) on node v. Then, we
obtain the primal (reformulated) linear program (2a − 2f) as
follows.

maximize
∑
i∈I

∑
p∈P (i)

∑
v∈p

yip,v · r(i, p, v) (2a)

subject to
∑
p∈P (i)

∑
v∈p

yip,v · r(i, p, v) ≤ f(i), ∀i ∈ I (2b)

∑
i∈I

∑
p:p∈P (i)∧v∈p

yip,v · r(i, p, v) · w(i) ≤ c(v),
∀v ∈ V (2c)∑

i∈I

∑
p:p∈P (i)∧e∈p

∑
v∈p

yip,v · r(i, p, v) ≤ c(e),
∀e ∈ E (2d)∑

p:p∈P (i)∧v∈p

yip,v ≤ 1, ∀i ∈ I,∀v ∈ V (2e)

yip,v ≥ 0, ∀i ∈ I, ∀p ∈ P (i),∀v ∈ p (2f)

Note that the primal linear program is a standard form and has
a polynomial number of constraints (except for non-negativity
constraints of variables). By Definition 2, we obtain our dual

linear program (3a − 3f). It is noteworthy that property P2
holds in the dual linear program.

minimize
∑
i∈I

αi ·mr(i) +
∑
v∈V

βv · c(v)

+
∑
e∈E

γe · c(e) +
∑
i∈I

∑
v∈V

τi,v (3a)

subject to αi + βv · w(i) +
∑
e∈p

γe + τi,v ·
1

r(i, p, v)
≥ 1,

∀i ∈ I,∀p ∈ P (i),∀v ∈ p (3b)
αi ≥ 0, ∀i ∈ I (3c)
βv ≥ 0, ∀v ∈ V (3d)
γe ≥ 0, ∀e ∈ E (3e)
τi,v ≥ 0, ∀i ∈ I, ∀v ∈ V (3f)

B. The Separation Oracle
Given an arbitrary (fractional) solution (α, β, γ, τ) to the

dual linear program, the separation oracle tells whether a
violated constraint exists or not. It is easy to examine whether
there is a violated constraint in 3c, 3d, 3e, or 3f where
the number of variables is polynomial. The challenge is tell
whether there is a violated constraint in 3b. Due to the fact that
both the number of source-destination pairs and the number of
nodes are polynomial, it suffices to tell, for a (fixed) source-
destination pair i and a (fixed) node v, whether there is a path
p ∈ P (i) through node v such that:∑

e∈p
γe + τi,v ·

1

r(i, p, v)
< 1− αi − βv · w(i).

Then, we only need to find the most violated constraint for
a (fixed) source-destination pair i and a (fixed) node v by
computing:

min
p:p∈P (i)∧v∈p

{∑
e∈p

γe + τi,v ·
1

r(i, p, v)

}
. (5)

It is not trivial to compute (5) for a source-destination pair
i and a node v since the coefficient 1

r(i,p,v) is specific to
path p while the number of paths p could be exponential.
It is noted that the number of the values of r(i, p, v) =

min{min
e∈p
{c(e)}, f(i), c(v)

w(i)
} is bounded by the polynomial

number of links. Let W (r(i, p, v)) denote the set of the values
of r(i, p, v). Then, for a source-destination pair i and a node
v, we only need to evaluate:

min
w∈W (r(i,p,v))

{
min

p:p∈P (i)∧v∈p∧r(i,p,v)=w

{∑
e∈p

γe+ τi,v ·
1

w

}}
,

(6)
or equivalently,

min
w∈W (r(i,p,v))

{
min

p:p∈P (i)∧v∈p∧r(i,p,v)≥w

{∑
e∈p

γe+ τi,v ·
1

w

}}
.

(7)
Note that, given a (fixed) w, τi,v · 1

w is a constant
for a source-destination pair i and a node v. Thus,
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Fig. 2. Example of finding the most violated constraint in our dual linear
program using Algorithm 1. (a) The input graph G. (b) The constructed graph
G1 + v′ with two disjoint paths p′1 and p′2, shown in bold line, obtained by
Suurballe’s algorithm.

minp:p∈P (i)∧v∈p∧r(i,p,v)≥w

{ ∑
e∈p

γe+τi,v · 1w

}
can be obtained

by finding a path with minimum total length (a shortest path)
through v between source si and destination ti in Gw, where
Gw = (V,Ew) denotes a (undirected) graph consisting of all
nodes v and all links e with c(e) ≥ w in G with a length γe
associated with each link e ∈ Ew.

Equivalently, we only need to find two disjoint paths with
minimum total length between nodes v and si and between
nodes v and ti, respectively, in Gw. To achieve the goal, we
can first obtain a graph Gw+ v′ from Gw by adding a node v′

and two links (each with an aribtrary length) between nodes v′

and si and between nodes v′ and ti, respectively, then find two
disjoint paths p′1 and p′2 with minimum total length between
nodes v and v′ in Gw + v′ by Suurballe’s algorithm [13],
and finally obtain the deisired two disjoint paths p1 and p2
by removing node v′ and links between nodes v′ and si and
between nodes v′ and ti from paths p′1 and p′2, respectively.
The separation oracle for our dual linear program is described
in Algorithm 1.

Take Fig. 2 for an example, where there is only one
source-destination pair (s1, t1) = (1, 4) in the network G,
f(1) = 2.5, w(1) = 2, α1 = 0.02, β2 = 0.02, γ(1,2) = 0.02,
γ(2,4) = 0.01, τ(1,2) = 0.02. For node 2, W (r(1, p, 2)) =
{min{1, 2.5, 32},min{2, 2.5, 32},min{3, 2.5, 32}} = {1, 1.5}
(line 11). For w = 1, we construct graph G1 (line 13), and then
construct G1+v

′ as shown in Fig. 2(b) (line 14). By Suurballe’s
algorithm, we obtain two disjoint paths p′1 = (v′, 1, 2) and
p′2 = (v′, 4, 2) (line 15). Then, we obtain p1 = (1, 2) and
p2 = (4, 2) (line 16), and obtain p′′1 = (1, 2, 4) (line 17). Then,
we have S1,2,1 = α1 + β2 · w(1) +

∑
e∈p′′1

γe + τ1,2 · 1
w =

0.02 + 0.02 · 2 + (0.02 + 0.01) + 0.02 · 1 = 0.11 (line
18) for the constraint concerning source-destination pair 1,
node 2, and path p′′1 which is the most violated constraint as
S1,2,1 ≤ minv∈V,w∈W (1,p,v){S1,v,w} (lines 19−21).

IV. THE APPROXIMATION ALGORITHM

We first undertake the design of the LP rounding algorithm
to obtain an algorithm with the optimum approximation factor
(i.e., with an approximation factor of 2O(log |V |) by Theorem
1) for the SCEMF problem in Section IV-A. Subsequently,
a heuristic algorithm is proposed to improve the solution of
the SCEMF problem in Section IV-B. Finally, an example of
deploying network functions in a network is demonstrated in
Section IV-C. The variant of the Chernoff bound (Theorem 2)
is necessary for the description of our method.

Algorithm 1 Separation Oracle for Our Dual Linear Program
input: A network G = (V,E) with link capacity c(e) associated

with each link e ∈ E and node capacity c(v) associated
with each node v ∈ V , a set of source-destination pairs I
with maximum flow f(i) and process overhead per unit of
flow w(i) associated with each source-destination pair
i ∈ I , and a nonnegative (fractional) solution (α, β, γ, τ)

6 begin
7 The most violated constraint C ← φ;
8 The value of the most violated constraint S ←∞;
9 forall the source-destination i ∈ I do

10 forall the node v ∈ V do
11 W (r(i, p, v))←

{
min

{
c(e), f(i),

c(v)

w(i)

}
|e ∈ E

}
;

12 forall the w ∈W (r(i, p, v)) do
13 Construct a graph Gw = (V,Ew) with a weight (length) γe

associated with each link e ∈ Ew, where
Ew = {e|(e ∈ E) ∧ (c(e) ≥ w)};

14 Construct a graph Gw + v′ by adding a node v′ and two
links (with a weight 0) between nodes v′ and si and
between nodes v′ and ti, respectively, to Gw;

15 if Two disjoint paths p′1 and p′2 with minimum total length
between nodes v and v′ can be found by Suurballe’s
algorithm [13] (i.e., p′1 and p′2 exist) in Gw + v′ then

16 Obtain two paths p1 and p2 by removing node v′ and
links between nodes v′ and si and between nodes v′ and
ti from paths p′1 and p′2, respectively; // p1 and p2 are two
disjoints paths between nodes v and si and between nodes
v and ti, respecitively, in Gw

17 Obtain a path p′′w by combining two paths p1 and p2; //
p′′w is a path with minimum total length through v
between source si and destination ti in Gw, and the total
length of p′′w is equal to

∑
e∈p′′w

γe

18 Si,v,w ← αi + βv · w(i) +
∑
e∈p′′w

γe + τi,v ·
1

w
;

19 if Si,v,w < S then
20 C ← (i, p′′w, v); // the constraint concerning

source-destination pair i, path p′′w, and node v is the most
violated constraint

21 S ← Si,v,w;

22 Return C;

Theorem 2. [14] Given a set of n independent random
variables, X1, X2, ..., Xn ∈ [0, 1], Pr[X > (1 + ε)µ] ≤(

eε

(1+ε)(1+ε)

)µ
for any ε ≥ 0, where X =

n∑
i=1

Xi and

µ = E(X).

A. The Randomized Rounding Algorithm

Given a near-optimal (fractional) solution y′ of our primal
linear program, we employ a randomized rounding algorithm to
obtain the solution of the SCEMF problem. First, to meet path
degree constraints, at most one path can be chosen to route the
flow between the source-destination i for all i ∈ I . That is, at
most one variable yip,v can be rounded to one among all vari-
ables yip,v for each source-destination i. Due to the constraints
in 2e, we have

∑
p:p∈P (i)∧v∈p

y′ip,v ≤ 1, ∀i ∈ I, ∀v ∈ V . This

implies
∑
v∈V

∑
p:p∈P (i)∧v∈p

y′ip,v · 1
|V | ≤ 1, ∀i ∈ I . Therefore, if we

round at most one variable yip,v to one with probability y′ip,v · 1
|V |



among all variables yip,v
vi and route a flow of amount r(i, p, v)

on path p through node v for the variable yip,v rounded to
one for each source-destination pair i, the randomized solution
meets path degree constraints and pair flow constraints, and
the expected value of the randomized solution is greater than
or equal to 1

|V | times the value of solution y′. In addition, if
the amount of the flow routed on path p through node v for
source-destination pair i is equal to r(i,p,v)

4 , the probability of
violating the capacity constraint of an arbitrary node and the
probability of violating the capacity constraint of an arbitrary
link each are at most 1

|V |4 as shown in Theorem 4, respectively.
The proposed algorithm for the SCEMF problem is described
in Algorithm 2, which is shown to be a randomized 2O(log |V |)-
approximation algorithm in Theorem 3.

Algorithm 2 Randomized 2O(log |V |)-Approximation Algorithm
for Our Problem
input: A network G = (V,E) with link capacity c(e) associated

with each link e ∈ E and node capacity c(v) associated
with each node v ∈ V , and a set of source-destination
pairs I with maximum flow f(i) and process overhead per
unit of flow w(i) associated with each source-destination
pair i ∈ I

1 begin
2 Solve the linear program (2a - 2f) and obtain a (fractional)

solution y′ with an error bound ω using combinatorial
algorithm [12] which employs Algorithm 1 as the separation
oracle for our dual linear program;

3 For each source-destination pair i, round at most one variable

yip,v to one with probability
y′ip,v
|V | among all variables yip,v;

4 For each source-destination pair i, route a flow of amount
r(i,p,v)

4
on path p through node v for the variable yip,v rounded

to one;
5 Return the solution;

Theorem 3. The proposed algorithm is a randomized
2O(log |V |)-approximation algorithm for the SCEMF problem.

Proof: Let OPT and OPTPL be the optimum values
of our mixed integer program (the SCEMF problem) and
our primal linear program, respectively. Since constraints in
2e directly follows constraints 1e and 1f, our primal linear
program is a relaxation of our mixed integer program. Thus,
OPT ≤ OPTPL. In addition, let y” be the solution output
by Algorithm 1, and let value(y′) and value(y”) be the
values of y′ (obtained in step 2) and y”, respectively. Due
to the constraints in 2e, we have

∑
p:p∈P (i)∧v∈p

y′ip,v ≤ 1,

∀i ∈ I, ∀v ∈ V . This implies
∑
v∈V

∑
p:p∈P (i)∧v∈p

y′ip,v · 1
|V | ≤ 1,

∀i ∈ I . Since we round at most one variable yip,v to one

viWe treat that variable yip,v is rounded to one as an event with probability
y′ip,v · 1

|V | for each variable yip,v , and that no variable is rounded to one as

an event with probability 1 −
∑
v∈V

∑
p∈{p|P (i)∧v∈p}

y′ip,v

|V |
. We decide which

event occurs based on the outcome of a trail [15]. For example, at most one of
two variables y1 and y2 are to be rounded to one with probabilities 0.5 and
0.2, respectively. We first generate a uniformly-random value x in the range
[0, 1). Then, y1 is rounded to one if x ∈ [0, 0.5]; y2 is rounded to one if
x ∈ (0.5, 0.7]; otherwise, none of y1 and y2 is rounded to one.

with probability y′ip,v · 1
|V | among all variables yip,v and route

a flow of r(i,p,v)
4 on path p through node v for the vari-

able yip,v rounded to one for each source-destination pair i,
E[value(y”)] ≥ value(y′)

4|V | . Since value(y′) ≥ OPTPL
1+ω by [12],

E[value(y”)] ≥ OPT
4|V |·(1+ω) =

OPT
O(|V |) =

OPT
2O(log |V |)|) .

By Algorithm 2, at most one flow of amount r(i,p,v)4 < f(i)
is routed between each source-destination pair i. Thus, both
the pair flow constraints and the path degree constraints are
satisfied. Concerning the node (or link) capacity constraints,
let ziv (or zie) be a random variable denoting the total process
overhead of flows on node v (or the total amount of flows on
link e) for source-destination pair i. Then,

ziv =

{ r(i,p,v)
4 · w(i) with probability

y′ip,v
|V | ,

∀p ∈ {p|p ∈ P (i) ∧ v ∈ p};
0 otherwise;

and,

zie =

{ r(i,p,v)
4 with probability

y′ip,v
|V | ,

∀v ∈ V,∀p ∈ {p|p ∈ P (i) ∧ v ∈ p ∧ e ∈ p};
0 otherwise.

Let zv =
∑
i∈I

ziv be a random variable denoting the total process

overhead of flows on node v, and let ze =
∑
i∈I

zie be a random

variable denoting the total amount of flows on node e. Then, the
expectation of the total process overhead of flows on node v,
E[zv], is at most c(v)4|V | and the expectation of the total amount of

flows on link e, E[ze], is at most c(e)4|V | , as described in Lemma 1.
In addition, the probability of violating the capacity constraint
of node v, Pr[zv > c(v)], and the probability of violating the
capacity constraint of link e, Pr[ze > c(e)], each are at most
1
|V |4 , as described in Theorem 4. Since the number of nodes
(or links) in G are at most |V | (or|V |2), the probability of
violating at least one node (or link) capacity constraint is less
than 1

|V |3 ( 1
|V |2 ), which is negligible.

Lemma 1. E[zv] ≤ c(v)
4|V | and E[ze] ≤ c(e)

4|V | .

Proof: Clearly,

E[zv] =
∑
i∈I

∑
p:p∈P (i)∧v∈p

y′ip,v
|V |
· r(i, p, v)

4
· w(i) ≤ c(v)

4|V |
,

where the last inequality directly follows the node capacity
constraints in 2c, and

E[ze] =
∑
i∈I

∑
p:p∈P (i)∧e∈p

∑
v∈p

y′ip,v
|V |
· r(i, p, v)

4
≤ c(e)

4|V |
,

where the last inequality directly follows the link capacity
constraints in 2d.

Theorem 4. Pr[zv > c(v)] ≤ 1
|V |4 and Pr[ze > c(e)] ≤ 1

|V |4 .

Proof: The proof of Pr[ze > c(e)] ≤ 1
|V |4 is omitted

due to its similarity with that of Pr[zv > c(v)] ≤ 1
|V |4 .



Let z′iv = 4ziv be a random variable. It suffices to show

Pr[
∑
i∈I

z′iv
c(v)

> 4] ≤ 1

|V |4
. Note that random variables

z′iv
c(v) for all v ∈ V are independent; z′iv

c(v) ∈ [0, 1] because

c(v) ≥ r(i, p, v); E[
∑
i∈I

z′iv
c(v)

] ≤ 1

|V |
by Lemma 1. Thus, by

Chernoff bound (Theorem 2) and setting ε = 4|V |−1, we have

Pr[
∑
v∈V

z′iv
c(v)

> (4|V |)( 1

|V |
)] ≤

(
e(4|V |−1)(
4|V |

)(4|V |)
) 1
|V |

=
e4

e

(
1
|V |

)
(4|V |)4

<
e4

(4|V |)4
<

1

|V |4
.

Clearly, it takes O(|I|) time to select paths and route flows
on the selected paths for all source-destination pairs at steps 3
and 4, respectively. At step 2, combinatorial algorithm [12] iter-
atively employs our separation oracle (Algorithm 1) to identify
the most violated constraint in our dual linear program in order
to adjust the primal solution and dual solution. According to
[12], at most O(ω−2m1 logm1) iterations are executed, where
ω denote the error bound of the fraction solution and m1

denotes the number of constraints (except for the non-negativity
constraints of variables) in the primal linear programming,
i.e., m1 = O(|I| + |V | + |E| + |I| · |V |). As for Algorithm
1, a graph Gw is generated for each source-destination pair,
each node, and each possible link weight, and thus, at most
m2 = O(|I|·|V |·|E|) graphs are generated. For each graph Gw,
we use Suurablle’s algorithm to find the disjoint paths with time
complexity m3 = O(|E| + |V | log |V |) [13]. To sum up, the
time complexity of Algorithm 2 is O(ω−2m1m2m3 logm1).

B. Heuristic Algorithm for Solution Improvement
Since Algorithm 2 may route zero flow for a source-

destination pair in the randomized rounding process (line 3)
even if there exists a routing path on which all links and
nodes are not saturated between the source-destination pair,
we propose a heuristic algorithm that follows Algorithm 2
to improve the solution. We first establish a path set P ′ by
selecting the path p chosen to route the flow between the
source-destination pair i by Algorithm 2 if p exists, and the
path p with maximum

∑
v∈p

y′ip,v · r(i, p, v) among all paths

between the source-destination pair i otherwise. Subsequently,
we compute the optimum solution of the reformated linear
program (2a − 2f) with P (i) replaced with P (i) ∩ P ′. Such
a linear programming can be solved in polynomial time since
there are a polynomial number of constrains and variables. Note
that Algorithm 2 followed by the heuristic algorithm outputs
an approximation solution to the SCEMF problem.

C. Deployment of Virtual Network Functions
We demonstrate how to deploy the network functions in a

network using our solution. Consider an example of a service
chain that defines the flow to be first steered to the firewall, then
billing, and finally destination, where the process overhead per

BillingFirewall Firewall Billing

s ta b c

5 Mbps

5 Mbps

10 Mbps 10 Mbps

Fig. 3. Example of the deployment of the firewall and billing network
functions and the amount of flow processed by the network function on a
specific node.

unit of flow is assumed to be 0.1 and 0.01 (CPU usage/Mbps)
for the firewall and billing network functions, respectively.
Assume that our method decides a 10-Mbps flow routed on
the path s→ a→ b→ c→ t for the service chain, where the
fraction of the total process overhead of the flow is 0.5, 0.55,
and 0.05 on nodes a, b, and c, respectively. Then, based on
a hash function on packet sequence number,v we can deploy
the firewall network function on nodes a and b and the billing
network function on nodes b and c, and process the first half
of the flow using the firewall network function on node a, the
second half of the flow using the firewall and billing network
functions on node b, and the first half of the flow using the
billing network function on node c. The result is illustrated in
Figure 3.

V. NUMERICAL RESULT

We conduct simulations on more than 200 realistic network
topologies collected from around the world by [16]. The nodes
and links in the networks ranges from 3 to 196 and from 4 to
245, respectively. We assume that the performance bottleneck
of the network is the memory space (MB), and the capacities
of the nodes and links in the network is 1024 MB and 100
Mbps, respectively, in the base case. In each network, we
select |M | source-destinations pairs at random, and generate
the flows for the selected source-destination pairs based on
a power law distribution [17] with the probability density
function, P [X = x] is equal to Cx−α if x ≥ xmin, 0
otherwise, where xmin denotes the minimum amount of fow,
and C = (α − 1)x

(α−1)
min . In the base case, we set xmin = 1

Mbps, α = 2.1, and |M | to the number of links in the
network. According to our experiment, the traffic optimizer
(the network function implemented in Click software router)
demands 15 MB memory to process the 1 Mbps flow. Since
a flow is processed by one or multiple functions, we assume
that each source-destination pair is associated with the process
overhead per unit of flow randomly chosen from the range
[1, 100] (MB/Mbps). Based on the base case, the different
settings of the node capacity, the link capacity, the number
of source-destination pairs (number of flows), and the value of
xmin are used to examine their impacts on the performance
of our algorithm. We compare the solution obtained by our
algorithm (i.e., Algorithm 2 followed by the heuristic algorithm
for solution improvement) with the optimal solution obtained
by a branch-and-bound algorithm or the optimal solution of
the relaxed linear programming (2a − 2f) (whose object value
is an upper bound of the optimal value for our problem) in
terms of the total throughput. Since our problem is NP-hard, the
branch-and-bound algorithm is only used to obtain the optimal
solution for the small-scale networks which are collected into
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Fig. 4. Effects of the (a) number of flows, (b) xmin, (c) node capacity, and
(d) link capacity on the throughput in the network groups HN, LN, and SC.
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Fig. 5. Effects of the (a) number of flows, (b) xmin, (c) node capacity, and
(d) link capacity on the throughput in the network groups HD and LD.

a group denoted by SC. We also classify all networks into
two groups in two different ways. The first (or second) one
classifies the networks into one group of the networks with at
least 100 nodes (or average node degree at least 2.4), denoted
HN (or HD), and one group of the networks with less than
100 nodes (or average node degree less than 2.4), denoted LN
(or LD), where the average node degree denotes the average
number of neighbors per node and the higher average node
degree indidates the more diverse routing paths. In addition,
we also evaluate the performance of our algorithm in terms of
the node capacity usage.

Figures 4−6 show the simulations results, where our algo-
rithm, the optimal value, and the upper bound of the optimal
value are denoted by Ours, Opt, and UB, respectively. As an-
ticipated, our algorithm (as well as UB) has greater throughput
in the network group HN than in the network group LN. On
the other hand, as compared to in the network groups LN,
HD, LD, and SC, our algorithm has smaller node usage in
the network group HN since the process overhead is shared
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Fig. 6. Effects of the (a) number of flows, (b) xmin, (c) node capacity, and
(d) link capacity on the node usage.

by more nodes. In addition, as compared to in the network
group LD, our algorithm has greater throughput and node usage
in the network group HD due to more diverse routing paths
used to route the flow. Moreover, as anticipated, the throughput
increases as the number of flows, xmin, node capacity, or link
capacity increases, and the node usage increases as the number
of flows, xmin, or link capacity increases. It is observed that
as the node capacity increases, the node usage decreases. This
observation results from that the process overhead increases
more slowly than does the node capacity.

VI. RELATED WORKS

In [4], [6], the VNF placement problem has been studied.
In [6], the authors propose efficient approximation algorithms
to minimize the total cost of deploying VNFs while ensuring
the number of VNFs at a node does not exceed the limitation.
In [4], the authors investigate the placement problem of two
types of VNFs, virtualized PGW (vPGW) and virtualized SGW
(vSGW), such that the latency between vPGW and its respon-
sible vSGW is bounded. Since these methods only address the
VNF deployment but not determine the routing paths of the
service chains, they cannot be used to solve our problem. In [7],
[8], the service chain embedding problem that considers both
of the VNF placement and routing path selection is studied.
In [7], an admitted service chain must have a selected length-
bounded (hop-count-bounded) routing path and the required
VNFs deployed at the nodes on the path, where each node has
limited capacity to host the VNFs. And, the authors present an
efficient on-line algorithm to maximize the number of admitted
service chains while ensuring the number of VNFs at a node
does not exceed the limitation. In [8], the authors consider the
networks consisting of optical and electrical domains. Since
the conversion between the optical domain and the electrical
domain is expensive, the authors place the VNFs of a service
chain at the nodes in the same domain. Hence, the goal is to
minimize the total number of domains crossed by the service
chains while ensuring the limited node capacity is not violated.
Remark that these algorithms for the service chain embedding



problem does not consider the flow and cannot be used to
obtain an approximation algorithm for our problem. In [18],
[19], the service chain embedding problem with considering the
fow is studied. The proposed methods directly take advantage
of CPLEX to solve the modeled mathematical programming
instead of presenting an efficient algorithm (i.e., in polynomial
time), which makes it hard to be used when the topology size is
large. In [20], the authors aim at striking a balance between link
utilization and server usage to maximize the total benefit. They
deploy the service chains based on the guideline, determined
based on the network conditions and demand properties, of the
proper routing path length and resource reuse factor. In [21], the
authors present an auction mechanism which efficiently makes
the users bid the service chain truthfully and approximate the
social welfare maximization for service chains in the NFV
market. Since the goals of these papers are different from that
of ours, these methods cannot be used to solve our problem.
In [12], [22], the maximum multi-commodity flow problem,
which is to maximize the total amount of flows between all
source-destination pairs, has been approximated within a factor
of (1 + ω), where ω > 0. In [23], [24], the maximum multi-
commodity flow problem with considering the node capacity
has been studied, where the capacity of a node bounds the
number of flow paths through the node, which is different from
that of our problem. Thus, these methods cannot be used to
obtain the approximation algorithm for our problem.

VII. CONCLUSION

In this paper, we investigated the service chain embedding
problem in depth. To model the problem precisely, we conduct
the experiment to examine the relation between the process
overhead and the amount of flows processed on a computation
node. According to our experiment, the process overhead on a
computation node is accumulative and linear to the total amount
of flows processed; thus, based on the experimental results, we
presented the service chain embedding with maximum flow
problem (SCEMF) to maximize the total amount of flows of
demands while ensuring that the total process overhead of the
flows on a node is bounded by its computation capability and
the total amount of flows on a link is bounded by its bandwidth
capacity. We showed the hardness of the SCEMF problem and
proposed an approximation algorithm with the best theoretical
approximation ratio. To the best of our knowledge, our method
is the first approximation algorithm of the service chain em-
bedding problem with considering flow.

To evaluate the performance of our algorithm, we conducted
simulations on more than 200 realistic network topologies
collected from around the world, where the synthetic maximum
flows associated with source-destination pairs were generated
based on the power law distribution, and the different settings
of the node capacity, the link capacity, the number of flows,
and the minimum amount of flow are used to examine their
impacts on the performance of our algorithm. The simulation
results showed the object value (the total amount of flows) of
our solution is close to an upper bound of the optimal value
(or an optimum value for the small-scale networks).
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