
Non-Intrusive Object Introspection in C++:
Architecture and Application*

_ _ ._________ ~____ ._______ .. - ~-

Tyng-Ruey Chuang Y . S. Kuo Chien-Min Wang -
-

Institute of In€ormation Science
Academia Sinica

Nankang, Taipei 115, Taiwan
+886 2 2788 3799 ext. (1608, 1820, 1703)

{trc, yskuo, cmwang}@iis.sinica.edu.tw

ABSTRACT
We describe the design and implementation of system
architecture to support object introspection in C++.
In this system, information is collected by parsing class
declarations, and used to build a supporting environ-
ment for object introspection. Our approach is non-
intrusive because it requires no change to the original
class declarations and libraries, and it guarantees com-
patibility between objects before and after the addi-
tion of introspective capability. This is critical if one
wants to integrate third-party class libraries, which are
often supplied as black boxes and allow no modifica-
tion, into highly dynamic applications. We show two
applications: The first on automatic 1/0 support for
C++ objects, and the other on interactive exercise of
dynamically loaded C++ class libraries.

KEYWORDS
C++, Object Introspection, Software Reuse and Inte-
gration, Object-Oriented Software Development.

1 MOTIVATION

Many object-oriented programming languages, such as
CLOS [19], Java [5, lo], Objective C [18], and Smalltalk
[4], provide introspective language features that allow
the state of an object to be observed and altered by
means of a general mechanism that is equally applica-
ble to objects of all classes. In these languages, the
binding between a method and the object to be applied
with can be delayed until run-time, and the binding re-
quires no static type-checking between the object and
the method. This is often called dynamic-binding and
it makes easy the construction of applications of which
classes are dynamically loaded and executed. Several

‘This work has been supported, in part, by National Science
Council, Taiwan, under contracts NSC 85-2221-E-001-009, NSC
85-2221-E-001-010, NSC 86-2213-E-001-003, and NSC 86-2213-E
001-005.

kinds of applications need dynamic-loading of classes,
as we will show later in this paper. For now, let’s con-
sider an object-oriented development environment to be
such ,an application since it will need to compile, link,
execute, and debug class definitions on-line.

The C++ programming language does not support
object introspection [21]. It does provide Run-Time
Type Information (RTTI), a run-time class identifica-
tion mechanism, and virtual function, a mechanism for
run-time resolution of method implementation for poly-
morplhic objects. However, these mechanisms are lim-
ited in their functionality since they do not allow full
access to an object. For example, one cannot query an
object for applicable methods, nor can one gain full ac-
cess t’o data members of the object.

These problems are usually solved by using a meta
object framework, such as the System Object Model
(SOM[) from IBM [8], the Common Object Model
(COM) from Microsoft [20], or other similar framework.
Framework of this kind requires introspective objects to
belong to classes which are either derived from a root
“Obje~ t ’~ class, or the classes themselves are instances of
some meta “Class” class. This creates difficulty when
integrating existing class libraries that are developed
without using the framework. It becomes worse if the
class llibraries are provided by third-party vendors and
are supplied with no source code. Another disadvan-
tage of the above mentioned framework is that objects
with introspective capability are not compatible with
ordinary objects without the capability. For example,
the memory layout of an object is changed once intro-
spection functionality are added. It may also respond
differently to existing methods.

Our g:oal is to introduce object introspection to exist-
ing C-++ classes without intruding the original class li-
brary, including hierarchical structures of the class dec-
larations and memory layouts of the class instances. If
achieved, an object will function the same way whether
or not it is capable of introspection. Except that now in
addition we can invoke methods or access states upon
introspective objects using a general mechanism that
bypasses the C++ static type-checking rule.

\
- ___

0-8186-8368-6/98 $10.00 0 1998 IEEE
312

This paper is organized as the following. We first dis-
cuss in Section 2 background and related work in bring-
ing object introspection and reflection to C++. We
then outline the system architecture of our non-intrusive
scheme of C++ object introspection in Section 3. Sec-
tion 4 discusses important implementation issues. Sec-
tion 5 describes two applications that are developed
upon the introspective C++ environment. We then dis-
cuss the limitations of our approach in Section 6 and
conclude this paper with Section 7.

2 BACKGROUND AND RELATED WORK

In [lj], reflection is defined as the integral ability for a
program to observe or change its own code as well as-
pects of its programming language (syntax, semantics,
or implementations) at run-time. A programming lan-
guage is said to be reflective if it provides its programs
with reflection. An important concept in reflective pro-
gramming languages is reification, the process by which
aspects of an executing program are brought up using
a representation that is expressed in the language and
made available to the program. Furthermore, the reifi-
cation data are causally connected to the related rei-
fied aspects such that a modification to one of them
affects the other. Few programming languages provide
the full power of reflection since reflection is a very pow-
erful concept and its true implication often is not clear.
However, several languages, such as Lisp and Prolog, do
have limited reflective language features and are able to
treat programs as data and to evaluate reification data
at run-time.

Object introspection, in the context of object-oriented
programming languages, is the ability to observe and
change the state of an object using reflection. The con-
cept of introspection is more restricted than reflection
because it adheres to the original syntactical, seman-
tical, and implementational aspects of the source lan-
guage. It just provides a window to the object states of
the current execution of a program, and allows changes
to them by means of a general gateway to existing legit-
imate interfaces. For example, using object introspec-
tion, one can query, and execute if it exists, an object
for a particular method. However, object introspection
does not mean the ability to add new methods or modify
existing ones for a class (though such ability often can
be simulated, if with difficulty, in some introspective
languages). Therefore, object introspection maintains
the semantic integrity of a programming language but
opens up its programs for general access. Object intro-
spection allows one to construct applications that are
more dynamic, and provides avenues for integration of
diverse applications. Open implementations [ll, 131 of
class libraries, for instance, will be most natural when
using object introspection.

313

Some object packaging frameworks, most notable SOM
[3, 7, 81 and COM [20], add object introspection and re-
flection to the C++ programming language. However,
applications using these frameworks each must follow
some prescribed class hierarchy. For example, SOM re-
quires all classes with SOM capability to derive from
the SOMObject class, and COM requires all compo-
nents with COM capability to equip with the IUnkown
interface. Hence object introspection cannot be used for
applications or class libraries that are developed without
using these frameworks. We aim to provide object intro-
spection to C++ classes without requiring the classes to
be derived from or augmented with extra declarations.

There are several proposals and projects on meta object
protocols for C++, see for example [l, 6 , 91. They aim
to bring full power of reflection to C++ and often re-
quire special implementations of the C++ compiler and
run-time system (since they either add language exten-
sions or change the language semantics). We seek to de-
velop a framework of object introspection that adhere to
the semantics and implementation of C++ [14, 211 and
can be used with existing C++ compilers. Application
developers should be able to add object introspection
to their applications without requiring changes to their
existing class declarations and definitions. Nor should
they worry about the new C++ semantics and imple-
mentations altering the integrity of their applications.

3 SYSTEM ARCHITECTURE

Providing object introspection for C++ is difficult be-
cause C++ objects carry no type information during
run-time. (The only exception is the virtual function
mechanism for polymorphic objects and the associated
RTTI facility, which are limited in functionality.) A
non-intrusive object introspection facility for C++ is
even more challenging because one is not allowed to
augment the existing class declarations so that type
information will be automatically attached to each in-
stance to help introspective operations. The approach
we adopt is to define for each class a separate meta ob-
ject that completely captures information of the class
for introspection purposes. Introspective operations on
instances of the class are then conducted via going
through the corresponding meta object, which has all
the necessary information at run-time.

Before further discussion on the architecture of such an
introspective system, let’s see what a typical introspec-
tive operation in the system will look like, and compare
it to the usual C++ method invocation. Let BSTree be
a class whose instances are binary search trees of which
each non-null tree node stores a character string. Sup-
pose class BSTree provides a new constructor for build-
ing an empty tree and an insert public method for
inserting a new character string into the tree. Then the

following C++ code segment builds a new tree p and
inserts a character string "Sinica" to it.

BSTree *p = new BSTree;
p->insert ("Sinica") ;

Note that in the above program segment, at compile-
time, p is known to point to an instance of BSTree, and
the in se r t method is applicable to it.

For introspective operations, however, the binding be-
tween p (the object pointer) and BSTree (the class) may
not be available at compile-time. It may be the case that
the class declaration for BSTree is not even available at
compile-time, and that only the name of the class (a
character string "BSTree") is known at run-time. By
using our introspective environment, the same effect of
the above program segment can be achieved by the fol-
lowing.

void *p;
Klass bs t ree = getc lass ("BSTree") ;
p = bs t ree .new (1 ;

Method i n s e r t = getMethod(bstree, "insert":) ;
void* argvC1 = { "Sinica", 0 1;
bstree.invoke(p, i n s e r t , argv);

Note that the static type of p is now (void *>. The
fact that it points to an instance of class "BSTree" is
revealed only at run-time. Furthermore, the invoca-
tion of method i n s e r t upon it is via the meta object
bstree, which will contain all necessary information of
class "BSTree". (The above intrdspective code in fact
is a simplification of the actual code which is somewhat
clumsy in our current implementation.)

It is now clear that a non-intrusive introspective envi-
ronment for C++ has two parts. One is the meta object
mechanism which includes declarations of meta classes
(such as Klass and Method above) and the associ-
ated supporting libraries (implementations of ge tc lass ,
invoke and so on). The other part is the generation
of meta objects for classes in need of introspective op-
erations. The part about meta class declarations and
libraries is class-neutral and is available at application
development time. If all introspective classes are known
at application development time, then the code for con-
structing meta objects can be prepared at compile-time,
though meta objects themselves will not materialize un-
til run-time. The generation of the code to produce
meta objects can either be manual or automatic. This
situation is described in Figure 1 where each stand-alone
executable includes a self-contained introspective run-
time environment. We call applications of this kindl the
tightly-coupled ones. Object introspection here com-

plements the usual C++ data access and method invo-
cation mechanism. On the other hand, classes can be
dynamically loaded at run-time for their functionality.
In such situations, generation of the corresponding meta
objects occurs at run-time, and the generation process
has to be automatic. We call applications of this kind
the loosely-coupled ones. Here, binding between an ob-
ject and its associated class is dynamic, and introspec-
tion is the normal way of interacting with objects. See
Figure 2 for an illustration.

In both the tightly-coupled and loosely-coupled models,
the generation of meta objects will need access to the
original class declarations but must not modify them.
Also note that in both cases, applications are developed
using the original class declarations, with the addition
of the meta class declarations which are applicable to all
programs. Currently we generate the meta object code
automatically by using a parser-based analyzer that ex-
tract the needed information from application class dec-
larations.

4 IMPLEMENTATION ISSUES

As we have shown above, our design of non-intrusive
introspective environment consists of two parts. One is
the meta object mechanism which includes declarations
of meta classes and their implementations. The other
part is the automatic generation of meta objects for
classes in need of introspective operations. We discuss
in this section several important implementation issues
and the solutions we have adopted.

4.1 Meta Class Interface and Library

An application interacts with the introspective environ-
ment by using methods defined in the meta classes.
However, the interfaces for interaction often carry less
type information than what is desirable. As an example,
in Section 3 we show how to get the class information
for BSTree by passing a character string "BSTree" to
the introspective environment. A character string cer-
tainly does not say much about the class it is associated
with (except its name). Again, to access method i n s e r t
from the meta object for class BSTree, we use a charac-
ter string " inser t" as an argument. The interfaces are
typeless because they must serve requests to all kinds of
user-defined classes whose properties are not known to
the meta classes in advance. With this understanding,
we now list several issues in the implementation.

Meta classes for class and method. The meta
class for class (Klass, as shown above in Section 3)
must store the name of the class, pointers to meta
objects of its base classes, methods to get names
and memory offsets of all its data members, meth-
ods to get names and implementations of all its
member functions (i. e., getMethod), and several

314

source declarations

Compile- Time

class libraries

Link- Time

. [metaclass ,(metaobjects),! class libraries)J,
supporting libraries (one for each class)

Introspective Run-Time Environment
Stand-alone Executable

("black boxes")

Run-Time

Figure 1: The tightly-coupled model of introspective applications.

binary

1 , I I
class libraries

("black boxes") m I
/

Link-Time Script (Meta Object Generation)

// A - V

A

L

application meta class
binary

Executable (Client)

Run-Time

Figure 2: The loosely-coupled model of introspective applications.

instance conversion routines between this class and
its superclasses and subclasses. Several member
functions of class Klass are virtual because they re-
quire different implementations for different classes.
For example, getMethod is a virtual function, and
each meta object corresponding to an introspective
class will be an instance of a class derived from
Klass which actually defines the implementation
of getMethod. Again, the invoke method in class
Method is virtual as well, and each derived class
of Method defines its own implementation. Making
these methods virtual helps to reduce work when
generating code for meta objects.

Polymorphic object pointers. To correctly access
an object, the introspective environment must have
the dynamic type information of the object. How-
ever, note that all object pointers are treated as
pointers of type (void *) when interfacing with
the meta objects. Hence, a function is needed for
each class to get the dynamic class names for ob-
jects of its class. This function is stored in the meta
object of the class. Suppose we have a class B, thefi
the meta object for class B will contain a function
dynamicType(p0bj 1 defined by

v i r t u a l const char const *dynamicType
(void const *se l f) {
r e tu rn typeid(*(B *) self) .name(); 3

that returns the dynamic type name (a character
string) of its instance. Function typeid above is
from the standard C++ RTTI facility.

Base and derived classes. The content of an object
consists of its data members, and those of its bases
as well. In order to access the base’s data members,
the introspective environment has to perform a “up
cast” operation that adjusts the object pointer.
The up cast function is stored in the meta object
of the class. For example, the following function
will cast an instance of a derived class D of B to an
instance of B.

static void *fromDtoB(void const *self)
C r e tu rn (B *)(D *I self; 3

If a class has several bases (i. e., multiple inheri-
tance), then all the up cast functions will be stored
in the meta object of B. The cast functions are
stored in a table and indexed by names of the su-
perclasses.
Similarly, the following LLdown cast” routine is
stored in the meta object for B as well.

s t a t i c void *fromBtoD(void const * se l f)
{ return dynamic,cast<D*>((B*) self);]

It is used to adjust a polymorphic object pointer
with known static type (B *> to its dynamic type
(D *). The adjustment occurs, for example, af-
ter the dynamic type name t tDtt is resolved by a
call to dynamicType. All accesses to data members
pointed to by an polymorphic object pointer starts
with this adjusted pointer.

Other details. C++ provides abstract and virtual
base class. Objects of an abstract class cannot
be constructed directly, and base objects of virtual
classes share their storage. Information regarding
whether a class is abstract or virtual or not will be
recorded in its meta object. This means that the
introspective environment has to check first with
this information when performing data access or
object construction.

4.2

For

Meta Object Generation and Management

each class in need of introspective operations, the
run-time environment needs a meta object of the class.
The meta object can be constructed manually, or pro-
duced automatically from the program text where the
class is declared, We use a parser-based scanner that
produces program code from class declarations such
that, when the code is executed at run-time, will gener-
ate meta objects. Note that code generation and meta
object generation do not happen at the same time for
the tightly-coupled applications illustrated in Figure 1.
The programming language used for code generation
may not even be C++. If it uses C++, it may use
a different compiler for the one used by the application.
Hence, one must take care in generating code that will
in turn generate meta objects correctly, especially when
regarding memory layout of their instances.

Memory layout. The memory layout of an object is
calculated by employing a method that relies on a
C++ compiler’s ability to treat a suitable aligned
absolute address as the starting address of any
C++ object [16]. For example, the following code
computes the offset (in units of char) of the data
member a within an object of class .A:

off set-of -a-in-A = (char *) &(((A *> 64)->at)
- (char *) ((A *) 64)

where 64 can be any well-aligned absolute address.
Note that, in order to calculate offsets of private
members, the generator must disable access control
employed by the class. This can be done by alter-
ing the original class declaration in several ways.
One can delete all the pr iva te specifiers in the
class declaration, hence exposes all data members
to outside world. A better way is to insert a friend

3 16

function to the class declaration and gain access
to all data members without compromising access
control of the class too much [22]. The generator
inserts as a friend function an initialization routine
to the class to calculate data member offsets and
to produce a meta object for the class. Note that
this friend function will need to be compiled with
the augmented class declaration. We list additional
issues when augmenting class declarations.

Nested class declarations. If the class declarations
are nested, the initialization routine for the enclos-
ing class, though declared as a friend function, will
not be able to access data members of the enclosed
classes. (They are out of scope.) For these cases,
we have the generator inserts initialization routines
to the enclosed classes as well, and have them de-
clared as friend functions both in the enclosed and
enclosing classes.

Class templates. Since the generator analyzes only
class declarations, it cannot know how a class tem-
plate will be instantiated in a user’s program. We
require the user to give hints on how a class tem-
plate will be instantiated. As an example, in Sec-
tion 3, if BSTree is a class template, then one must
explicitly specify that BSTree will be instantiated
with type i n t , in order for the generator to produce
the meta object for class BSTree<int>.

Object compatibility. Note that we may augment a
class declaration in several ways in order for the
code generator to work. (For example, we insert
a friend function to the class declaration, and we
may add additional non-virtual member functions
for other purposes.) However, we never add data
members or virtual functions to the class declara-
tion. This ensures that objects produced by the
original class declaration and the augmented one
will always have the same memory layout, at least
for the usual C++ object model [14]. Furthermore,
the augmented class declaration is used only by the
generated code and is inaccessible otherwise to the
application developers. Developers continue to use
the original class declarations and will not aware of
the augmented copies.

5 APPLICATIONS

We describe two applications based on non-intrusive in-
trospective C++ environments. The first is a system
called Objectstream that provides automatic 1/0 sup-
port for complex C++ objects. The other is a class
exerciser called RunClass that allows interactive exe-
cution of dynamically loaded c++ class libraries. Ob-
jectStream is a system for building applications that are
tightly-coupled with their introspective classes. While

RunClass itself is a loosely-couple introspective appli-
cation. Work on Objectstream and RunClass has been
reported elsewhere, although not from the viewpoint of
object introspection 12, 231.

5.1 Objectstream

The C++ standard I/O stream library, by overloading
the << and >> operators, provides a convenient and type-.
safe interface for I/O. However, it is only applicable to
fundamental types (such as char, i n t , etc.). If one
wants to input/output objects of user-defined classes,
one either must extend the stream 1/0 library by over-
loading the << and >> operators, or define 1/0 opera-
tions as member functions of those classes. Most C++
development environments (such as the MLcrosoft Foun-
dation Classes) in use today take the latter approach.
Their input/output facilities are parts of a pre-defined
application framework. Programmers are required to
define 1/0 operations for user-defined classes by fol-
lowing some prescribed procedures - such as deriving
user-defined classes from a “persistent” base class and
redefining some virtual functions for the purpose of ob-
ject I/O. This practice takes considerable learning time..
Furthermore, programmers have to write code to con-.
struct/traverse an object’s internal structure in order
to perform 1/0 correctly. When complex objects are
involved, this can be tedious and error-]prone. By re-
quiring all user-defined classes to derive from a persis-
tent base class, it also prevents pre-built class libraries
from performing object I/O. Pre-built class libraries,
such as those provided by library vendors but supplied
with no source code, often have pre-set class hierarchy
and cannot be re-derived from the persistent base class.

In Objectstream, we provide a generic 1/0 library that
interacts with the introspective run-time environment
to automatically traverse an object’s internal structure
for 1/0 purpose. The meta class declarations include
the follow template 1/0 operators:

template <class T>
Uostream &operator<<(Uostream &os, T &obj) C

Uwrite(os, (void*) &obj, typeid(T) .name(>) ;
r e t u r n os; 3

template <c lass T>
U i s t r e a m &operator>>(Uistream &is, T *&obj>C

Uread (is , (void *> obj , typeid(T) .name(>>;
r e t u r n is; 1

where Uistream and Uostream are the class names for
the universal streams that are capable of input/output
objects of all classes. The programmers can then use >>
and << to input/output objects of user-defined classes.

Note that the object reference is passed as a void

31’7

#include <ustream.h>
#include "bs t ree .h"

// Declarations of 1/0 operators and universal streams.
// Declarations of BSTree (for Binary Search Tree).

main (> C
AsciiOut ascout ; // Use ASCII format f o r output.
ascout .precis ion(l6) ; // Precision is 16 d i g i t s wide.
Uof stream of i l e ("tree. dat" , ascout) ;

BSTree myTree ;
...
o f i l e << myTree;
of i l e . close (> ;

// Create an output stream "tree. dat"
// on f i l e medium with ASCII format.

// The place t o hold a BSTree objec t .
// Inser t ion of elements i n to myTree omitted here.
// Store myTree t o o f i l e .
// Close the f i l e stream.

AsciiIn asc in ; // Use ASCII format f o r input.
Uif stream if i l e (" t r e e . dat" , ascin) ;

BSTree *pTree = 0;
t r y C

i f i l e >> pTree;

// U s e f i l e "tree. dat" a s the input
// stream. The format is ASCII.

// The pointer t o hold a res tored BSTree object .

// Restore a BSTree object from i f i l e . After t h i s ,
//

1 catch (IOError e r ror) { error .pr intMessage0; 1
i f i l e . close (> ; // Close the input f i l e stream.

*pTree and myTree contain t h e same tree.
// Catch e r ro r s , i f any.

1

Figure 3: Objectstream: An illustrating example.

pointer, and the class information is passed as a string
containing the static class name of the object. U w r i t e
and Uread are generic read/write functions that interact
with the introspective environment to traverse objects
for I/O. The object traversal algorithm used by the li-
brary is a depth-first search that looks inside an object
for its bases and data members. The traversal algo-
rithm is not that different from those used for garbage
collection. Since bases and data members are objects
as well, the search is recursive in nature. When the
search encounters objects of fundamental types it calls
the corresponding primitive routines for I/O. A major
issue in the search is to avoid duplication of 1/0 for ob-
jects that have already been visited. For this purpose,
we maintain a dictionary of object reference that maps
between an object's internal memory address and its ex-
ternal object ID. When output, the library first checks
with the object reference dictionary using the object's
memory address as a key to see whether the object has
been output or not. If so, only the object's ID is out-
put. Otherwise a new ID is assigned to the object and a
new entry of (address, ID) pair is entered in the dictio-
nary. Similarly, when performing input operation, if the
library see only an object ID, then it is used as a key to
look for the object's memory address in the dictionary.

In Figure 3, we show a program fragment to illustrate
how to restore/store user-defined objects from/to uni-

31 8

versa1 streams. The program constructs a binary search
tree, outputs the tree to a file using the << operator, and
read the same tree back from the file using the >> oper-
ator. Objectstream also comes with an "object stream
browser" that can be used to open an object stream and
display objects in the stream. See Figure 4 for a screen
shot.

5.2 RunClass

Object-oriented development is often characterized by
the development and use of a large set of reusable
classes. Current object-oriented CASE environments fa-
cilitate software reuse by providing tools to inspect and
access libraries. Using these CASE tools, one can easily
locate desired classes and retrieve information of inter-
est. However, invocation of classes (including instanti-
ation of objects from classes and invocation of methods
upon objects) can only be made in the form of tradi-
tional programming. In other words, in general one has
to write an application program just in order to test a
class. This is fine if the application programmer really
wants to use the class. However, in many situations,
we may just want to invoke a class to understand its
functionality, to see an undocumented feature, or to ver-
ify its correctness. For these situations, an interactive,
easy-to-use environment for 'Lexercising'' classes appears
to be more convenient than the traditional edit-compile-

/'

int id=5
8. Name nam

E? l3STree::node "I
s char name="RunClass"

int id=3
E Namenam

char name="ObiectS tream"
l3STree::node "I

. BSTree::node
B 8STree::node "r

. . int id=7

d,l"
:... char name="Sinica"

_ _ _ ~ -

- I Figure 4: Browsing an object stream. -.

run programming environment.

RunClass is a class exerciser that, when taking a set of
classes as input, allows a user to create objects for given
classes, execute methods upon specified objects, and ex-
amine their contents interactively. RunClass presents
an easy-to-use graphical user interface to users with
class names and method names displayed on the screen.
Users can then select desired classes and methods with a
pointing device without memorizing their names. Run-
Class also manages objects that are created. Objects
are grouped according to classes for users' convenience.
There are several applications of Runclass. It can be
used as a demonstration tool, interactively showing the
functionality of a class library. It can also be used for
testing and maintenance purposes because it allows easy
access to classes that are unfamiliar to the programmers.

The implementation of RunClass is straightforward
upon an introspective C++ environment. It needs a
graphical user interface to take commands from the
users and passing them to the underlying introspective
environment. Results from the command are then dis-

played for users to interpret. It also needs a command
manager that can capture a sequence of comma,nds and
log their effects. The command sequence can then be
replayed later €or regression testing on newer versions
of the class library.

Figure 5 show a snapshot of using RunClass to exer-
cise the Microsoft Foundation Classes (MFC) [17]. On
the right-hand side is the replay dialog, which shows
some previously captured operations. They appear in
the form of C++ statements. On the left-hand side are a
window and four MFC "controls" (animate control, list
box, push button, and edit control) inside the window,
which are all constructed by replaying the captured op-
erations. By using the dialog at the bottom, users can
manipulate the windows and controls, like pause and
play the animate control, add items to the list box, and
so on via interactive method invocations. This MFC
exerciser using RunClass appears to be as an attractive
CASE tool for training novice MFC Programmers.

'\

\

. Figure 5: Runclass: Exercising the Microsoft Foundation Classes.

/

6 LIMITATIONS

There are certain limitations in our approach to non-
intrusive object introspection, and to the applications
so developed. Most are introduced by ambiguities in
the C++ language. C++ allows pointer to void and
union as the types of data members. when our code
generator parses class declarations with such data mem-
bers, the information it collects and puts into the meta
objects is ambiguous and useless for the meta class sup-
porting libraries. For example, how does Objectstream
output a data member of type void*? (Usually the
type name is available as a string, say "BSTree". Now
we have "void*", which says almost nothing.) Right
now, Objectstream either does not support such data
members (default), or needs users to provide customized
1/0 routines and will hook them automatically to the
supporting libraries.

The very nature of late-binding applications can cause
some troubles as well. For example, the following late-
binding method invocation (described[in Section 3)

bstree. invoke (p, insert, u g v) ;

need several run-time checks to insure type-safety (ob-
ject p not necessary of type bstree, and method insert
not 'necessarily defined in class bstree, and so on.)
Standard C++ method invocations do not need these
run-time checks. The application so developed then has
to pay this and other (meta object) overhead for in-
trospective object access. From our experience, such
overhead is tolerant as it does not affect overall applica-
tion performance in a major way. Better yet, by using
our approach, non-introspective access to introspective
objects still uses the standard C++ object model and
does not incur any meta object overhead.

\ -

\,,' 320

7 CONCLUSION

We present the concept of object introspection and
a framework of non-intrusive implementation in C++
that works with standard compilers and existing class
libraries. Several important implementation issues
are discussed and two substantial applications are de-
scribed. It is shown that object introspection can be
added to C++ in a straightforward way and it makes
easy the task of application reuse and integration.

ACKNOWLEDGEMENTS
We thank Chuan-Chieh Jung and Wen-Min Kuan for
their effort in implementing Objectstream, and Chin-
Chuan Hsu and Wei-Hsueh Lai for their effort in imple-
menting Runclass.

REFERENCES

[l] Shigeru Chiba. A metaobject protocol for C++.
In Conference proceedings of Object-Oriented Pro-
gramming Systems, Languages and Applications,
pages 285-299. Austin, Texas, USA, October 1995.
ACM Press.

[2] Tyng-Ruey Chuang, Chuan-Chieh Jung, Wen-
Min Kuan, and Y. S. Kuo. Objectstream: Gen-
erating stream-based object 1/0 for C++. In 24th
International Conference o n Technology of Object-
Oriented Languages and Systems, pages 81-90. Bei-
jing, China, September 1997.

[3] Scott Danforth and Ira R. Forman. Reflection
on metaclass programming in SOM. In Confer-
ence proceedings of Object-Oeented Programming
Systems, Languages and Applications, pages 440-
452. Portland, Oregon, USA, October 1994. ACM
Press.

[4] Adele Goldberg and David Robson. Smalltalk-80:
The Language and its Implementation. Addison-
Wesley, 1993.

[5] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison-Wesley, 1996.

[6] Brendan Gowing and Vinny Cahill. Meta-object
protocols for C++: The Iguana approach. In [12],
pages 137-152.

[7] Jennifer Hamilton, Robert Klarer, Mark Mendell,
and Brian Thomson. Using SOM with C++. C++
Report, 7(6):40-45, 65, July-August 1995.

[8] International Business Machines. SOMobjects De-
veloper’s Toolkit, Programmer’s Guide, Volume l -
8, 2nd edition, December 1996.

[9] Yutaka Ishikawa, Atsushi Hori, Mitsuhisa Sato,
Motohiko Matsuda, J6rg Nolte, Hiroshi Tezuka, Hi-
roki Konaka, Munenori Maeda, and Kazuto Kub-
ota. Design and implementation of metalevel ar-
chitecture in c++ - MPC++ approach. In [12],
pages 153-166.

[lo] JavaSoft. Java Core Reflection - A P I and Speci-
fication, January 1997.

[ll] Gregor Kiczales. Beyond the black box: Open im-
plementation. IEEE Software, 13(l):$-10, January
1996.

1121 Gregor Kiczales, editor. Proceedings of the Re-
flection ’96 Conference. San Rancisco, California,
USA, Xerox Palo Alto Research Center, April 1996.

[13] Gregor Kiczales, John Lamping, Cristina Videira
Lopes, Chris Maeda, Anurag Mendhekar, and Gail
Murphy. Open implementation design guidelines.
In Proceedings of the 19th International Conference
o n Software Engineering, pages 481-490. Boston,
Massachusetts, USA, May 1997. IEEE Press.

[14] Stanley B. Lippman. Inside The C++ Object
Model. Addison-Wesley, 1996.

[15] J. Malenfant, M. Jacques, and F.-N. Demers. A
tutorial on behavioral reflection and its implemen-
tation. In [12], pages 1-20.

[16] Robert Mecklenburg, Charles Clark, Gary Lind-
strom, and Benny Yih. A dossier driven persis-
tent objects facility. In USENIX 6th C++ Tech-
nical Conference, pages 265-281. Cambridge, Mas-
sachusetts, USA, April 1994. USENIX Association.

[17] Microsoft. Microsoft Foundation Classes, version

[18] NeXTSTEP. Object-Oriented Programming and
the Objective C Language. Addison-Wesley, 1993.

[19] Andreas Paepcke, editor. Object-Oriented Pro-
gramming: T h e C L O S Perspective. MIT Press,
1993.

[20] Dale Rogerson. Inside COM. Microsoft Press, 1997.

[21] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, 2nd edition, 1993.

[22] Walter F. Tichy, Jorg Heilig, and Frances Newbery
Paulisch. A generative and generic approach to per-
sistence. C++ Report, 6(1):22-33, January 1994.

[23] Chien-Min Wang and Y. S. Kuo. Class exerciser:
A basic tool for object-oriented development. In
Proceedings of the 1995 Asia Pacific Software Engi-
neering Conference, pages 108-116. Brisbane, Aus-
tralia, December 1995.

4.2.1, 1997.

321

