
A Tree-Structured Persistence Server for Data Management of
Collaborative Applications

Chien-Min Wang, Hsi-Min Chen, Gen-Cher Lee, Shun-Te Wang, and Shyn-Fong Hong
Institute of Information Science, Academia Sinica

NanKang, Taipei, Taiwan
Email: {cmwang, seeme, gc, wangsd, fong}@iis.sinica.edu.tw

Abstract

The persistence problem of collaborative applications
is an essential issue in the research of computer-
supported collaborative work. A collaborative computing
environment requires a simple and transparent
persistence middleware to deal with complex data
accesses. Therefore, in this paper, we propose a data
persistence mechanism and implement a persistence
server, called Tree-Structured Persistence Server (TSPS),
to support the data management for collaborative
applications. The TSPS allows states of collaborative
applications to be stored in a tree fashion beside tables.
By introducing TSPS, the problems of collaborative
applications, such as persistence data access,
asynchronous collaboration, latecomer, version control,
etc., can be solved easily. The TSPS was originally
developed to serve as a persistence layer to support a
project of computer-supported collaborative work. We
intend to develop our persistence mechanism for
universal use so that it can be applied in more application
areas.

1. Introduction

As the need for applications capable of working
collaboratively has increased, more and more researchers
have devoted their attentions to the development of
Computer-Supported Cooperative Work (CSCW).
However, persistence issues of collaborative applications
for CSCW have not been given enough attention [1]. The
problems of collaborative applications, such as
persistence data access, asynchronous collaboration,
latecomer, version control, etc., can be solved easily, if
the persistence techniques can support CSCW properly.
Consequently, we propose a persistence mechanism to
deal with the data persistence problem in CSCW.

Depending on temporal dimensions, CSCW
applications are classified into two broad categories,
synchronous and asynchronous collaborations. Where
users are separated geographically, they can find a
common time to meet in through synchronous
collaboration. On the other hand, users might not be able

to work simultaneously because of different time zones, or
different domain knowledge. Asynchronous collaboration
allows these users to cooperate when temporally separated.
In order to integrate synchronous and asynchronous
collaborations, collaborative persistence techniques are
necessary, as they can bridge the gap between these two
kinds of collaborations.

For CSCW applications, the primitive functionality of
data persistence is to save and restore their run-time states.
On the other hand, we usually utilize version control tools
to keep track of the changed records of applications that
we develop. The developers of CSCW applications might
like to archive application states in a tree-structured
manner to keep changes rather than overriding them.

The above observations led us to develop a data
persistence implement. We derived a persistence
mechanism and implemented a Tree-Structured
Persistence Server (TSPS) helping users to access
persistent data transparently and simply. We expect that it
can be applied in other application areas in addition to
CSCW, so we develop it for universal use. This paper
primarily describes our proposed mechanism and its
implementation for managing persistence data of
collaborative applications.

2. Background

2.1 ShareTone Project

TSPS was originally developed as a persistence
middleware to support a CSCW project, called ShareTone
[2]. The ShareTone project is a Java-based collaborative
computing platform in which dispersed users can work
together. The term "collaborative" means that when one
member of a cooperative group changes some states of
operated objects in his/her collaborative application, the
other members will see the same changed effect in their
applications simultaneously, i.e. What You See Is What I
see (WYSIWIS) [3]. By using ShareTone, the component
developers can tailor standard JavaBeans components, or
write their own beans with some extra codes, to make
these beans capable of working collaboratively. The
application developers can use these collaborative beans

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

to assemble collaborative applications, such as
collaborative whiteboards, collaborative editors, chat
rooms, etc., on the top of the ShareTone platform. Users
can, therefore, use these collaborative applications to
work cooperatively.

2.2 Features of Persistence Data

Before developing TSPS, we elicit the data persistence
requirements from ShareTone project initially. The
fundamental need is a persistence store that allows
collaborative applications to store and retrieve their states.
Besides, there are several features, e.g. session,
checkpoint, undo and redo, latecomer, versioning, and
query, those TSPS needs to support for collaborative
applications. Figure 1 shows the layered model of the
collaborative computing environment.

Collaborative
Coordinator

Collaborative
Coordinator

Collaborative
Application

Collaborative
Application

Session State Version

Data Store

Application Layer

Collaboration Layer

Persistence Layer

Underlying Database

Collaborative
Coordinator

Collaborative
Coordinator

Collaborative
Application

Collaborative
Application

Session State Version

Data Store

Collaborative
Coordinator

Collaborative
Coordinator

Collaborative
Application

Collaborative
Application

Session State Version

Data Store

Application Layer

Collaboration Layer

Persistence Layer

Underlying Database

Figure 1. A collaborative computing environment mode

2.3 Related Work

There are a number of persistence mechanisms, including
implementations and specifications, are proposed to deal
with data or object persistence in various fields. JDBC,
EJB [4] and JDO[5] are data/object persistence
techniques used in various levels of persistence data for
different requirements. Since these have their own
advantages in different applications and domains,
developers can choose a suitable one according to the
persistence context. However, the limitations of these
techniques, such as encapsulated granularity, code
intrusions, and overheads, make them unable to meet the
persistence requirements of collaborative applications
properly. The lack of persistence supports of these
techniques leads us to develop a persistence mechanism
and its implementation, which realizes the features
mentioned above.

3. Design Choices

We consider design choices in advance of developing the
TSPS. There are two significant issues to be addressed.
First, we must appraise what kind of object serialization
techniques is proper for the persistence server. Second,
since application states must be stored in a database, we

have to choose an appropriate database for the persistence
server.

Java Object Serialization is the process of marshaling
a run-time object state into a sequence of bytes or a form
of text, as well as the process of recovering serialized
bytes or a text into a live object at some future time. There
are three main serialization mechanisms: Java
Serialization API, Java Long-Term Persistence [6], and
some native persistence techniques [7], which are
intended to deal with object serialization problems. After
considering these three mechanisms, we decide to use
Java Serialization API. Although its data size is larger,
the information of a serialized object captured in this
manner is more complete than the others.

We also studied the features of back-end databases in
detail to assess its suitability. The chosen database has to
satisfy the needs of sessions, versions, and query from the
previous features. Candidates include three popular types
of database: Relational Database, Object-Oriented
Database [8] and Native XML Database [9]. We decided
to use Native XML Database (NXD) as our back-end
database. NXD is a lightweight database that consumes
fewer resources than other systems.

4. Architecture of the Tree-Structured
Persistence Server

The TSPS was originally developed to manage persistence
data of computer-supported collaborative work. The tree-
structured means that the persistent data of collaborative
applications can be stored in a tree fashion. The
architecture of TSPS consists of eight components as
shown in Figure 2. In the following, we will take a
detailed look at these components.

Native XML Database

Collaborative
Application

TSPS Driver

Collaborative
Application

TSPS Driver

Collaborative
Application

TSPS Driver

Collaborative
Application

TSPS Driver

Collaborative
Application

TSPS Driver

Collaborative
Application

TSPS Driver

TSPS Skeleton

Project
Registry
Handler

Session
Handler

Version
Handler

Session
Handler

Version
Handler

State
Handler

Collaboration
Handler

Query
Handler

Database Accessor

Tree-Structured Persistence Server

Figure 2. Architecture of the TSPS

(1) TSPS Driver: is a client-side proxy that connects to
the server over the Internet. To provide client-side
developers with consistent interfaces, we intend to
implement the driver simply and flexibly. As a result,
we developed the TSPS driver by referring to design

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

patterns [10]. Consequently, developers can request
services according to the demand of communication
technologies.

(2) Project Registry Handler: stores project information
of collaborative applications. After registration, other
participants can look collaboration projects up from
the handler and choose a desired one to join. Through
the project registry handler, collaboration project
information can be archived permanently. The project
registry handler keeps a list of projects including
created, working, and closed ones.

(3) State Handler: facilitates the access of application
states. When a user joins a session, he/she can save
persistent objects into the server while filling out
associated information in the header for identification.
With header information, users can understand the
contexts of persistent objects and retrieve them from
the server. Storing application states sequentially in
each persistence session forms a state tree as shown in
Figure 3. A developer who wants to build an
application can set checkpoints in every development
step by storing states. Sometimes the developer, who
might like to undo the effect of the current operations,
can recover a preceding state of a corresponding
checkpoint through retrieval. The developer can also
take redo actions based on state headers to retrieve
corresponding states.

Figure 3. (a) Storage of a state if the previous state is the
last one; (b) Storage of a state if the previous state is not
the last one.

(4) Version Handler: is responsible for managing
branches of a state tree. When users store a series of
states during the development and the execution of
applications, a state tree is shaped. The version
handler can arrange states in a tree structure to control
versions. Figure 3 shows an example of a state tree.
Users can traverse a state tree in each session by using
a branch browser. Each session has an Indicator to
denote the current work state and show the
corresponding branch. Through the branch browser,
users can set an Indicator that specifies the current
work state and branch.

(5) Collaboration Handler: is responsible for the
concurrency control when multiple users access the
same persistence data simultaneously. It is essential for
collaborative applications to provide concurrency
control mechanisms that help users avoid conflicts

when manipulating the same object. As collaborative
applications, TSPS suffers the same problem. The
collaboration handler provides an object-based floor
control to overcome the problem of concurrency
access. It allows users to bind resources with a floor by
themselves. Before accessing these resources, users
have to request and gain the access right of the
associate floor from the collaboration handler. Users
without the access right cannot perform the saving or
retrieving action on these resources. Through this way,
we can prevent access conflicts in TSPS. Figure 4
shows the collaboration behavior in TSPS. When
member A got a floor saves the current state into TSPS,
the save action is executed in the local but the actions,
such as updating state tree structure, setting current
indicator, setting current branch, etc., are designed to
be broadcasted as shown in Figure 4(a). Retrieval
action is similar to saving. The difference is that TSPS
has to restore retrieved state to each collaborative
application as shown in Figure 4(b).

Figure 4. The collaboration behavior of TSPS

(6) Query Handler: deals with queries related to sessions,
states, and branches in the TSPS. Through it, users can
find appropriate sessions, states, and branches.

(7) Database Accessor: is responsible for constructing
connections between the TSPS and the back-end
database, i.e. NXD, and providing other components
with interfaces to access the database. The database
accessor wraps up the database so that components,
like the session handler and the state handler, can
access persistent data transparently. Because of the
database accessor, we can utilize various NXD.

5. Application Examples

In this section, we illustrate applications of archiving Java
run-time states by employing the TSPS. The application is
the ShareTone Composer as shown in Figure 5. It is built
on the ShareTone platform and an integrated development
environment for developing collaborative applications in
Java. The ShareTone Composer carries a TSPS driver so
that it can access services. Developers can save the
development states as checkpoints. The saved states

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

logically form a flow from which developers can traverse
to undo and redo manipulated actions. An application can
be recovered from a previous state by using the state
query.

Figure 5. ShareTone Composer

The second application is ShareTone CoEditor, as
shown in Figure 6, which allows separate users to edit
different paragraphs simultaneously in the same article.
Each user has his/her own cursor, called a telepointer, to
tell others where they are in the article. This helps to
avoid conflict. Each user also has his/her own color to
distinguish the words they marked. As with the ShareTone
Composer, the ShareTone CoEditor integrates our TSPS
driver and thereby access persistence services.

Figure 6. ShareTone CoEditor

6. Conclusions and Future Work

A collaborative computing environment requires a simple
and transparent persistence mechanism to deal with
complex data access. In this paper, we proposed a tree-
structured persistence mechanism and implemented it to
support collaborative applications to manage persistence
objects. The implemented TSPS is a light-weight

management system for persistence objects. It serves as a
persistence layer by which the front-end application can
manage its persistence objects. The TSPS provides three
kinds of services, i.e. session service, state service, and
version service. The session service can manage created
sessions, the state service can store and retrieve persistent
objects into/from the store and the version service can
create various versions of applications by committing
application states in branches. The TSPS is not only
suitable for CSCW applications, but it is developed for
universal use so that it can be applied in several
application areas. In the near future, our research efforts
will focus on caching and transaction mechanisms.

Acknowledgements

This work was supported in part by National Science
Council under Contract Nos. NSC92-2213-E-001-015 and
NSC93-2213-E-001-008.

References

 [1] J. A. Mariani, and T. Rodden, “The Impact of CSCW
on Database Technology,” in proceedings of IFIP
International Workshop on CSCW, Berlin, Germany,
(1991) 146-161.

[2] ShareTone, available at http://www.sharetone.org
[3] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D.

Tatar, “WYSIWIS Revised: Early Experiences with
Multiuser Interfaces,” ACM Transactions on Office
Information Systems, Vol. 5. No. 2, (1987) 147-167.

[4] Richard Monson-Haefel, Enterprise JavaBeans,
O'Reilly, Oct. 2001.

[5] David Jordan, and Craig Russell, Java Data Objects,
O'Reilly, April 2003.

[6] Philip Milne and Kathy Walrath, “Long-Term
Persistence for JavaBeans,” Available at
http://java.sun.com/products/jfc/tsc/articles/persistence

[7] JOX: Java Objects in XML, available at
http://www.wutka.com/jox.html

[8] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D.
Maier, and S. Zdonik, “The Object-Oriented Database
System Manifesto,” in proceedings of the First
International Conference on Deductive and Object-
Oriented Databases, Kyoto, Japan (1989) 223-40.

[9] Wolfgang Meier, “eXist: An Open Source Native
XML Database,” Web, Web-Services, and Database
Systems. NODe 2002 Web- and Database-Related
Workshops, Erfurt, Germany, October 2002

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, Massachusetts
(1994)

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

