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AbstractÐIn this paper, we address the problem of minimizing channel contention of linear-complement communication on wormhole-

routed hypercubes. Our research reveals that, for traditional routing algorithms, the degree of channel contention of a linear-

complement communication can be quite large. To solve this problem, we propose an alternative approach, which applies processor

reordering mapping at compile time. In this compiler approach, processors are logically reordered according to the given

communication(s) so that the new communication(s) can be efficiently realized on the hypercube network. It is proved that, for any

linear-complement communication, there exists a reordering mapping such that the new communication has minimum channel

contention. An O�n3� algorithm is proposed to find such a mapping for an n-dimensional hypercube. An algorithm based on dynamic

programming is also proposed to find an optimal reordering mapping for a set of linear-complement communications. Several

computer simulations have been conducted and the results clearly show the advantage of the proposed approach.

Index TermsÐHypercubes, linear-complement communication, channel contention, processor mapping, wormhole routing.
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1 INTRODUCTION

IN a message-passing multicomputer, efficient schemes to
move messages among the processors are required for

obtaining fast and efficient parallel algorithms. Many
studies have been based on store-and-forward routing, where
the message latency is proportional to the product of the
message length and the number of routing steps. Hence,
most of them have concentrated on minimizing the
number of routing steps in moving messages among
processors [4], [16], [17], [18], [20], [21]. On the other
hand, wormhole routing has been widely adopted
recently due to its effectiveness in interprocessor commu-
nication [1], [2], [22]. With wormhole routing, each
message is divided into a number of flits. The header
flit(s) carries the address information and governs the
route while the remaining flits of the message follow in a
pipeline fashion. The pipelined nature of wormhole
routing provides two attractions. First, in the absence of
channel contention, the network latency would be
relatively insensitive to the path length [9], [22]. Second,
the large message buffers for each router are obviated. Only
small flit buffers are required [22].

However, channel contention can have a severe

impact on the network latency of wormhole routing.

Channel contention happens when multiple messages

simultaneously use the same channel in their routes. If
k messages are contending for the same channel, only
one of them can reserve the channel and be forwarded
through it. The other messages have to wait until the
channel is released and then contend for it again. In the
worst case, the network latency will become k times.
Hence, an important issue on wormhole-routed parallel
computers is to minimize channel contention between
messages. Many studies have tried to improve the
adaptability of routing algorithms to solve the contention
problem [5], [7], [10], [11], [15], [22]. However, this
approach requires extra hardware support, such as
buffer space and control logics. Moreover, the complexity
of adaptive routers significantly increases their interrou-
ter setup delay and flow control cycle times [6].
Consequently, the claims of performance advantages in
channel utilization may not be able to be balanced
against losses on achievable implementation speed. For
these reasons, we try to solve the contention problem by
compiler approaches rather than routing algorithms at
runtime.

In this paper, we focus on the problem of minimiz-
ing the channel contention of linear-complement commu-
nication (LCC) on wormhole-routed hypercubes [14], [23].
Linear-complement communication is a class of commu-
nications where the address bits of the destination of each
message are linear combinations of the address bits of its
source and their complements. Many important problems,
like fast Fourier transform, matrix transposition, polyno-
mial evaluation, etc., can be effectively solved on parallel
computers which have an efficient scheme to support this
type of communications. To minimize the channel conten-
tion of LCC, we adopt a new approach which applies
processor reordering mapping at compile time. In the compiler
approach, processors are logically rearranged according to
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the given communications before the executable code of the

given parallel program is generated. In this way, no extra

data movement will be incurred. By appropriately

rearranging the processors, the new communications can

be efficiently realized on the hypercube network. It can be

proved that, for any LCC, there exists a reordering

mapping such that the new communication has minimum

channel contention. An O�n3� algorithm is proposed to find

such a mapping for an n-dimensional hypercube. For a

parallel program containing more than one LCC, a dynamic

programming algorithm is proposed to find an optimal

reordering mapping. With these results, compiler techni-

ques can be used to minimize the channel contention of

LCCs on hypercubes. In addition, only the e-cube routing is

assumed in the proposed approach and no extra hardware

is needed. Experiments based on computer simulation have

been conducted and the results clearly show the advantage

of the proposed approach.
The discussion in this paper can be directly applied to

hypercube computers such as nCUBE 2 [1]. However, for

variations of the hypercube topology, the discussion may

require some modifications. For example, in SCI Origin

2000 [2], two nodes are connected to a single router

instead of one. Therefore, the network topology for an

Origin system with 2n nodes is an �nÿ 1�-dimensional

hypercube. Hence, an n-dimensional LCC on an Origin

system can be viewed as performing two LCCs simulta-

neously on the �nÿ 1�-dimensional hypercube. A detailed

discussion about performing LCCs on an Origin system can

be found in [12].
Related researches for store-and-forward interconnection

networks have been reported. Most of them focused on

subsets of LCC, such as linear-complement permutation (LCP)

and bit-permute-complement permutation (BPC). For example,

Boppana and Raghavendra [4] considered LCPs on hyper-

cubes, Nassimi and Sahni [20], [21] dealt with BPCs on

meshes and hypercubes, and Masuyama [17], [18] dealt

with BPCs on chordal rings and hypercubes. However,

none of these methods can be applied to linear-complement

scatter (LCS) or linear-complement gather (LCG). Lin and

Wang [16] considered another set of communications

represented by s
d

ÿ �
-mask formalism. Although this repre-

sentation scheme can encode a broad class of communica-

tions, it still cannot represent an LCS or LCG with a single
s
d

ÿ �
-mask. All of the above researches tried to give efficient

routing algorithms. Hence, they require newly designed

hardware and cannot be applied to existing parallel

computers. Moreover, these researches aim at minimizing

the number of routing steps and are not suitable for

wormhole-routed networks.
The rest of this paper is organized as follows: Section 2

introduces the notations and definitions. In Section 3, we

describe the compiler approach. Some properties and an

algorithm of processor reordering mapping are presented in

Section 4. In Section 5, a dynamic programming algorithm is

proposed for a set of LCCs. Section 6 shows the experi-

mental results based on computer simulation. Finally,

conclusions are given in Section 7.

2 BACKGROUND

When a communication is performed, messages are
generated by a set of source nodes and transmitted through
the interconnection network to their destination nodes. The
communication latency is the interval from the time the
source nodes begin to send messages until the last
destination node has received the message. If some of the
paths for transmitting these messages contend for the same
channel, then the communication latency will be
increased. The more paths contend for the same channel,
the longer communication latency is required. Therefore,
the maximum number of paths contending for the same
channel has a severe impact on the communication latency.
Let the degree of channel contention for a communication
be defined as the maximum number of paths contending for
the same channel. In this paper, we consider the problem of
performing LCC on a hypercube computer with the e-cube

wormhole routing capability. Our goal is to minimize the
degree of channel contention so that LCC can be performed
efficiently. In this section, the definitions and notations of
these terminologies will be clarified.

2.1 The Hypercube Network

An n-dimensional hypercube is a directed graph which
contains N � 2n nodes and n� 2n channels. Each node
corresponds to an n-bit binary string, bnÿ1bnÿ2 . . . b1b0. We
shall use a binary vector �b0b1 . . . bnÿ1�t to represent it. Two
nodes are connected with a pair of channels, one for each
direction, if and only if their binary strings differ in exactly
one bit. As a consequence, each node is incident to n other
nodes through n different channels, one for each bit
position. The channel from node x to x0 is denoted by
(x, x0) and said to be at dimension k if x and x0 differ in
the kth bit position.

2.2 Linear-Complement Communication

The messages generated when performing a commu-
nication operation usually can be formulated by some
specific pattern. For example, in the bit-reverse commu-
nication operation, the source and destination nodes of
each message can be represented by �x0x1 . . .xnÿ1�t and
�xnÿ1xnÿ2 . . .x0�t, respectively. In what follows, we will
define the class of linear-complement communications
on an n-dimensional hypercube. The addition and
multiplication in this section are modulo-2, i.e., they
are defined in the finite field, GF(2) [19].

Definition 1. A communication is a linear-complement
communication (LCC) if there exits a binary matrix An�n
and an n-dimensional binary vector b such that, for every
message with source node x, its destination node y is given by
the equation y � Ax� b.

Definition 2. An LCC with a binary matrix An�n and an
n-dimensional binary vector b is a linear-complement
permutation (LCP) if An�n is nonsingular, i.e., rank�A� � n.

Definition 3. An LCC with a binary matrix An�n and an
n-dimensional binary vector b is a linear-complement gather
(LCG) if rank�A� < n.
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Scatter, the dual operation of gather, can be implemented
by simply reversing the direction of message transmission
of gather. Thus, we can define linear-complement scatter as
follows:

Definition 4. A communication is a linear-complement scatter
(LCS), if there exists a binary matrix An�n, rank�An�n� < n,
and an n-dimensional binary vector b such that, for every
message with destination node y, its source node x is given by
the equation Ay� b � x.

Example 1. The bit-reverse communication operation on
an 8-dimensional hypercube is a linear-complement
communication,

y0

y1

y2

y3

y4

y5

y6

y7

266666666664

377777777775
�

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

266666666664

377777777775

x0

x1

x2

x3

x4

x5

x6

x7

266666666664

377777777775
�

0
0
0
0
0
0
0
0

266666666664

377777777775
:

For any source-destination pair (x; y) in an LCC defined
above, to obtain the address of y is equivalent to performing
a linear transformation of the n-dimensional vector space on
x and then adding a constant binary vector. Since there is an
one-to-one correspondence between the binary matrices of
size n� n and linear transformations on an n-dimensional
vector space over GF(2), we shall utilize this property in the
following sections.

2.3 Routing Strategies

The interconnection network must allow every node to send
messages to every other node. In the absence of a complete
network, we need a routing algorithm to determine the path
selected by a message to reach its destination. Efficient
routing algorithms are critical to the performance of the
interconnection network.

The e-cube routing algorithm is the simplest deadlock-
free routing strategy on wormhole-routed hypercubes,
which reserves the required channels in a strictly increasing
order of dimensions. It allows messages to be forwarded
only over channels at higher dimensions than that of the last
traversed channel. Many current hypercube computers use
the e-cube routing because of its simplicity and ease of
implementation. However, the e-cube routing establishes
only one shortest path between each pair of source-
destination nodes and does not take the advantage of the
flexibility provided by hypercubes.

Fully adaptive routing strategies can route messages
along any of the shortest paths available in the hypercube
network. Unfortunately, multiple channels are needed for a
pair of neighboring nodes in order to help these strategies
prevent deadlock. This means that extra hardware
supports, such as buffer space and control logics, have
to be added to the routers. Some partially adaptive
routing strategies without the need of multiple channels
have been proposed [5], [7], [11], [15]. Although they can
better utilize the flexibility provided by hypercubes, the
complexity of adaptive routers significantly increases the
interrouter setup delay and flow control cycle times [6].

Furthermore, even though a partially adaptive routing
strategy is used, our simulation results reveal that the
average network latency grows much more rapidly than
expected as the network throughput increases. This limits
the utilization of the communication capacity of an
interconnection network. For example, when the adaptive
routing strategies in [7] or [15] is used, the throughput of
performing bit-reverse on an 8-dimensional hypercube is
always less than 1/8 of the communication capacity of the
hypercube network. The main reason for the poor perfor-
mance is that there exists a set of 8 source-destination pairs
contending for the channel (�00010000�t, �00000000�t).
Similar conditions also happen when performing matrix-
transpose or reverse-flip. The adaptive routing strategy in
[11] also suffers from similar problems when performing
matrix-transpose or bit-reverse.

From the above discussions, it is shown that the adaptive
routing algorithms cannot appropriately solve the conten-
tion problem for performing LCCs on hypercubes. Hence,
in this paper, we propose a compiler approach called
processor reordering mapping to minimize the channel
contention. The hypercube network is assumed to support
only e-cube routing. Thus, no extra hardware is needed and
the proposed approach is of practical use.

3 THE COMPILER APPROACH

In the proposed compiler approach, the communications
to be performed in a parallel program can be detected by
compilers automatically or specified by programmers.
These communications will be transformed into the
matrix form for the optimization process. Next, according
to the given communications, an optimal processor
mapping is determined. The compiler can then generate
the SPMD (Single Program Multiple Data) node program
for each processor accordingly. By appropriately choosing a
processor mapping, the new communications can be
efficiently realized on the hypercube network.

As an example, consider executing the parallel loop
show in Fig. 1a on hypercubes. The function reverse�i; n�
returns the bit-reverse of i, i.e.,

i0 � 2nÿ1 � i1 � 2nÿ2 � . . . inÿ2 � 2� inÿ1;

for the loop index,

i � inÿ1 � 2nÿ1 � inÿ2 � 2nÿ2 � . . . i1 � 2� i0:
If array elements b�i� and r�i� are distributed on processor Pi,
and the task of executing iteration i is also assigned to
processor Pi, then the compiler can determine that the
communication to be performed is bit-reverse and trans-
form it into the matrix form as shown in Example 1. The
SPMD node program without processor mapping can be
generated, as shown in Fig. 1b for comparison.

With processor mapping, the compiler has to
determine an optimal one-to-one mapping function f
according to the given communication. The function f
maps virtual processor x onto physical processor x0 = f�x�.
From the view point of virtual processors, data distribution
and iteration assignment remain unchanged, i.e., array
elements b�i� and r�i� are distributed on virtual processor
V Pi and the task of executing iteration i is also assigned to
virtual processor V Pi. The only difference is that virtual
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processor V Pi is now mapped onto the physical processor
Pf�i�. Accordingly, the SPMD node program for each
processor can be generated, as shown in Fig. 1c. Though
the communication to be performed between virtual
processors is still bit-reverse, the one between physical
processors is changed. It will be proved in the next section
that the degree of channel contention can be reduced by
appropriately choosing the mapping function f . Also, the
algorithm for finding an optimal mapping function will be
proposed.

Since the sending and receiving of data can be accom-

plished by hardware, as shown in Fig. 1b, the only overhead

of the program shown in Fig. 1c at runtime is the mapping

between virtual processors and physical processors. This

overhead can be minimized as array indexing operations, as

shown in Fig. 1d. Apparently, this overhead is far less than

the communication latency and, therefore, can be neglected.

Note also that the SPMD node program, shown in Fig. 1d, is

very similar to the one shown in Fig. 1b, except that the

functions get_pid(), send(), and receive() in Fig. 1b are

replaced by the functions v_get_pid(), v_send(), and

v_receive(), respectively. This property makes code genera-

tion with processor mapping much easier. In addition to

generating the node program, the compiler has to deter-

mine an appropriate mapping function and set up the two

mapping arrays to_virtual[] and to_physical[] for use in the

node program.

Another issue arises when more than one communica-

tion will be performed in a parallel program. Our

approach is to search for an optimal processor mapping

for all the communications. We shall propose a dynamic

programming algorithm for that purpose in Section 5.

Another approach is to perform processor remapping at

runtime. However, it may result in significant overhead

at runtime. Thus, it is not considered in this paper.

4 PROCESSOR REORDERING MAPPING

First, we shall show that the degree of channel contention

for an LCC is directly related to the ranks of submatrices of

the binary matrix A of the LCC. A submatrix of the binary

matrix A is the matrix obtained from A by retaining entries

in some row(s) and column(s) and deleting other entries.

We shall use A�i� to denote the ith row of A and A�i� to

denote the ith column of A. The following defines the

special submatrices and their notations to be used in this

paper:

Definition 5. A submatrix of the binary matrix A obtained by

retaining rows in the set R and columns in the set C is denoted

as AR;C .

We shall use Li to denote the set of nonnegative integers

smaller than i. Therefore, given integer i and j, ALi;Lj is the

upper-left submatrix of A with i rows and j columns.

Example 2 shows the submatrix AL3;L2
of a 4� 4 matrix A.

Example 2. Given

A �
a0;0 a0;1 a0;2 a0;3

a1;0 a1;1 a1;2 a1;3

a2;0 a2;1 a2;2 a2;3

a3;0 a3;1 a3;2 a3;3

2664
3775; AL3;L2

�
a0;0 a0;1

a1;0 a1;1

a2;0 a2;1

24 35:

Theorem 1. Given an LCC y � Ax� b, the maximum number of

paths that contend for the same channel at dimension i,

denoted as Ti�A; b�, can be determined as follows:

Ti A; b� � � 0 ;when xi � yi
2iÿrank ALi�1 ;Li� � ; otherwise:

�
Proof. For any channel

l � ��z0z1 . . . zi . . . znÿ1�t; �z0z1 . . . zi . . . znÿ1�t�
at dimension i, suppose that l is in the path from node

x � �x0x1 . . .xnÿ1�t to node y � �y0y1 . . . ynÿ1�t according

to the e-cube routing, then we have

�xixi�1 . . .xnÿ1�t � �zizi�1 . . . znÿ1�t

and

�y0y1 . . . yi�t � �z0z1 . . . ziÿ1 zi�t:
Since y � Ax� b, we have
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Fig. 1. An example of a parallel loop and its corresonding SPMD node
programs. (a) An example parallel loop. (b) An example SPMD node
program. (c) An example SPMD node program for mapping f. (d) An
alternative SPMD node program for mapping f.



y0

y1

..

.

yi

266664
377775 �

z0

z1

..

.

�zi

266664
377775 �

a0;0 a0;1 � � � a0;iÿ1

a1;0 a1;1 � � � a1;iÿ1

� � � � � � � � � � � �
ai;0 ai;1 � � � ai;iÿ1

26664
37775

x0

x1

..

.

xiÿ1

266664
377775

�

a0;i a0;i�1 � � � a0;nÿ1

a1;i a1;i�1 � � � a1;nÿ1

� � � � � � � � � � � �
ai;i ai;i�1 � � � ai;nÿ1

26664
37775

zi

zi�1

..

.

znÿ1

266664
377775�

b0

b1

..

.

bi

266664
377775

:

Note that the number of paths contending for
channel l is equivalent to the number of solutions of
�x0x1 . . .xiÿ1�t. According to linear Algebra, either there
is no solution or there are exactly 2iÿrank�ALi�1 ;Li

� distinct
solutions satisfying the above set of equations. Note
also that no solution means no path passing channel l.
Hence, for all channels at dimension i, there is no
solution if and only if yi � xi. In all other cases, there
exists a channel at dimension i such that exactly
2iÿrank�ALi�1 ;Li

� paths contend for it. tu

The above theorem shows that the degree of channel

contention is determined only by the ranks of submatrices

of the binary matrix A. As an example, we shall compute

the degree of channel contention of matrix-transpose on an

8-dimensional hypercube according to Theorem 1.

Example 3. Consider the matrix-transpose communication

on an 8-dimensional hypercube,

y0

y1

y2

y3

y4

y5

y6

y7

266666666664

377777777775
�

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

266666666664

377777777775

x0

x1

x2

x3

x4

x5

x6

x7

266666666664

377777777775
�

0
0
0
0
0
0
0
0

266666666664

377777777775
:

According to Theorem 1, the degree of channel

contention at each dimension can be computed as follows:

T0 � 20ÿ0 � 1; T1 � 21ÿ0 � 2; T2 � 22ÿ0 � 4;

T3 � 23ÿ0 � 8; T4 � 24ÿ1 � 8; T5 � 25ÿ3 � 4;

T6 � 26ÿ5 � 2; T7 � 27ÿ7 � 1:

Definition 6. The degree of channel contention of an LCC y �
Ax� b is defined to be MAX

0�i�nÿ1
fTi�A; b�g and denoted by

T �A; b�.

To minimize T �A; b�, the binary matrix A must be

ªchangedº and, at the same time, the LCC must be correctly

performed. To meet these two requirements, we propose an

alternative approach, called processor reordering mapping. In

this approach, processors are logically reordered by a

reordering mapping, which is a permutation of address bits

of processors. It is defined formally as follows:

Definition 7. A processor mapping is said to be a linear mapping
if there exists a binary matrix Qn�n such that, for every
node x, it is mapped to node x0 � Qx.

Definition 8. A processor mapping is a reordering mapping if it
is a linear mapping and the matrix Q is a permutation matrix,
i.e. each row and column of Q has exactly one 1.

Reordering mapping has the property that the neigh-
boring relation of processors is kept unchanged after
processors are reordered. Since the communication
between neighboring processors is the most frequently
used class of communications, this property provides a
great advantage for practical use. In order to ensure that
the LCC will be performed correctly, the communication
after processor reordering mapping must be changed as
shown in the following theorem:

Theorem 2. Given an LCC with a binary matrix A and a
binary vector b, the new communication after the reordering
mapping with a permutation matrix Q is an LCC with a
binary matrix QAQÿ1 and a binary vector Qb.

Proof. Fig. 2 provides a good explanation for this
theorem. For a source node x in the LCC with A
and b, the destination node y can be computed by the
equation y � Ax� b. After reordering mapping by Q,
we have x0 � Qx and y0 � Qy. Since Q is nonsingular,
we can derive x � Qÿ1x0. Hence, we have

y0 � Qy � Q�Ax� b� � QAQÿ1x0 �Qb:
tu

In other words, the degree of channel contention after the
reordering mapping is now determined by QAQÿ1. By
choosing an appropriate processor mapping Q, the degree
of channel contention could be greatly reduced. In the
following discussion, we will show how to find an optimal
reordering mapping for an LCC. First, notice the special
situation in Theorem 1 where Ti�A; b� � 0 at dimension i. It
only happens when yi � xi for all x, i.e., A�i� � I�i� and
bi � 0, where I is the identity matrix. Since Ti�A; b� � 0
means no communication at dimension i, we wish to keep it
unchanged when performing processor mapping. It can be
accomplished by applying a reordering mapping Q, which
moves the ith row of A to the last dimension before
searching for an optimal mapping. Hence, the ith row and
column in A will be moved to the last dimension in QAQÿ1.
Since

�QAQÿ1�Lnÿ1;Lnÿ1
� ALnÿfig;Lnÿfig;
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for y � Ax� b.



and

Tnÿ1�QAQÿ1; Qb� � Ti�A; b� � 0;

we can just consider the submatrix ALnÿfig;Lnÿfig when
minimizing the channel contention of A. Without loss of
generality, we may assume Ti�A; b� > 0 for 0 � i � nÿ 1 in
the following discussion:

Theorem 3. For any nonsingular binary matrix An�n, there

exists a permutation matrix Qn�n such that

rank��QAQÿ1�Li�1;Li
� � i

for 0 � i � nÿ 1.

Proof. The proof of this theorem is by mathematic
induction on the integer i. Obviously, it is true for
i � 0. Suppose that it is true for 0 � i � k. There must
exist a permutation matrix Q such that

rank��QAQÿ1�Li�1;Li
� � i

for 0 � i � k.
We shall prove that it is also true for 0 � i � k� 1.

Note that

�k� 1� � rank��QAQÿ1�Lk�2;Lk�1
�

� rank��QAQÿ1�Lk�1;Lk�1
�

� rank��QAQÿ1�Lk�1;Lk
� � k:

If rank��QAQÿ1�Lk�2;Lk�1
� 6� k� 1, it must be held that

rank��QAQÿ1�Lk�2;Lk�1
� � rank��QAQÿ1�Lk�1;Lk�1

� � k:
Since A is nonsingular and Q is a permutation matrix, we
have

rank�QAQÿ1� � rank�A� � n:
This means the columns in QAQÿ1 are linearly
independent. Hence, we have

rank��QAQÿ1�Ln;Lk�1
� � k� 1:

In other words, there must exist a row j � k� 1 that is

linearly independent of rows 0 to k in �QAQÿ1�Ln;Lk�1
. Let

~Q be the permutation matrix exchanging rows j and

k� 1. Accordingly, ~Qÿ1 must be the permutation matrix

exchanging column j and k� 1. We can derive

rank�� ~Q�QAQÿ1� ~Qÿ1�Li�1;Li
� � i

for 0 � i � k, and

rank�� ~Q�QAQÿ1� ~Qÿ1�Lk�2;Lk�1
� � k� 1:

Since � ~QQ�ÿ1 � Qÿ1 ~Qÿ1, it can be derived that

rank�b� ~QQ�A� ~QQ�ÿ1cLi�1;Li
� � i

for 0 � i � k� 1. Since � ~QQ� is also a permutation
matrix, this theorem is true for 0 � i � k� 1. Therefore,
by induction, this theorem is true for 0 � i � nÿ 1. This
completes the proof of this theorem. tu

Corollary 1. For any LCP, there exists a reordering mapping
such that the new communication has no channel contention.

Following the method in the proof for Theorem 3, we can
design an algorithm, as shown in Fig. 3, to find an optimal
reordering mapping for any LCP. The input of the
algorithm, LCP_Optimizer, is an LCP y � Ax� b and the
outputs are the optimal reordering mapping Q and the new
LCP y0 � Dx0 � d, where D � QAQÿ1 and d � Qb. At the
beginning of the LCP_Optimizer, D, d, and Q are set to A, b,
and I, respectively. By appropriately exchanging the rows
and the columns, the desired new LCP can be obtained. An
important job of the LCP_Optimizer is to find a set of linear
independent rows in some submatrix of D. In order to do
that efficiently, a matrix V is used to find linearly
independent rows in a way similar to Gaussian Elimination,
and a vector R is used to mark those rows. R�j� set to 1
means the jth row of some submatrix of D is linearly
independent and so is the jth row of the corresponding
submatrix of V . Initially, V is set to D and R is set to 0.
During the processing of the LCP_Optimizer,

Rank�DLp;Lq � � Rank�VLp;Lq �
for any (p, q).

The loop from line 5 to line 17 is the main part of the
LCP_Optimizer. At the beginning of iteration i, D has
already been optimal for those dimensions less than or
equal to i, i.e.,
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Fig. 3. The proposed algorithm for finding an optimal reordering mapping

for an LCP.



Rank�DLr�1;Lr� � Rank�VLr�1;Lr� � r
for 0 � r � i, and will be optimized for dimension �i� 1�. In

the meantime, the selected linearly independent rows of

VLn;Li are all in VLi�1;Li and marked by R. Each of those rows

contains only one 1 and the other elements are 0. All the

other rows in VLn;Li are zero rows. Hence, to find a new

linearly independent row in DLn;Li�1
and VLn;Li�1

, we only

need to examine column i of VLn;Li�1
and R as shown at

lines 6 and 7. If row j is the newly found independent row

and j > i� 1, it will be exchanged with row �i� 1� so that

Rank�DLi�2;Li�1
� � Rank�VLi�2;Li�1

� � i� 1:

The required row and column exchanging operations are

done from line 8 to line 13. At the end of iteration i, except

the newly found independent row, all the elements in

column i of VLn;Li�1
will be cleared to 0 by subtracting from

the new independent row as shown at lines 14 and 15.

Therefore, V will be ready to be used in the next iteration.

Since each row or column operation takes O�n� execution

time, the complexity of the LCP_Optimizer can be proved to

be O�n3�.
Example 4. Consider the matrix-transpose communication

on an 8-dimensional hypercube as shown in Example 3.

From Fig. 3, we can compute the optimal reordering

mapping and the new LCP as follows:

Q �

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

266666666664

377777777775
and

y00
y01
y02
y03
y04
y05
y06
y07

266666666664

377777777775
�

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

266666666664

377777777775

x00
x01
x02
x03
x04
x05
x06
x07

266666666664

377777777775
�

0
0
0
0
0
0
0
0

266666666664

377777777775
:

The degree of channel contention at each dimension for

the new LCP becomes

T0 � T1 � T2 � T3 � T4 � T5 � T6 � T7 � 20 � 1:

Compared with Example 3, the degree of channel

contention is greatly reduced from 8 to 1, i.e., contention-

free by the reordering mapping.

Theorem 4. For any binary matrix An�n, rank�An�n� < n,

there exists a permutation matrix Qn�n such that

iÿ rank��QAQÿ1�Li�1;Li
� � �nÿ 1� ÿ rank�A�

for 0 � i � nÿ 1.

Proof. Since rank�An�n� < n, there exists a column j in A
such that column j is a linear combination of other
columns. Let P be the permutation matrix exchanging
rows j and nÿ 1. Accordingly, Pÿ1 must be the
permutation matrix exchanging column j and nÿ 1.
Let B � PAPÿ1, we have

rank�BLn;Lnÿ1
� � rank�B� � rank�A�:

In the following, we will prove that there exists a
permutation matrix Q such that

iÿ rank��QBQÿ1�Li�1;Li
� � �nÿ 1� ÿ rank�BLn;Lnÿ1

�
for 0 � i � nÿ 1.

The proof is by mathematic induction on the integer i.
Obviously, it is true for i � nÿ 1. Suppose that it is true
for k � i � nÿ 1. There must exist a permutation
matrix Q such that

iÿ rank��QBQÿ1�Li�1;Li
� � �nÿ 1� ÿ rank�BLn;Lnÿ1

�
for k � i � nÿ 1.

We shall prove that it is also true for kÿ 1 � i � nÿ 1.
Consider i � kÿ 1 for the matrix QBQÿ1. If

�kÿ 1� ÿ rank��QBQÿ1�Lk;Lkÿ1
� > �nÿ 1� ÿ rank�BLn;Lnÿ1

�;
it must be held that

�kÿ 1� ÿ rank��QBQÿ1�Lk;Lkÿ1
� > kÿ rank��QBQÿ1�Lk�1;Lk

�:
That is

rank��QBQÿ1�Lk�1;Lk
� ÿ 1 > rank��QBQÿ1�Lk;Lkÿ1

�:
So, we can derive

rank��QBQÿ1�Lk;Lk� > rank��QBQÿ1�Lk;Lkÿ1
�;

and

kÿ 1 > rank��QBQÿ1�Lk;Lkÿ1
�:

This means that, in �QBQÿ1�Lk;Lk , the column �kÿ 1� is
linearly independent of other columns and there must
exist a column j, 0 � j � kÿ 2, which is a linear
combination of other columns. Let ~Q be the permutation
matrix exchanging rows j and k� 1. Accordingly, ~Qÿ1

must be the permutation matrix exchanging column j
and k� 1. We can derive

iÿ rank�� ~Q�QBQÿ1� ~Qÿ1�Li�1;Li
� � �nÿ 1� ÿ rank�BLn;Lnÿ1

�
for k � i � nÿ 1, and

�kÿ 1�ÿrank�� ~Q�QBQÿ1� ~Qÿ1�Lk;Lkÿ1
�

� �kÿ 1� ÿ rank��QBQÿ1�Lk;Lk�
� kÿ rank��QBQÿ1�Lk�1;Lk

�
� �nÿ 1� ÿ rank�BLn;Lnÿ1

�:
Since � ~QQ� is also a permutation matrix, the

inequality is true for kÿ 1 � i � nÿ 1. Hence, by
mathematic induction, it can be proved that there
exists a permutation matrix Q such that
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iÿ rank��QBQÿ1�Li�1;Li
� � �nÿ 1� ÿ rank�BLn;Lnÿ1

�
for 0 � i � nÿ 1. Therefore,

iÿrank��Q�PAPÿ1�Qÿ1�Li�1;Li

� �nÿ 1� ÿ rank��PAPÿ1�Ln;Lnÿ1
�

for 0 � i � nÿ 1. In other words,

iÿ rank���QP �A�QP �ÿ1�Li�1;Li
� � �nÿ 1� ÿ rank�A�

for 0 � i � nÿ 1. Since �QP � is also a permutation
matrix, this completes the proof of Theorem 4. tu

Corollary 2. For any LCG or LCS, the new communication
with the reordering mapping in Theorem 4 has minimum
channel contention.

Proof. Given an LCG or LCS with binary matrix An�n, for
any reordering mapping Q,

MAX
0�i�nÿ1

fiÿ rank��QAQÿ1�Li�1;Li
�g � �nÿ 1� ÿ rank�A�:

From Theorem 4, there exists a permutation matrix ~Q,
such that

iÿ rank�� ~QA ~Qÿ1�Li�1;Li
� � �nÿ 1� ÿ rank�A�

for 0 � i � nÿ 1. Therefore, by Theorem 4, we can find
an optimal reordering mapping such that the new
communication has minimum channel contention. tu
Similar to the LCP_Optimizer, an algorithm for LCS or

LCG can be easily derived following the method in the
proof for Theorem 4. It is omitted here to save the space.

5 PROCESSOR MAPPING FOR A SET OF LCCS

From the previous section, we can find an optimal
reordering mapping for any LCC. However, there is
probably more than one communication in a parallel
program. For efficiently executing such a parallel program,
we have to deal with the problem of performing a set of
LCCs. An example of a set of LCCs is given below, which
shows some frequently used subroutines that may be in a
library for image processing, including image rotation,
reflection, FFT, etc.

Example 5. Suppose a 16� 16 image is distributed on an
8-dimensional hypercube such that the pixel at
coordinates �px; py� is on the node �py� 16� px�.
Some frequently used subroutines for processing such
an image are shown as follows:

1. To reflect on the diagonal, each pixel �px; py� has
to be moved to �py; px�, i.e., sent from node
�py� 16� px� to �px� 16� py�. The communica-
tion on the hypercube is an LCC, y � A1x� b1,
which is the matrix transpose shown in Example 3.
Similarly, to reflect on the line py � 15ÿ px, the
required communication is y � A1x� �11111111�t.
To rotate 90 degrees clockwise, the required
communication is y � A1x� �11110000�t. And, to
rotate 90 degrees counterclockwise, the required
communication is y � A1x� �00001111�t.

2. To reflect on a vertical line, each pixel �px; py� has
to be moved to �15ÿ px; py�. The required
communication is y � Ix� �11110000�t. Similarly,
to reflect on a horizontal line, the required
communication is y � Ix� �00001111�t. To rotate
180 degrees, the required communication is
y � Ix� �11111111�t.

3. To scale the lower-left 8� 8 subimage by a factor
of 2 along both of the axes, each pixel �px; py� in
the subimage has to be sent to four new positions:

�2px; 2py�; �2px� 1; 2py�;
�2px; 2py� 1�; �2px� 1; 2py� 1�:

The required communication is an LCS,

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

266666666664

377777777775

y0

y1

y2

y3

y4

y5

y6

y7

266666666664

377777777775
�

0
0
0
0
0
0
0
0

266666666664

377777777775
�

x0

x1

x2

x3

x4

x5

x6

x7

266666666664

377777777775
:

4. Consider those pixels of the image to be
256 discrete data and perform 1D FFT on
these data. In addition to the neighboring
communications, a bit-reverse communication
is required [8], [13]. The bit-reverse commu-
nication, y � A3x� b3, is the one shown in
Example 1.

5. To perform 2D FFT on the image, the process is to
perform 1D FFT for each row of the image and
then perform 1D FFT for each column of the
image [13]. For performing 1D FFT on each row of
the image, in addition to the neighboring com-
munications, the bit-reverse communication for
the rows is required. Similarly, for performing
1D FFT on each column of the image, the bit-
reverse communication for the columns is re-
quired. They are shown as follows:

y �

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

266666666664

377777777775

x0

x1

x2

x3

x4

x5

x6

x7

266666666664

377777777775
�

0
0
0
0
0
0
0
0

266666666664

377777777775

y �

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

266666666664

377777777775

x0

x1

x2

x3

x4

x5

x6

x7

266666666664

377777777775
�

0
0
0
0
0
0
0
0

266666666664

377777777775
:
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Since a reordering mapping that is good for some LCCs
may be harmful for others, our goal is to find a reordering
mapping that is good enough for all the LCCs to be
performed in a parallel program. For different applications,
the objective functions of optimization may also be
different. Let y � Arx� br, 0 � r � mÿ 1 be the m LCCs
to be performed. In some applications, these LCCs are in
different subroutines that will be called dynamically.
Example 5 shows one of such applications. Since we cannot
determine at the compile-time which and how many times
the subroutines will be called, a reasonable choice is to
minimize the maximum channel contention of these
subroutines, i.e., minimize

MAX
0�r�mÿ1

�T �Ar; br��:

In some other applications, those LCCs may require to be
performed simultaneously. Such a situation may happen
when messages are scatter-gathered among processors.
Sometimes, the interference between different communica-
tions may also lead to this situation. Since those LCCs are
performed simultaneously, it is appropriate to minimize

MAX
0�i�nÿ1

f SUM
0�r�mÿ1

�Ti�Ar; br��g:

There are other possible concerns, such as minimizing

SUM
0�i�nÿ1

f SUM
0�r�mÿ1

�Ti�Ar; br��g:

In this section, we propose an algorithm to find an optimal
reordering mapping based on the dynamic programming
approach. The concept of dynamic programming can be
applied to any of the three objective functions in a similar
way. Without loss of generality, we focus on the problem of
minimizing

MAX
0�r�mÿ1

�T �Ar; br��;

i.e., finding an optimal reordering mapping Q that

minimizes

MAX
0�r�mÿ1

fMAX
0�i�nÿ1

fiÿ rank��QArQ
ÿ1�Li�1;Li

�gg :

Though this problem can be solved by an exhaustive search
on all possible reordering matrices, the largest number of all
possible reordering matrices, n!, makes such a solution
unfeasible for a large hypercube computer. Therefore, we
present an algorithm based on the technique of dynamic
programming to reduce the search space.

Since the matrix Q is a permutation matrix, there is a
one-to-one correspondence between reordering mapping
and the order of address bits. We shall use R�S� to denote
an optimal ordering of the address bits in the set S. In other
words, R�S� defines an optimal reordering mapping for
�Ar�S;S , 0 � r � mÿ 1. For example, the corresponding
order of address bits for the reordering mapping Q in
Example 4 is R�L8� � �0; 4; 2; 6; 1; 5; 3; 7�. The following
theorem provides the theoretical foundation for applying
dynamic programming to reduce the search space.

Theorem 5. There exists an address bit j in S such that

�R�S ÿ fjg�; j� is an optimal ordering of address bits for

�Ar�S;S , 0 � r � mÿ 1.

Proof. Let s be the cardinality of S. Suppose that j is the last

address bit of R�S�. Thus, the maximum number for

channel contention at dimension sÿ 1 must be the same

for R�S� and �R�S ÿ fjg�; j�. Since R�S ÿ fjg� is optimal

for �Ar�Sÿfjg;Sÿfjg, �R�S ÿ fjg�; j� is optimal for �Ar�S;S at

dimensions 0 to sÿ 2. Therefore, �R�S ÿ fjg�; j� must be

an optimal reordering for �Ar�S;S . tu

According to Theorem 5, we can designate R�S� as an

optimal ordering chosen from �R�S ÿ fig�; i� for all i in S

and find R�Ln� by computing R�S� for all subsets S � Ln.

The computing of R�S�, for S � Ln, can be performed

according to the cardinality of S in increasing order. For any

S � Ln, the number of searches is equivalent to its

cardinality. Therefore, we can compute the total number

of searches as follows:

Xn
k�1

k � Cn
k �

Xn
k�1

n � Cnÿ1
kÿ1 � n � 2nÿ1:

It can be observed that the search space is reduced from

n! to n � 2nÿ1. Fig. 4 gives the concept for computing R�L4�.
Since the running time for computing each case in the

search space is O�m� n3�, the running time for computing

R�Ln� is O�m� n4 � 2n�. Although the running time is not

polynomial in terms of the dimension n, it is polynomial in

terms of the number of processors. Hence, the algorithm is

feasible even for a 16-dimensional hypercube.

Example 6. Consider the two LCCs A1 and A3 in Example 5.

We know that A1 is for the matrix-transpose

operation and A3 is for the bit-reverse operation on

an 8-dimensional hypercube. From the proposed

dynamic programming approach, we can find that

R�L8� � �3; 4; 0; 7; 2; 5; 1; 6�. Hence, we can compute

Q �

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

266666666664

377777777775
;
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Qÿ1 �

0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0

266666666664

377777777775
and the two new communications are

y00
y01
y02
y03
y04
y05
y06
y07

266666666664

377777777775
�

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

266666666664

377777777775

x00
x01
x02
x03
x04
x05
x06
x07

266666666664

377777777775
�

0
0
0
0
0
0
0
0

266666666664

377777777775
and

y00
y01
y02
y03
y04
y05
y06
y07

266666666664

377777777775
�

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

266666666664

377777777775

x00
x01
x02
x03
x04
x05
x06
x07

266666666664

377777777775
�

0
0
0
0
0
0
0
0

266666666664

377777777775
:

After the processor mapping, the degrees of channel
contention now become 2 for matrix transpose and 1 for
bit-reverse instead of 8 in the original communications.

6 PERFORMANCE STUDY

To investigate the performance improvement of the

proposed approach, some experiments were carried out

by simulating the network behavior of an 8-dimensional

hypercube. In Section 6.1, we compare the e-cube routing

and some partially adaptive routing strategies with our

approach. These partially adaptive routing strategies

include P-cube routing proposed by Glass and Ni [11], the

routing strategy proposed by Chiu et al. [7], minimal (Min)

routing proposed by Li [15], and MIXab3 and MIXbb3

routing proposed by Chen and Yihng [5]. This simulation is

based on those performed in [5] and [11]. In Section 6.2,

a practical application, the parallel FFT program, is

performed on our simulator to show the benefit of the

proposed approach.
The network architecture assumed in the simulation is

described as follows: There are 256 nodes connected as an
8-dimensional hypercube. Each node consists of a
processor, local memory, a router, and other supporting
devices. Between two neighboring routers, there are two
unidirectional channels, one for each direction. A router
can communicate with its local processor through pairs of
ports. A separate buffer with a slot for one flit is
associated with each channel. When more than one input
channel contains header flits waiting for the same
available output channel, the arbitration policy is in favor

of the header flit that arrived at the router first. If a
header flit in an input channel has more than one
available output channel allowed by the routing strategy,
the channel with the lowest dimension is selected.

6.1 Simulation for Three Communications

Network performance is significantly affected by the
communications, which are application-dependent. In the
following discussion, we consider three communications:
Matrix-transpose, bit-reverse, and reverse-flip. They are
chosen not only because they are frequently used in many
scientific and engineering applications but also because
they are used as tested cases in many routing algorithms, so
we can compare our simulation with their results. For
matrix-transpose, every node x � �x0x1x2x3x4x5x6x7�t
sends messages to node y � �x4x5x6x7x0x1x2x3�t. For
bit-reverse, node x � �x0x1x2x3x4x5x6x7�t sends messages
to node y � �x7x6x5x4x3x2x1x0�t. Reverse-flip behaves like
bit-reverse except the address bits of the destination node
were complemented, i.e., node x � �x0x1x2x3x4x5x6x7�t
sends messages to node y � �x7; x6; x5; x4; x3; x2; x1; x0�t. All
three communications are LCPs. We may find reordering
mapping for them and see how the performance can be
improved.

In the simulation, processors generate messages at time
intervals given by a negative exponential distribution
random variable. Each message is assumed to have 20 flits,
including the header (flits). A flit requires a cycle to be
transmitted through a channel. The measures of interest in
this section are average message latency and average
sustainable network throughput. The message latency is
the number of cycles spent by a message in traveling from
its source processor to its destination, taking the queuing
delay into account. The average network throughput
indicates the average number of flits delivered per cycle
per processor. It is sustainable if the number of messages
queued at their source processors is small and bounded. For
a given system, the average message latency, in general,
grows as the throughput increases. At low throughput, the
network latency is contributed mainly by the message
length and the distance to travel because there is little
queuing delay involved. As the throughput increases, more
channel contention and longer queuing delay happened,
giving rise to a higher message latency. One system exhibits
better communication performance than another if it has a
lower message latency for any given throughput.

Figs. 5, 6, and 7 show the simulation results of matrix-
transpose, bit-reverse, and reverse-flip, respectively. In
these figures, M-S denotes the simulation result using an
optimal reordering mapping for the specific communica-
tion, which is proved to be contention-free in Section 4, and
M-G uses the reordering mapping chosen for the three
communications by using the dynamic programming
algorithm proposed in Section 5. After the processor
mapping M-G, the degree of channel contention for
matrix-transpose is 2 and it is contention-free for bit-reverse
and reverse-flip.

In Figs. 5, 6, and 7, it can be observed that the routing
strategies MIXab3, MIXbb3, Chiu and Min indeed improve
the performance over the e-cube routing since the difference
of the interrouter setup delay and flow control cycle time
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are not considered in this experiment [6]. The maximum

sustainable network throughput of these routing strategies

is about 30 percent to 100 percent higher than that of the

e-cube routing. Their message latencies are also lower for

any given sustainable throughput. The P-cube routing

performs quite different for the three communications. It

performs well for reverse-flip but worst for bit-reverse.

From these results, it can be observed that it is very difficult

for a routing algorithm to perform well for all communica-

tion patterns.
It can also be observed that, for any of the three

communications, the network throughput of the e-cube

routing is always less than 0.125, which is 1/8 of the

network capacity. As we have pointed out in Section 2, this
is due to the degree of channel contention being 8 for the
e-cube routing. In other words, the maximum throughput
that can be achieved is approximately inversely propor-
tional to the degree of channel contention.

After applying M-S and M-G, there is no channel
contention for performing the three communications, except
performing matrix-transpose after applying M-G. The
degree of channel contention is 2 for matrix-transpose after
applying M-G. Theoretically their throughput can approach
1 and 0.5, respectively. The actual value is somewhat
smaller because of the queuing delay between messages
generated by the same processor. As shown in Fig. 5, its
value is about 0.3 instead of 0.5 for M-G. Note also that, for
any given sustainable network throughput, the message
latencies of M-G and M-S are far lower than that of
traditional approaches.

With these results, it is obvious that our approach can
greatly reduce the network latency and significantly
improve the throughput for LCC. Furthermore, no extra
hardware supports it and sophisticated routing strategies
are needed. Only the e-cube wormhole routing is assumed
in the proposed approach. Therefore, it is of practical use.

6.2 Simulation for FFT

The Fast Fourier Transform (FFT) is one of the most
commonly used algorithms in digital signal processing and
is widely used in applications such as image processing and
spectral analysis. The purpose of this section is to
investigate the benefit of the proposed approach for such
a practical application.

The Discrete Fourier Transform (DFT) of an m-point

discrete signal x�i� is defined by

X�k� �
Xmÿ1

i�0

x�i�Wik
m ;
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Fig. 5. Simulation result of matrix-transpose on an 8-dimensional

hypercube.

Fig. 6. Simulation result of bit-reverse on an 8-dimensional hypercube.

Fig. 7. Simulation result of reverse-flip on an 8-dimensional hypercube.



0 � k � m, where Wm � eÿj2�=m, and j � �������ÿ1
p

. Direct DFT

computation requires O�m2� arithmetic operations. A faster

method of computing the DFT is the FFT algorithm, which

requires only O�m lg m� arithmetic operations. A more

detailed analysis of FFT can be found in [8]. Fig. 8 shows an

example of the flow chart of the FFT algorithm for 16 points.

The FFT algorithm begins with a bit-reverse permutation of

the inputs, followed by lg m stages, each stage consisting of

m=2 butterfly operations. An FFT input x can be identified

by a binary vector �x0x1x2 . . .xlg �mÿ1��t. In the ith computa-

tional stage, the two inputs of a butterfly operation are

�x0x1 . . .xiÿ1 . . .xlg �mÿ1��t and �x0x1 . . .xiÿ1 . . .xlg �mÿ1��t. We

can exploit some properties of the FFT algorithm to produce

an efficient parallel algorithm. The Parallel_FFT algorithm is

described in the following paragraph.
Let the number of data points m � 2n�2d, where n is the

dimensions of the hypercube network, and d is a positive

integer. Each input

x � �x0x1 . . .xdxd�1 . . .xn�dÿ1xn�d . . .xn�2dÿ1�t

is assigned to processor �xdxd�1 . . .xn�dÿ1�t. Hence, the

m inputs are distributed on the 2n processors with block-

cyclic distribution. There are 2d inputs in each block and 2d

blocks in each processor. The Parallel_FFT algorithm

follows the �1� lg m� stages in the FFT algorithm. In the

first stage, a bit-reverse communication between processors

is required for completing a bit-reverse permutation of the

inputs. In the following n� 2d computational stages, the

first and the last d stages do not require communication

operations and a neighboring communication is needed for

each of the other n stages. The reasons are explained as

follows: In the ith computational stage, 1 � i � d, the two

inputs of a butterfly operation,

�x0x1 . . .xiÿ1 . . .xd . . .xn�2dÿ1�t

and

�x0x1 . . .xiÿ1 . . .xd . . .xn�2dÿ1�t;
are in the same processor, �xdxd�1 . . .xn�dÿ1�t. Hence, the
data required for computation are all in local memory and
no communication is needed. Similarly, no communication
is needed in the ith computational stage,

n� d� 1 � i � n� 2d:

In the computational stage i, d� 1 � i � n� d, the two
inputs of a butterfly operation,

�x0x1 . . .xd . . .xiÿ1 . . .xn�dÿ1 . . .xn�2dÿ1�t

and

�x0x1 . . .xd . . .xiÿ1 . . .xn�dÿ1 . . .xn�2dÿ1�t

are in processors,

�xd . . .xiÿ1 . . .xn�dÿ1�t

and

�xd . . .xiÿ1 . . .xn�dÿ1�t;
respectively. Therefore, a neighboring communication at
dimension iÿ �d� 1� is performed. After these
�1� lg m� stages, the FFT outputs can be obtained and
are also distributed on the 2n processors with block-cyclic
distribution as inputs. The Parallel_FFT algorithm re-
quires O��m=2n�lg m� arithmetic operations and �n� 1�
communication operations for each processor.

By processor reordering mapping, the channel conten-
tion of the bit-reverse communication in the first stage of
the Parallel_FFT algorithm can be obviated and those
neighboring communications will stay unchanged. To see
the performance improvement of processor mapping for the
Parallel_FFT algorithm, we simulated the algorithm on an
8-dimensional hypercube. Each input of FFT is a complex
number which consists of two double precision floating-
point numbers, one for the real part and the other for the
imaginary part. The characteristics of the hypercube
computer are based on nCUBE 2. The software latency is
about 164 �s for a message. The time required for
transmitting one byte through a channel is about 0.57�s.
A butterfly operation requires about 5.12 �s provided that
the value of Wi can be found in a precomputed table. If only
half of a butterfly operation is performed in a processor,
about 4.47 �s is required.

The simulation results are shown in Table 1. The
computation time and neighboring communication time
are the same for all the routing strategies and are not
changed after processor reordering mapping. Bit-reverse
communication time is the most important part in this
comparison. We can observe that the performances of those
partially adaptive routing strategies are not as good as
expected and even worse than e-cube routing. This situation
may be caused by the channel contention between the
neighboring communications and the bit-reverse commu-
nication since there is no barrier synchronization in the
program. The benefit of processor reordering mapping can
be easily observed here because the bit-reverse commu-
nication time is greatly reduced.
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Fig. 8. Flow chart of a 16-point FFT.



Table 2 shows the speedup after applying the processor
reordering mapping. The ideal speedup of the bit-reverse
communication time is 2�n=2ÿ1� for an n-dimensional hyper-
cube because the degree of contention is decreased from
2�n=2ÿ1� to 1. However, the speedup in the simulation result
is smaller than the ideal speedup due to the effect of the
software latency. When the number of data points m is
small, the software latency dominates the communication
time. Hence, the performance improvement is not evident.
As m increases, the message size also increases, and the
effect of channel contention becomes more critical for the
communication time. Therefore, the performance improve-
ment of processor mapping becomes more significant as m
increases. From Table 2, it can be observed that the speedup
of the bit-reverse communication time reaches 6.43 for
m � 214. The overall execution time is about 41 percent
faster after by applying processor mapping.

7 CONCLUSIONS

In this paper, we address the problem of minimizing the
maximum number of paths contending for the same
channel when performing LCC on e-cube wormhole-routed
hypercubes. A new approach, called processor reordering
mapping, is proposed to solve this problem. We have
proved that, for any LCC, there exists a reordering mapping
such that the new communication after processor reorder-
ing has minimum channel contention. An O�n3� algorithm
is proposed to find such a mapping for an n-dimensional
hypercube. As for a set of LCCs, an algorithm based on

dynamic programming is proposed to search for an optimal

reordering mapping. It can greatly reduce the search space

and thus is feasible even for a large hypercube computer.

Simulation results clearly show significant performance

improvement provided by the proposed approach when

compared with partially adaptive routing strategies. With

these results, compiler techniques can be used to reduce the

message latency without the need of extra hardware costs.
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