
Class Exerciser: a Basic CASE Tool for Object-Oriented Development 

Chien-Min Wang and Y. S. Kuo 
Software Methodology Lab., Institute of Information Science, Academia Sinica 

Taipei, Taiwan, ROC 

Abstract 

Given a set of classes as input, a class exerciser, with its 
easy-to-use graphical user interface, allows users to 
create objects for the given classes, invoke methods on 
specifled objects and examine the contents of objects 
interactively. In other words, one can use a class 
exerciser to exercise and assess the various functions of 
classes conveniently. The class exerciser has m a q  
applications in object-oriented software development. In 
particular, it can be used as a tool for demonstration, 
testing and maintenance all together. We also describe 
our design and implementation of a class exerciser, 
Runclass, for the programming language C++. 

1. Introduction 

Object-oriented programming offers a number of 
novel features, such as abstraction, encapsulation, 
inheritance and polymorphism [GR][Mey]. It has emerged 
as one of the most important software development 
paradigms. Just as any other software development 
paradigms, object-oriented programming demands a 
powerful CASE (computer-aided software engineering) 
environment in support of software development and 
maintenance [You]. Then, what CASE tools are required 
for object-oriented software development and 
maintenance? A simple answer to this is to build, for each 
traditional CASE tool, an object-oriented counterpart. For 
instance, while there are design (analysis) tools supporting 
structured design (analysis), there should be design 
(analysis) tools built to support object-oriented design 
(analysis). Most CASE vendors are taking this approach. 
However, is this approach adequate? Does object-oriented 
programming demand any special CASE tools on its own 
behalf? This has motivated our exploration of new CASE 
tools for object-oriented development particularly. 

In object-oriented programming, a class is a template 
that describes the behavior of a set of objects. It is the unit 
for abstraction and encapsulation. An object-oriented 
application is naturally decomposed into a collection of 
classes. Thus, the class can serve as a natural unit for 
software reuse. In fact, object-oriented development is 
characterized by the development and use of a large set of 

reusable classes, referred to as class libraries [GR][Boo]. 
Current object-oriented CASE environments facilitate 
software reuse by providing tools to inspect and access 
class libraries [Gol]. Using these CASE tools, one can 
easily locate desired classes and retrieve information of 
interest. However, on the other hand, invocation of classes 
(including instantiation of objects from classes and 
invocation of methods on objects) can only be made in the 
form of traditional programming. In other words, one has 
to write an application program in order to invoke a class, 
in general. (Other means of programming, such as visual 
programming and 4GL, are still restricted to special 
cases.) This is fine if the application program really wants 
to use the class. However, there are many other situations 
where people just want to invoke a class independent of 
any specific application. As an example, one may want to 
invoke a class to see what it does in the following cases. 
In one case, the class was developed by a software vendor, 
but its specification is not thoroughly described in the 
manual. (This seems the usual case.) One wants to find 
out what the class does on some undocumented input 
conditions. In another case, the class was newly 
developed. Invocation of the class provides a way to 
verify its correctness. For all such cases, an interactive, 
easy-to-use environment for ‘ I  exercising” classes appears 
more convenient than the traditional edit-and-run 
programming environment. To meet this requirement, we 
have thus developed a new CASE tool, the class exerciser. 

Given a set of classes as input, a class exerciser allows 
users to create objects for the given classes, execute 
methods on specified objects and examine the contents of 
objects interactively. In other words, a class exerciser 
allows users to exercise the various functions of classes 
and see the results. By preparsing the declarations of 
classes, a class exerciser can present an easy-to-use 
graphical user interface to users with class names and 
method names displayed on the workstation screen. Users 
can then select desired classes and methods with a 
pointing device without memorizing the names. A class 
exerciser is also responsible for the management of 
objects. Whenever an object is created, a user-specified 
name is associated with the object. For users’ 
convenience, objects are grouped according to classes. 
Like class names and method names, object names are 

108 
0-8186-7171495 $04.00 0 1995 IEEE 



displayed on the screen for easy selection by users. With 
all these features, a class exerciser will then appear as a 
specialized environment for easy exercising of classes. 

CASE tools normally fall within two categories [FM]: 
Vertical tools serve for one specific software-process 
stage, e.g. design tools. Horizontal tools are used 
throughout the entire software process, e.g. project 
management tools. The class exerciser does not fit into 
this classification. It is a general tool useful for the back- 
end process stages, including programming, testing and 
maintenance, all together. A class exerciser can vividly 
demonstrate to users (programmers, in this case) the 
functions of classes. Thus it can serve as a programming 
aid, supplementing manuals for class libraries. With its 
ability of executing methods on objects and exhibiting 
execution results, a class exerciser can be used as a testing 
tool for unit-test of classes. A class exerciser can help 
users understand the behavior of previously developed 
classes. Thus it can serve as a vital tool for object-oriented 
software maintenance. With all these applications, we will 
thus treat a class exerciser as a basic CASE tool 
indispensable to object-oriented development. 

This paper is organized as follows: In the next section, 
some related tools and systems are reviewed. In Section 3, 
we deliberate on some possible applications of the class 
exerciser. Then, in Sections 4 and 5, we describe our 
design and implementation of a prototype class exerciser, 
Runclass, for the programming language C++ [Str]. Even 
though being a prototype, RunClass is fairly real with its 
capability of handling the complex constructs of C++. 
Finally, we will make some concluding remarks in the last 
section. 

2. Related Work 

In this section, we distinguish the class exerciser from 
other related tools or systems. 

A widely-used CASE tool for object-oriented 
development particularly is the class browser [Gol]. A 
class browser exhibits the inheritance relationships among 
classes, which are static in nature. In contrast, a class 
exerciser demonstrates the run-time behavior of classes. 
The class exerciser and the class browser are 
complementary to each other. In a good CASE 
environment, users should be given the freedom and ease 
to switch between seeing the static class hierarchies and 
seeing the run-time behavior of classes. 

A class exerciser possesses some characteristics of an 
interpreter. Like an interpreter for an object-oriented 
programming language, a class exerciser accepts 
messages as input and executes associate methods in 
response to input messages. However, there are two 
fundamental differences: On the one hand, a class 

exerciser does not possess the full capacity of an 
interpreter, e.g. it does not allow users to define new 
classes at run-time. In fact, a class exerciser can be treated 
as a specialized interpreter with limited scope. Just 
targeting for a specialized application domain, a class 
exerciser can provide users with II customized, easy-to-use 
graphical user interface while a conventional interpreter is 
so general that it must accept text commands as input and 
sacrifice ease of use. On the other hand, while using a 
class exerciser to invoke methods in a given class, the 
given class was precompiled rather than being interpreted 
by the class exerciser. This has the following advantages 
over complete interpretation: First, execution of the class 
exerciser does not require the given class's complete 
source code, but just the declaration part of the source 
code. This i s  very important considering that the given 
class may be developed by a software vendor so that its 
executable source code is not available. Second, 
compilation is more efficient than interpretation. Third, 
when the given class is, later on, used by an application 
program, it is compiled rather than interpreted (for 
languages such as C++). Only by invoking the compiled 
code can the class exerciser dernonstrate true invocation 
of the input class. 

An automated test driver[Mye][Pan] is a generic test 
program that feeds test-case inputs to a module-under-test. 
A class exerciser can be deemed as a special automated 
test driver built for testing classes particularly. An 
automated test driver typically supports a script language 
for describing test cases and test procedures while a class 
exerciser accepts test-case inputs in interactive mode. 
Some automated test drivers can verify the results of test 
cases while a class exerciser relies on the user to verify 
the test results. The importance of an automated test driver 
for classes has been recognized in the area of object- 
oriented testing [DF][SR]. TOBAC [SN] is a test 
management environment for Simalltalk programs which 
includes a test execution tool like Runclass. 

3. Possible Applications of the Class 
Exerciser 

A class exerciser has many possilble applications in object- 
oriented development. In particular, one can use a class 
exerciser for demonstration, testing and maintenance all 
together. 

3.1 Class Exerciser as a Demonstration Tool 

As object-oriented programming gets popular, many 
software vendors provide a wide variety of class libraries 
for distribution in the public. However, the current 

109 



situation appears that there have been more class libraries 
built, yet less in wide distribution. One of the reasons for 
these class libraries being not in wide distribution resides 
in the lack of tools for demonstration of class libraries. 
Traditionally, software vendors provide programming 
manuals and on-line help for exposition of a software 
library. These text-based documents tend to be too boring, 
insufficient, and sometimes even misleading. Some 
vendors thus provide special application programs for 
demonstration of their products. However, since these 
demonstration programs are customized for specific 
libraries, it is extremely costly for software vendors to 
build a full set of demonstration programs for all their 
class libraries. Furthermore, these vendors’ demonstration 
programs are apt to demonstrate the overall functionality 
of a class library, whereas the class exerciser, being 
generic for any class library, is able to demonstrate the 
individual methods of each class separately. 

Runclass, the class exerciser developed in our lab., 
allows users to create ob-jects for input classes, invoke 
methods on specified objects, and examine the contents of 
objects interactively. In other words, with its well- 
designed graphical user interface, RunCIass can make a 
vivid demonstration of the various functions of the input 
classes under users’ command. Playing with such a vivid 
demonstration is apparently more a fun than reading text- 
based documentation. Moreover, by invoking methods 
from RunClass with suitable parameters, one can easily 
find out what a class does under some undocumented 
conditions. With these features, a class exerciser can thus 
serve as a useful supplement to text-based documentation 
for class libraries. 

From the viewpoint of a library developer, a class 
exerciser can act as a demonstration tool. On the other 
hand, from the viewpoint of a (potential) user of a class 
library, a class exerciser can act as an assessment tool. By 
exercising the various functions of classes, one can assess 
the functionality and usefulness of a class library. As 
project supervisors, the authors have used RunClass to 
assess some class libraries under development in our lab. 
Like most other project leaders, we are too busy to do 
extensive programming work. The class exerciser’s easy- 
to-use, nonprogramming environment has help us a lot in 
monitoring our projects. 

3.2 Class Exerciser as a Testing Tool 

In  traditional procedure-oriented software 
development, unit test is centered on testing stand-alone 
modules like subprograms or functions. While in an 
object-oriented system, the natural unit for testing is a 
class [DF][SR][HSS]. However, testing a class is more 
complex than testing a traditional function or subprogram 

since the methods in a class can interact with one another. 
Since a class simply defines the behavior of objects, 

the only way to observe the operation of a class is to 
create an instance (a run-time object) from the class, carry 
out the methods specified within the class on the object, 
and then observe the state change of the object. As a 
consequence, research works on class testing have, more 
or less, yielded a similar test framework [DF][SR][SN] 
even though they may adopt different test design 
strategies. The central part of the framework is a class- 
based test driver which interprets test-case input 
commands, and carries out ob-ject creation, method 
execution, etc., in response to input commands. A class 
exerciser, such as Runclass, can create user-defined 
objects, execute methods on specified objects, and allow 
users to inspect the contents of objects. All these features 
of a class exerciser have made it an appropriate class- 
based test driver. 

The class exerciser differs from most other class-based 
test drivers (the traditional discipline of testing) in that it 
operates in interactive mode and does not support a script 
language for describing test cases. The justification for 
this lies in that unit testing of a class is normally done by 
the class developer rather than a specialized test engineer, 
mainly due to costs [Jac]. Providing a class developer with 
a flexible, easy-to-use test execution tool appears more 
practical than expecting him to learn a special script 
language and follow some disciplined test design methods. 
The lack of support of a script language for a class 
exerciser can be complemented by a capture and replay 
function. (Describing test cases with a script language 
facilitates retention of test cases for later replay.) For the 
class exerciser, Runclass, the entire interaction process 
with the user can be captured for replay in a later time. 
This allows users to retain old test cases. As the class- 
under-test evolves, the retained test cases can be used for 
regression testing. 

3.3 Class Exerciser as a Maintenance Tool 

Maintenance typically costs more than 70 percent of 
the total software life cycle. The object-oriented 
paradigm, despite of its promise for quality and 
productivity, would not let all maintenance problems go 
away [WMH]. Software maintenance requires 
understanding of previously developed programs. It was 
once reported that understanding occupies more than 50 
percent of maintenance cost [FH]. A number of reverse 
engineering tools [Oma] have been built to help 
understand previously developed programs. The majority 
of these tools analyze a program’ s source code statically 
in an effort to create some more abstract representations 
of the program, thus are referred to as static reverse 

110 



engineering tools. Pressman has pointed out the 
importance of dynamic reverse engineering tools even 
though they are still relatively rare [Pre]. 

A class exerciser allows users to execute separate 
pieces of an object-oriented program, and inspect the 
outcome of the execution. This helps users collect run- 
time information and accumulate knowledge about the 
program. Thus, the class exerciser can act as a dynamic 
reverse engineering tool. Brooks [Bro] described a 
complete knowledge about a program as a succession of 
knowledge domains that bridge between the problem 
being solved and the program in execution. He also 
pointed out that a hypothesis-and-verify process is used by 
a programmer to reconstruct these domains when they 
seek to understand a program. Just as a class exerciser can 
act as a test tool for verifying execution results, it can be 
used for verifying hypotheses made about a program. 
This also appears as the best way for a maintainer to 
reconstruct his knowledge domain about the program in 
execution. In fact, it is well-known that verifying is an 
important ingredient of understanding. 

Zvegintzov [Zve] has drawn an analogy between 
software understanding and assembling a jigsaw puzzle. 
While understanding an object-oriented system, the 
classes correspond to the pieces of the puzzle. A puzzle is 
not completed in a big bang; rather, it is assembled piece 
by piece. A class exerciser allows a maintainer to work 
out a program class by class. If, eventually, it can be 
proven that maintaining object-oriented software is easier 
than maintaining traditional software, the natural class 
structures of object-oriented software must be the key. 
The class exerciser allows users to fully exploit the class 
structures. 

Software reuse and software maintenance have much 
in common [Hal]. In particular, understanding how a 
previously built program works is essential for both 
software reuse and software maintenance [Sta][BR]. Just 
as it can be used for software maintenance, the class 
exerciser is also useful for software reuse. 

4. RunClass --- A Class Exerciser for C++ 

In this section, we describe a class exerciser, 
Runclass, for the C++ programming language [Str]. 
Runclass, driven by interactive users, can create objects at 
run-time, execute class operations on objects, and display 
the contents of objects. It provides a friendly graphical 
user interface so that its users can try any sequence of 
operations conveniently. RunClass is also capable of 
capturing operations into a log file and replaying these 
operations later by reading the log file back. With this 
ability, RunClass is suitable for use as a demonstration, 
testing or maintenance tool. Its major features are 
summarized as follows: 

RunClass is a generic tool, being able to take any C++ 
class as input. 
No extra learning or programming effort is required 
for users. RunClass uses C++ header files as input. 
It provides an easy-to-use graphical user interface. 
RunClass can handle not only object-oriented 
constructs, such as class and method, but also other 
non-object-oriented constructs of C++, such as 
function, built-in types (including pointer and array), 
enum, struct, typedef and template, etc. 
Allow users to create and destroy objects at run-time. 
Allow users to invoke methods and functions in 
arbitrary order at run-time. 
Manipulate type conversion and argument matching 
automatically. 
Allow users to apply methods to and display the 
contents of sub-objects. 
Support the ability to capture operations into a log file 
and to replay these captured operations. 
The first challenge the authors faced in developing 

RunClass is to make it generic. The C++ programming 
language is strong-typed so that every class or function 
must be declared before their use. Since the class exerciser 
will invoke the compiled code of the classes or functions 
to be exercised, it must know these classes or functions 
before its execution. This is impossible if the class 
exerciser is a single executable module. To overcome this 
problem, RunClass is composed of two parts: the exerciser 
and the exerciser generator as shown in Fig. 1 .  The 
exerciser is what really interacts with the users while the 
exerciser generator is a preprocessor that parses C++ 
header files and generates code for inclusion in the 
exerciser. Because the header files come directly from the 
class libraries, this approach has the advantage that there 
is no extra learning or programmiing effort for the users. 

uslator It 
Exerciser Generator Exerciser 

Figure I The Components of RunCluss 

111 



A crucial decision in the design of the exerciser is the 
differentiation of those modules that are generic from 
those modules that must be generated by the exerciser 
generator. Our principle is to minimize the code to be 
generated, i.e. minimize the coupling between the 
exerciser and the exerciser generator. After some thought 
and trial, those modules that must be generated by the 
exerciser generator are identified. These modules are 
designated as the command server because most of them 
are used for executing methods or functions. Another 
consideration in the design of the exerciser is its 
portability over different platforms. Our solution is to 
cluster those input/output modules into an interface 
manager, which is not portable. The rest of the exerciser is 
referred to as the command manager. A clean 
programming interface is defined to separate the 
command manager from the interface manager. 
Accordingly, the class exerciser is further divided into the 
following three components: 

. 
File Class Object C-H 

Module Module Module Module 

The interface manager, which communicates with the 
users and controls the progress of the exercising 
process. It accepts commands from the users or log 
files and calls the command manager to accomplish 
these commands. 
The command manager, which interprets and executes 
user commands. Its main tasks include the 
management of information about files, classes, and 
objects; the support of built-in types and functions; the 
manipulation of argument matching; and the 
interpretation of commands from the interface 
manager. The command manager may call the 
command server for method execution. 
The command server, containing code relevant to the 
classes declared in the input header files. Its main 
tasks include the creation and destroy of objects, the 
invocation of methods of classes with actual 
arguments, type conversion for arguments and the 
assignment of objects. The command server may call 
the actual member functions of classes or access'the 
data members of objects to complete its tasks. 
Note that both the interface manager and the command 

Command 
Maoager 

manager are independent of the classes declared in the 
input header files, i.e. they are generic modules. Only the 
command server depends on the classes to be exercised 
and needs to be generated by the exerciser generator. 

The exerciser generator is further divided into two 
parts: the front end and the translator. The front end takes 
C++ header files as input and extracts from the header 
files such information as the names of member functions 
in each class, their parameters, and their types, etc. The 
information is then passed to the translator. The translator 
takes the information extracted by the front end as input 
and generates the command server modules which are 

then compiled and linked with the generic modules of the 
exerciser to make the executable code. 

5. Implementation of RunClass 

We have successfully made a prototype implementation of 
Runclass. This section describes some of the 
implementation details, and point out a few less obvious 
problems in actually getting it to work. In particular, we 
shall concentrate on the implementation of the exerciser. 
Fig. 2 shows the structure of the exerciser. 

USCI 

I 

Graphic User Interface Module 
Interface 
Manager 

. C o m d  Interface Module 

dl C o m d  Server 

I Classes To Be Exercised I 

Figure 2: The Structure of RunCLass 

5.1 The Interface Manager 

Each module in the interface manager is in charge of a 
certain type of command sources. As shown in Fig. 2 ,  the 
interface manager currently contains two modules: the 
graphical user interface (GUI) module and the replay 
module. The graphical user interface module deals with 
commands from interactive users. The replay module 
deals with commands from log files. With this approach, 
we can take charge of new types of command sources 
easily by adding more modules to the interface manager. 
For example, we may have a new module dealing with 
commands from a pipe coming from some test design 
tools in the future. 

The graphical user interface module is currently 
implemented on the X-window system. With the graphical 
user interface, manipulation of information on files, 
classes, functions, objects, methods, and arguments 
becomes quite easy and convenient. It also allows users to 
exercise and inspect pointers, arrays, complex objects and 
sub-objects. Let's take some examples. Figs. 3 to 5 show 

112 



three of the menus of the graphical user interface. The 
first one is the main menu that displays the files, classes 
and functions declared in the header files. The buttons on 
the right-hand side of the main menu allow users to 
control the exercising process. For example, clicking on 
the button labeled "Method Execute" will pop up the menu 
in Fig. 4, which allows users to execute member functions 
of classes. As another example, clicking on the button 
labeled "Object Lookup" will pop up the menu in Fig. 5, 
which displays the contents of objects. Users can exercise 
the various functions of classes simply by clicking the 
buttons on the screen. 

.. I 

Figure 3. The Main Menu 

Figure 4. Menu For Method Execution 

An important feature of the class exerciser is its ability 
to capture the user operations into a log file and to replay 
the process automatically in a later time. The replay 
module of the interface manager carries out the replay 
function by reading back and interpreting the operations 
captured on the log file. It then calls the command 
manager to accomplish the task as usual. On the other 
hand, the capture function is not carried out by the 
interface manager; it is carried out by the command 
manager, instead, which will be discussed later. 

We have carefully designed the exerciser so that the 
interface manager and the command manager interacts 
through a clean interface. This will enable us to develop 
different user interfaces for the exerciser while keeping 
the command manager and the command server 
unchanged. This property is also desired while porting the 
class exerciser to different platforms. 

I 

Figure 5. Menu for Object Lookup 

5.2 Command Manager 

As shown in Fig. 2, the command manager contains 
five modules: the command interface module, the file 
managing module, the class managing module, the object 
managing module, and the C++ supporting module. The 
command interface module is a set of routines to be called 
by the interface manager. Through calls to these routines, 
the interface manager requests the command manager to 
accomplish user commands. For example, a function call 
to the routine getFileNameList0 will return the name list 
of the input header files. The command interface module 
may ask other modules in the command manager to 

113 



accomplish its task. In this example, getFileNameList will 
call the file managing module to get the filename list. 
Another task carried out by the command interface 
module is the capture function mentioned before. While 
on capture mode, the routines of the command interface 
module will, in addition to the normal processing of 
commands, save the commands onto a log file. The 
capture function, implemented as part of the command 
manager rather than the interface manager, is independent 
of the multiple input sources. 

The file managing module, the class managing module 
and the object managing module are in charge of 
information about files, classes, and objects, respectively. 
For instance, the file managing module maintains a list of 
all input header files for use as in the above example. In 
addition, it also maintains, for each header file, a list of all 
classes and functions declared in the header file. Users can 
thus select classes or functions according to the header 
files where they are declared. 

Among all the modules in the exerciser, the class 
managing module plays a very important role. Its main 
function is accomplished by class ClassNode. For each 
input class, there is an associated instance of ClassNode. 
Information maintained in ClassNode includes the name, 
parents, data members and member functions of an input 
class. It also maintains dynamic information, such as the 
list of objects instantiated from that class. Access to these 
data is through public member functions as shown in the 
following class declaration. 

class ClassNode { 
public: . . . 

int getClassName0; 
int getparentlist(); 
int getDataMemberList0; 
int getMemberFunctionList(); 
int getobjectlist(); 
virtual int getObjectContents0; 
virtual int executeConstructor(); 
virtual int executeDestructor(); 
virtual int executeMemberFunction(); 

1; 
Besides, ClassNode is also responsible for the display 

of the contents of objects and the execution of member 
functions. These operations are performed through the last 
four public virtual functions. However, it should be 
pointed out that these four functions are not generic in 
nature since they must call the actual member functions of 
the input classes. In other words, the implementation of 
these functions is different for different input classes. We 
employ inheritance and dynamic binding to overcome this 
problem. In our implementation, ClassNode is designated 
as an abstract class. For each input class, there is an 
associated class derived from ClassNode. The last four 
functions of ClassNode are redefined in the derived 

classes. Now function calls to the virtual functions of 
ClassNode will invoke the associated functions of the 
derived classes through dynamic binding. Note that both 
the class managing module and ClassNode are generic. On 
the other hand, the derived classes of ClassNode must be 
generated by the exerciser generator as part of the 
command server. The class managing module also 
manages inter-class information, such as the inheritance 
relationships among classes and conversion information 
among built-in types. 

The object managing module maintains information 
about objects, such as addresses of objects and dimensions 
and sizes of arrays. The former is used for accessing the 
actual object while the latter helps the manipulation of 
pointers and arrays. The object managing module also 
keeps data structures for finding out the class of a given 
object. In order to handle more complex expressions, the 
object managing module is equipped with a parser which 
can process such C++ expressions as *(a[2].b->c) at run- 
time. 

A critical decision in developing the object managing 
module is how to store objects. To make the object 
managing module generic, objects can not be stored in 
their original types. We thus use void pointers (void *) to 
access the actual objects. Auxiliary information, such as 
the original types of objects must be kept so that objects 
can be restored to their original types whenever necessary. 

The C++ supporting module provides several 
mechanisms in support of the C++ semantics. It performs 
semantic checks, such as checks for conversion of 
arguments and checks for assignment of objects. It also 
supports C++ built-in types and functions. These features 
make the class exerciser behave consistent with C++. 

5.3 Command Server 

As shown in Fig. 2, the command server contains four 
modules: the module for initializing the exerciser, the 
derived classes of ClassNode, the module for type 
conversion and the module for object assignment. The 
initialization module mainly sets up the static information 
about the files, classes, and objects declared in the header 
files. It is called as the exerciser starts to execute. These 
data will then be used by the file managing module, the 
class managing module, and the ob.ject managing module 
of the command manager. 

As mentioned before, the derived classes of ClassNode 
will invoke the member functions of the input classes. 
They will also access the data members of objects of the 
input classes. Now another less obvious problem arises. In 
C++, the private data members and member functions of a 
class are not accessible to any other classes. The only 
exception is for friend classes of that class. However, to 
allow users to inspect private data members and to invoke 

114 



private member functions, it is necessary for the derived 
classes of ClassNode to access the private parts of the 
input classes. The solution we adopted is to make the 
derived class associated with an input class a friend of the 
input class. To accomplish this, some friend declarations 
are inserted in the original header files. Fortunately, this 
has no other side effect. 

The type conversion module is used for converting 
objects from their original types to some desired types. 
The class managing module of the command manager will 
check whether the desired type conversion is legal or not. 
If it is legal, the type conversion module will be called to 
accomplish the conversion. This is desirable since it 
allows users to supply an actual parameter whose type is 
not exactly the same as that of the formal argument but 
can be converted. Care must be taken that type conversion 
is made between objects pointed to by void pointers (void 
*). Sometimes, temporary variables may be required in the 
conversion process. The object assignment module is used 
for performing similar conversion functions for object 
assignment. 

5.4 Handling Templates 

C++ templates are parameterized types. Since they can 
not be used to instanciate objects, templates themself are 
not dealt with by Runclass. However, if templates are 
used to instantiate template classes in the input header 
files, then the exerciser generator can generate the 
required server module for the instantiated template 
classes. As a result, the instantiated template classes can 
be handled by the exerciser as ordinary classes. 

6. Concluding Remarks 

The object-oriented paradigm has emerged as one of 
the most promising software development techniques, 
with the potential of delivering high-quality software at 
reduced cost. To fully exploit its power, the object- 
oriented paradigm demands the support of unconventional 
CASE tools. The class exerciser is a new CASE tool 
developed to satisfy this demand. 

Object-oriented programming is characterized by the 
development and use of a large number of class libraries. 
A class library differs from an application software at 
least in two fundamental points: First an application 
software can run by itself while a class library must be 
invoked by a driver program. Second, unlike an 
application software which typically accomplishes a 
single, specific function, a class library provides a large 
set of functions for use by clients. Due to these two traits 
of class libraries, it is very hard to demonstrate and assess 
the functiohality of a class library. The class exerciser is 
developed to overcome this difficulty. By including a 

generic, easy-to-use driver program, a class exerciser 
allows users to exercise and assess the various functions 
of classes. In other words, it somehow converts an 
intangible class into something which is tangible. With 
this capability, a class exerciser lhas many applications in 
object-oriented software development. In particular, it can 
be used to aid programming, testing and maintenance all 
together. Therefore, we would propose the class exerciser 
as a basic CASE tool indispenisable to object-oriented 
development. 

References 

[BR] T. Biggerstaff and C. Richter, “ Reusability Framework, 
Assessment, and Directions”. IEEE Software, March 1987. 

[Boo] G. Booch. Software Components with Ada, 

[Bro] R. Brooks, “Using a Behavior ‘Theory of Program 
Comprehension in Software Engineering”, Proc. 3rd 
International Conference on Software Engineering, 1978. 

[DF] R.-K. Doong and P. G. Frankl. ”Case Studies on Testing 
Object-Oriented Programs”, Proc. 4th Symp. on Testing, 
Analysis and Verifacation. New York, I99 1. 

Benjamin/Cummings, 1 987. 

[FH] R. K. Fieldstad and W. T. Hannlen, “Application Program 
Maintenance Study: Report to Our Respondents”, Proc. 
GUIDE 48, Philadelphia, PA, 1079. 

[FM] G. Forte and K. McCulley. CASE Outlook: Guide to 
Products and Services, CASE: Consulting Group, Lake 
Oswego, Ore., 199 I .  

[Gol] A. Goldberg, Smalltalk-80: The Interactive Programming 
Environment, Addison-Wesley, 1984. 

[GR] A. Goldberg and D. Robson, Smalltalk-80: The Language 
and its Implementation. Addison-Wesley, 1983. 

[Hal] P. A. V. Hall (ed.), Software Reuse and Reverse 

[HSS] D. Hoffman, J. Sinillie andl P. Strooper, “Automated 
Class Testing: Methods and Experience”. Proc. Asia Pacific 
Software Engineering Conf., Tokyo, Dec. 1994. 

[HC] J. W. Hooper and R. 0. Chester. Software Reuse Guide 

[lac] I .  Jacobson, M. Christerson. P. Ionsson and G. Overgaard, 
Object-Oriented Software Engineering: A Use Case Driven 
Approach, Addison-Wesley. 1992. 

[Mey] B. Meyer, Ob.ject-Oriented Software Construction, 

[Mye] G. J. Myers, The Art of Software Testing. Wiley, 1979. 

[Oma] P. Oman, ” Maintenance Tools”. IEEE Software, May 

[Pan] D. J. Panzl, ” Automatic Software Test Drivers”. IEEE 

Engineering in Practice, Chapman & Hall, 1992. 

and Methods, Plenum Press, 190 1 .  

Prentice Hall, 1988. 

1990. 

115 



Computer, Vol. 11, No. 4, April, 1978. 

approach, 3rd edition, McGraw-Hill, 1992. 
[Pre] R. S. Pressman, Software Engineering: A Practitioner’s 

[SN] E. Siepmann and A. R. Newton, “TOBAC: A Test Case 
Browser for Testing Object-Oriented Software”, Proc. Int. 
Symp. on Software Testing and Analysis, Seattle, WA, 
August 1994. 

[SRI D. Smith and D. J. Robson, “ A  Framework for Testing 
Object-Oriented Programs”, J.  of Object-Oriented 
Programming, Vol. 5 ,  No. 3, June 1992. 

[Sta] T. A. Standish, “An Essay on Software Reuse”, IEEE 
Transactions on Software Engineering, Vol. SE-IO, No. 5, 
September 1984. 

[Str] B. Stroustrups, The C++ Programming Language, 2nd 
edition, Addition-Wesley, 1991. 

[WMH] N. Wilde, P. Matthews and R. Huitt, “Maintaining 
Object-Oriented Software”, IEEE Software, Jan. 1993. 

[You] E. Yourdon, Object Oriented System Design: An 
Integrated Approach, Prentice Hall, 1994. 

[Zve] N. Zvegintzov, ‘‘ Eureka Countdown”, Datamation, April 
1982. 

116 


