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ABSTRACT 
We describe the design and implementation of system 
architecture to support object introspection in C++. 
In this system, information is collected by parsing class 
declarations, and used to build a supporting environ- 
ment for object introspection. Our approach is non- 
intrusive because it requires no change to the original 
class declarations and libraries, and it guarantees com- 
patibility between objects before and after the addi- 
tion of introspective capability. This is critical if one 
wants to integrate third-party class libraries, which are 
often supplied as black boxes and allow no modifica- 
tion, into highly dynamic applications. We show two 
applications: The first on automatic 1/0 support for 
C++ objects, and the other on interactive exercise of 
dynamically loaded C++ class libraries. 

KEYWORDS 
C++, Object Introspection, Software Reuse and Inte- 
gration, Object-Oriented Software Development. 

1 MOTIVATION 

Many object-oriented programming languages, such as 
CLOS [19], Java [5, lo], Objective C [18], and Smalltalk 
[4], provide introspective language features that allow 
the state of an object to be observed and altered by 
means of a general mechanism that is equally applica- 
ble to objects of all classes. In these languages, the 
binding between a method and the object to be applied 
with can be delayed until run-time, and the binding re- 
quires no static type-checking between the object and 
the method. This is often called dynamic-binding and 
it makes easy the construction of applications of which 
classes are dynamically loaded and executed. Several 
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kinds of applications need dynamic-loading of classes, 
as we will show later in this paper. For now, let’s con- 
sider an object-oriented development environment to be 
such ,an application since it will need to compile, link, 
execute, and debug class definitions on-line. 

The C++ programming language does not support 
object introspection [21]. It does provide Run-Time 
Type Information (RTTI), a run-time class identifica- 
tion mechanism, and virtual function, a mechanism for 
run-time resolution of method implementation for poly- 
morplhic objects. However, these mechanisms are lim- 
ited in their functionality since they do not allow full 
access to an object. For example, one cannot query an 
object for applicable methods, nor can one gain full ac- 
cess t’o data members of the object. 

These problems are usually solved by using a meta 
object framework, such as the System Object Model 
(SOM[) from IBM [8], the Common Object Model 
(COM) from Microsoft [20], or other similar framework. 
Framework of this kind requires introspective objects to 
belong to classes which are either derived from a root 
“Obje~ t ’~  class, or the classes themselves are instances of 
some meta “Class” class. This creates difficulty when 
integrating existing class libraries that are developed 
without using the framework. It becomes worse if the 
class llibraries are provided by third-party vendors and 
are supplied with no source code. Another disadvan- 
tage of the above mentioned framework is that objects 
with introspective capability are not compatible with 
ordinary objects without the capability. For example, 
the memory layout of an object is changed once intro- 
spection functionality are added. It may also respond 
differently to existing methods. 

Our g:oal is to introduce object introspection to exist- 
ing C-++ classes without intruding the original class li- 
brary, including hierarchical structures of the class dec- 
larations and memory layouts of the class instances. If 
achieved, an object will function the same way whether 
or not it is capable of introspection. Except that now in 
addition we can invoke methods or access states upon 
introspective objects using a general mechanism that 
bypasses the C++ static type-checking rule. 

\ 
- ___ 

0-8186-8368-6/98 $10.00 0 1998 IEEE 
312 



This paper is organized as the following. We first dis- 
cuss in Section 2 background and related work in bring- 
ing object introspection and reflection to C++. We 
then outline the system architecture of our non-intrusive 
scheme of C++ object introspection in Section 3. Sec- 
tion 4 discusses important implementation issues. Sec- 
tion 5 describes two applications that are developed 
upon the introspective C++ environment. We then dis- 
cuss the limitations of our approach in Section 6 and 
conclude this paper with Section 7. 

2 BACKGROUND AND RELATED WORK 

In [lj], reflection is defined as the integral ability for a 
program to observe or change its own code as well as- 
pects of its programming language (syntax, semantics, 
or implementations) at run-time. A programming lan- 
guage is said to be reflective if it provides its programs 
with reflection. An important concept in reflective pro- 
gramming languages is reification, the process by which 
aspects of an executing program are brought up using 
a representation that is expressed in the language and 
made available to the program. Furthermore, the reifi- 
cation data are causally connected to the related rei- 
fied aspects such that a modification to one of them 
affects the other. Few programming languages provide 
the full power of reflection since reflection is a very pow- 
erful concept and its true implication often is not clear. 
However, several languages, such as Lisp and Prolog, do 
have limited reflective language features and are able to 
treat programs as data and to evaluate reification data 
at run-time. 

Object introspection, in the context of object-oriented 
programming languages, is the ability to observe and 
change the state of an object using reflection. The con- 
cept of introspection is more restricted than reflection 
because it adheres to the original syntactical, seman- 
tical, and implementational aspects of the source lan- 
guage. It just provides a window to the object states of 
the current execution of a program, and allows changes 
to them by means of a general gateway to existing legit- 
imate interfaces. For example, using object introspec- 
tion, one can query, and execute if it exists, an object 
for a particular method. However, object introspection 
does not mean the ability to add new methods or modify 
existing ones for a class (though such ability often can 
be simulated, if with difficulty, in some introspective 
languages). Therefore, object introspection maintains 
the semantic integrity of a programming language but 
opens up its programs for general access. Object intro- 
spection allows one to construct applications that are 
more dynamic, and provides avenues for integration of 
diverse applications. Open implementations [ll, 131 of 
class libraries, for instance, will be most natural when 
using object introspection. 
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Some object packaging frameworks, most notable SOM 
[3, 7, 81 and COM [20], add object introspection and re- 
flection to the C++ programming language. However, 
applications using these frameworks each must follow 
some prescribed class hierarchy. For example, SOM re- 
quires all classes with SOM capability to derive from 
the SOMObject class, and COM requires all compo- 
nents with COM capability to equip with the IUnkown 
interface. Hence object introspection cannot be used for 
applications or class libraries that are developed without 
using these frameworks. We aim to provide object intro- 
spection to C++ classes without requiring the classes to 
be derived from or augmented with extra declarations. 

There are several proposals and projects on meta object 
protocols for C++, see for example [l, 6 ,  91. They aim 
to bring full power of reflection to C++ and often re- 
quire special implementations of the C++ compiler and 
run-time system (since they either add language exten- 
sions or change the language semantics). We seek to de- 
velop a framework of object introspection that adhere to 
the semantics and implementation of C++ [14, 211 and 
can be used with existing C++ compilers. Application 
developers should be able to add object introspection 
to their applications without requiring changes to their 
existing class declarations and definitions. Nor should 
they worry about the new C++ semantics and imple- 
mentations altering the integrity of their applications. 

3 SYSTEM ARCHITECTURE 

Providing object introspection for C++ is difficult be- 
cause C++ objects carry no type information during 
run-time. (The only exception is the virtual function 
mechanism for polymorphic objects and the associated 
RTTI facility, which are limited in functionality.) A 
non-intrusive object introspection facility for C++ is 
even more challenging because one is not allowed to 
augment the existing class declarations so that type 
information will be automatically attached to each in- 
stance to  help introspective operations. The approach 
we adopt is to define for each class a separate meta ob- 
ject that completely captures information of the class 
for introspection purposes. Introspective operations on 
instances of the class are then conducted via going 
through the corresponding meta object, which has all 
the necessary information at  run-time. 

Before further discussion on the architecture of such an 
introspective system, let’s see what a typical introspec- 
tive operation in the system will look like, and compare 
it to the usual C++ method invocation. Let BSTree be 
a class whose instances are binary search trees of which 
each non-null tree node stores a character string. Sup- 
pose class BSTree provides a new constructor for build- 
ing an empty tree and an insert public method for 
inserting a new character string into the tree. Then the 



following C++ code segment builds a new tree p and 
inserts a character string "Sinica" to it. 

BSTree *p = new BSTree; 
p->insert  ("Sinica") ; 

Note that in the above program segment, at  compile- 
time, p is known to point to an instance of BSTree, and 
the in se r t  method is applicable to it. 

For introspective operations, however, the binding be- 
tween p (the object pointer) and BSTree (the class) may 
not be available at  compile-time. It may be the case that 
the class declaration for BSTree is not even available at  
compile-time, and that only the name of the class (a 
character string "BSTree") is known at  run-time. By 
using our introspective environment, the same effect of 
the above program segment can be achieved by the fol- 
lowing. 

void *p; 
Klass bs t ree  = getc lass  ("BSTree") ; 
p = bs t ree  .new (1 ; 

Method i n s e r t  = getMethod(bstree, "insert":)  ; 
void* argvC1 = { "Sinica",  0 1; 
bstree.invoke(p,  i n s e r t ,  argv);  

Note that the static type of p is now (void *>. The 
fact that it points to an instance of class "BSTree" is 
revealed only at  run-time. Furthermore, the invoca- 
tion of method i n s e r t  upon it is via the meta object 
bstree,  which will contain all necessary information of 
class "BSTree". (The above intrdspective code in fact 
is a simplification of the actual code which is somewhat 
clumsy in our current implementation.) 

It is now clear that a non-intrusive introspective envi- 
ronment for C++ has two parts. One is the meta object 
mechanism which includes declarations of meta classes 
(such as Klass and Method above) and the associ- 
ated supporting libraries (implementations of ge tc lass ,  
invoke and so on). The other part is the generation 
of meta objects for classes in need of introspective op- 
erations. The part about meta class declarations and 
libraries is class-neutral and is available at application 
development time. If all introspective classes are known 
at application development time, then the code for con- 
structing meta objects can be prepared at  compile-time, 
though meta objects themselves will not materialize un- 
til run-time. The generation of the code to produce 
meta objects can either be manual or automatic. This 
situation is described in Figure 1 where each stand-alone 
executable includes a self-contained introspective run- 
time environment. We call applications of this kindl the 
tightly-coupled ones. Object introspection here com- 

plements the usual C++ data access and method invo- 
cation mechanism. On the other hand, classes can be 
dynamically loaded at  run-time for their functionality. 
In such situations, generation of the corresponding meta 
objects occurs at  run-time, and the generation process 
has to be automatic. We call applications of this kind 
the loosely-coupled ones. Here, binding between an ob- 
ject and its associated class is dynamic, and introspec- 
tion is the normal way of interacting with objects. See 
Figure 2 for an illustration. 

In both the tightly-coupled and loosely-coupled models, 
the generation of meta objects will need access to the 
original class declarations but must not modify them. 
Also note that in both cases, applications are developed 
using the original class declarations, with the addition 
of the meta class declarations which are applicable to all 
programs. Currently we generate the meta object code 
automatically by using a parser-based analyzer that ex- 
tract the needed information from application class dec- 
larations. 

4 IMPLEMENTATION ISSUES 

As we have shown above, our design of non-intrusive 
introspective environment consists of two parts. One is 
the meta object mechanism which includes declarations 
of meta classes and their implementations. The other 
part is the automatic generation of meta objects for 
classes in need of introspective operations. We discuss 
in this section several important implementation issues 
and the solutions we have adopted. 

4.1 Meta Class Interface and Library 

An application interacts with the introspective environ- 
ment by using methods defined in the meta classes. 
However, the interfaces for interaction often carry less 
type information than what is desirable. As an example, 
in Section 3 we show how to get the class information 
for BSTree by passing a character string "BSTree" to  
the introspective environment. A character string cer- 
tainly does not say much about the class it is associated 
with (except its name). Again, to access method i n s e r t  
from the meta object for class BSTree, we use a charac- 
ter string " inser t"  as an argument. The interfaces are 
typeless because they must serve requests to all kinds of 
user-defined classes whose properties are not known to 
the meta classes in advance. With this understanding, 
we now list several issues in the implementation. 

Meta classes for class and method. The meta 
class for class (Klass, as shown above in Section 3) 
must store the name of the class, pointers to meta 
objects of its base classes, methods to get names 
and memory offsets of all its data members, meth- 
ods to get names and implementations of all its 
member functions (i. e., getMethod), and several 
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instance conversion routines between this class and 
its superclasses and subclasses. Several member 
functions of class Klass are virtual because they re- 
quire different implementations for different classes. 
For example, getMethod is a virtual function, and 
each meta object corresponding to an introspective 
class will be an instance of a class derived from 
Klass which actually defines the implementation 
of getMethod. Again, the invoke method in class 
Method is virtual as well, and each derived class 
of Method defines its own implementation. Making 
these methods virtual helps to reduce work when 
generating code for meta objects. 

Polymorphic object pointers. To correctly access 
an object, the introspective environment must have 
the dynamic type information of the object. How- 
ever, note that all object pointers are treated as 
pointers of type (void *) when interfacing with 
the meta objects. Hence, a function is needed for 
each class to get the dynamic class names for ob- 
jects of its class. This function is stored in the meta 
object of the class. Suppose we have a class B, thefi 
the meta object for class B will contain a function 
dynamicType(p0bj 1 defined by 

v i r t u a l  const char const *dynamicType 
(void const *se l f )  { 
r e tu rn  typeid(*(B *) self)  .name(); 3 

that returns the dynamic type name (a character 
string) of its instance. Function typeid above is 
from the standard C++ RTTI facility. 

Base and derived classes. The content of an object 
consists of its data members, and those of its bases 
as well. In order to access the base’s data members, 
the introspective environment has to perform a “up 
cast” operation that adjusts the object pointer. 
The up cast function is stored in the meta object 
of the class. For example, the following function 
will cast an instance of a derived class D of B to an 
instance of B. 

static void *fromDtoB(void const *self) 
C r e tu rn  (B *)(D *I self; 3 

If a class has several bases (i. e., multiple inheri- 
tance), then all the up cast functions will be stored 
in the meta object of B. The cast functions are 
stored in a table and indexed by names of the su- 
perclasses. 
Similarly, the following LLdown cast” routine is 
stored in the meta object for B as well. 

s t a t i c  void *fromBtoD(void const * se l f )  
{ return dynamic,cast<D*>((B*) self);] 

It is used to adjust a polymorphic object pointer 
with known static type (B *> to its dynamic type 
(D *). The adjustment occurs, for example, af- 
ter the dynamic type name t tDtt  is resolved by a 
call to dynamicType. All accesses to data members 
pointed to by an polymorphic object pointer starts 
with this adjusted pointer. 

Other details. C++ provides abstract and virtual 
base class. Objects of an abstract class cannot 
be constructed directly, and base objects of virtual 
classes share their storage. Information regarding 
whether a class is abstract or virtual or not will be 
recorded in its meta object. This means that the 
introspective environment has to check first with 
this information when performing data access or 
object construction. 

4.2 

For 

Meta Object Generation and Management 

each class in need of introspective operations, the 
run-time environment needs a meta object of the class. 
The meta object can be constructed manually, or pro- 
duced automatically from the program text where the 
class is declared, We use a parser-based scanner that 
produces program code from class declarations such 
that, when the code is executed at run-time, will gener- 
ate meta objects. Note that code generation and meta 
object generation do not happen at  the same time for 
the tightly-coupled applications illustrated in Figure 1. 
The programming language used for code generation 
may not even be C++. If it uses C++, it may use 
a different compiler for the one used by the application. 
Hence, one must take care in generating code that will 
in turn generate meta objects correctly, especially when 
regarding memory layout of their instances. 

Memory layout. The memory layout of an object is 
calculated by employing a method that relies on a 
C++ compiler’s ability to treat a suitable aligned 
absolute address as the starting address of any 
C++ object [16]. For example, the following code 
computes the offset (in units of char) of the data 
member a within an object of class .A: 

off  set-of -a-in-A = (char *) &(  ( (A *> 64)->at) 
- (char *) ( (A  *) 64) 

where 64 can be any well-aligned absolute address. 
Note that, in order to calculate offsets of private 
members, the generator must disable access control 
employed by the class. This can be done by alter- 
ing the original class declaration in several ways. 
One can delete all the pr iva te  specifiers in the 
class declaration, hence exposes all data members 
to outside world. A better way is to insert a friend 
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function to the class declaration and gain access 
to all data members without compromising access 
control of the class too much [22]. The generator 
inserts as a friend function an initialization routine 
to the class to calculate data member offsets and 
to produce a meta object for the class. Note that 
this friend function will need to be compiled with 
the augmented class declaration. We list additional 
issues when augmenting class declarations. 

Nested class declarations. If the class declarations 
are nested, the initialization routine for the enclos- 
ing class, though declared as a friend function, will 
not be able to access data members of the enclosed 
classes. (They are out of scope.) For these cases, 
we have the generator inserts initialization routines 
to the enclosed classes as well, and have them de- 
clared as friend functions both in the enclosed and 
enclosing classes. 

Class templates. Since the generator analyzes only 
class declarations, it cannot know how a class tem- 
plate will be instantiated in a user’s program. We 
require the user to give hints on how a class tem- 
plate will be instantiated. As an example, in Sec- 
tion 3, if BSTree is a class template, then one must 
explicitly specify that BSTree will be instantiated 
with type i n t ,  in order for the generator to produce 
the meta object for class BSTree<int>. 

Object compatibility. Note that we may augment a 
class declaration in several ways in order for the 
code generator to work. (For example, we insert 
a friend function to the class declaration, and we 
may add additional non-virtual member functions 
for other purposes.) However, we never add data 
members or virtual functions to the class declara- 
tion. This ensures that objects produced by the 
original class declaration and the augmented one 
will always have the same memory layout, at least 
for the usual C++ object model [14]. Furthermore, 
the augmented class declaration is used only by the 
generated code and is inaccessible otherwise to the 
application developers. Developers continue to use 
the original class declarations and will not aware of 
the augmented copies. 

5 APPLICATIONS 

We describe two applications based on non-intrusive in- 
trospective C++ environments. The first is a system 
called Objectstream that provides automatic 1/0 sup- 
port for complex C++ objects. The other is a class 
exerciser called RunClass that allows interactive exe- 
cution of dynamically loaded c++ class libraries. Ob- 
jectStream is a system for building applications that are 
tightly-coupled with their introspective classes. While 

RunClass itself is a loosely-couple introspective appli- 
cation. Work on Objectstream and RunClass has been 
reported elsewhere, although not from the viewpoint of 
object introspection 12, 231. 

5.1 Objectstream 

The C++ standard I/O stream library, by overloading 
the << and >> operators, provides a convenient and type-. 
safe interface for I/O. However, it is only applicable to 
fundamental types (such as char, i n t ,  etc.). If one 
wants to input/output objects of user-defined classes, 
one either must extend the stream 1/0 library by over- 
loading the << and >> operators, or define 1/0 opera- 
tions as member functions of those classes. Most C++ 
development environments (such as the MLcrosoft Foun- 
dation Classes) in use today take the latter approach. 
Their input/output facilities are parts of a pre-defined 
application framework. Programmers are required to 
define 1/0 operations for user-defined classes by fol- 
lowing some prescribed procedures - such as deriving 
user-defined classes from a “persistent” base class and 
redefining some virtual functions for the purpose of ob- 
ject I/O. This practice takes considerable learning time.. 
Furthermore, programmers have to write code to con-. 
struct/traverse an object’s internal structure in order 
to perform 1/0 correctly. When complex objects are 
involved, this can be tedious and error-]prone. By re- 
quiring all user-defined classes to derive from a persis- 
tent base class, it also prevents pre-built class libraries 
from performing object I/O. Pre-built class libraries, 
such as those provided by library vendors but supplied 
with no source code, often have pre-set class hierarchy 
and cannot be re-derived from the persistent base class. 

In Objectstream, we provide a generic 1/0 library that 
interacts with the introspective run-time environment 
to automatically traverse an object’s internal structure 
for 1/0 purpose. The meta class declarations include 
the follow template 1/0 operators: 

template <class T> 
Uostream &operator<<(Uostream &os, T &obj) C 

Uwrite(os, (void*) &obj, typeid(T) .name(>) ; 
r e t u r n  os; 3 

template <c lass  T> 
U i s t r e a m  &operator>>(Uistream &is, T *&obj>C 

Uread (is ,  (void *> obj , typeid(T) .name(>>; 
r e t u r n  is; 1 

where Uistream and Uostream are the class names for 
the universal streams that are capable of input/output 
objects of all classes. The programmers can then use >> 
and << to input/output objects of user-defined classes. 

Note that the object reference is passed as a void 
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#include <ustream.h> 
#include "bs t ree  .h" 

// Declarations of 1/0 operators  and universal  streams. 
// Declarations of BSTree ( for  Binary Search Tree). 

main (> C 
AsciiOut ascout ;  // Use ASCII format f o r  output.  
ascout .precis ion(l6) ;  // Precision is  16 d i g i t s  wide. 
Uof stream of i l e  ("tree. dat"  , ascout) ; 

BSTree myTree ; 
... 
o f i l e  << myTree; 
of i l e  . close (> ; 

// Create an output stream "tree. dat" 
// on f i l e  medium with ASCII format. 

// The place t o  hold a BSTree objec t .  
// Inser t ion of elements i n to  myTree omitted here.  
// Store myTree t o  o f i l e .  
// Close the  f i l e  stream. 

AsciiIn asc in ;  // Use ASCII format f o r  input.  
Uif stream if i l e ( " t r e e .  dat" , ascin) ; 

BSTree *pTree = 0;  
t r y  C 

i f i l e  >> pTree; 

// U s e  f i l e  "tree. dat"  a s  the  input 
// stream. The format is ASCII. 

// The pointer  t o  hold a res tored  BSTree object .  

// Restore a BSTree object  from i f i l e .  After t h i s ,  
// 

1 catch (IOError e r ror )  { error .pr intMessage0;  1 
i f  i l e  . close (> ; // Close the  input f i l e  stream. 

*pTree and myTree contain t h e  same tree. 
// Catch e r ro r s ,  i f  any. 

1 

Figure 3: Objectstream: An illustrating example. 

pointer, and the class information is passed as a string 
containing the static class name of the object. U w r i t e  
and Uread are generic read/write functions that interact 
with the introspective environment to traverse objects 
for I/O. The object traversal algorithm used by the li- 
brary is a depth-first search that looks inside an object 
for its bases and data members. The traversal algo- 
rithm is not that different from those used for garbage 
collection. Since bases and data members are objects 
as well, the search is recursive in nature. When the 
search encounters objects of fundamental types it calls 
the corresponding primitive routines for I/O. A major 
issue in the search is to avoid duplication of 1/0 for ob- 
jects that have already been visited. For this purpose, 
we maintain a dictionary of object reference that maps 
between an object's internal memory address and its ex- 
ternal object ID. When output, the library first checks 
with the object reference dictionary using the object's 
memory address as a key to see whether the object has 
been output or not. If so, only the object's ID is out- 
put. Otherwise a new ID is assigned to the object and a 
new entry of (address, ID) pair is entered in the dictio- 
nary. Similarly, when performing input operation, if the 
library see only an object ID, then it is used as a key to 
look for the object's memory address in the dictionary. 

In Figure 3, we show a program fragment to illustrate 
how to restore/store user-defined objects from/to uni- 
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versa1 streams. The program constructs a binary search 
tree, outputs the tree to a file using the << operator, and 
read the same tree back from the file using the >> oper- 
ator. Objectstream also comes with an "object stream 
browser" that can be used to open an object stream and 
display objects in the stream. See Figure 4 for a screen 
shot. 

5.2 RunClass 

Object-oriented development is often characterized by 
the development and use of a large set of reusable 
classes. Current object-oriented CASE environments fa- 
cilitate software reuse by providing tools to inspect and 
access libraries. Using these CASE tools, one can easily 
locate desired classes and retrieve information of inter- 
est. However, invocation of classes (including instanti- 
ation of objects from classes and invocation of methods 
upon objects) can only be made in the form of tradi- 
tional programming. In other words, in general one has 
to write an application program just in order to test a 
class. This is fine if the application programmer really 
wants to use the class. However, in many situations, 
we may just want to invoke a class to understand its 
functionality, to see an undocumented feature, or to ver- 
ify its correctness. For these situations, an interactive, 
easy-to-use environment for 'Lexercising'' classes appears 
to be more convenient than the traditional edit-compile- 
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int id=5 
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- I Figure 4: Browsing an object stream. -. 

run programming environment. 

RunClass is a class exerciser that, when taking a set of 
classes as input, allows a user to create objects for given 
classes, execute methods upon specified objects, and ex- 
amine their contents interactively. RunClass presents 
an easy-to-use graphical user interface to users with 
class names and method names displayed on the screen. 
Users can then select desired classes and methods with a 
pointing device without memorizing their names. Run- 
Class also manages objects that are created. Objects 
are grouped according to classes for users' convenience. 
There are several applications of Runclass. It can be 
used as a demonstration tool, interactively showing the 
functionality of a class library. It can also be used for 
testing and maintenance purposes because it allows easy 
access to classes that are unfamiliar to the programmers. 

The implementation of RunClass is straightforward 
upon an introspective C++ environment. It needs a 
graphical user interface to take commands from the 
users and passing them to the underlying introspective 
environment. Results from the command are then dis- 

played for users to interpret. It also needs a command 
manager that can capture a sequence of comma,nds and 
log their effects. The command sequence can then be 
replayed later €or regression testing on newer versions 
of the class library. 

Figure 5 show a snapshot of using RunClass to exer- 
cise the Microsoft Foundation Classes (MFC) [17]. On 
the right-hand side is the replay dialog, which shows 
some previously captured operations. They appear in 
the form of C++ statements. On the left-hand side are a 
window and four MFC "controls" (animate control, list 
box, push button, and edit control) inside the window, 
which are all constructed by replaying the captured op- 
erations. By using the dialog at  the bottom, users can 
manipulate the windows and controls, like pause and 
play the animate control, add items to the list box, and 
so on via interactive method invocations. This MFC 
exerciser using RunClass appears to be as an attractive 
CASE tool for training novice MFC Programmers. 

'\ 
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. Figure 5: Runclass: Exercising the Microsoft Foundation Classes. 
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6 LIMITATIONS 

There are certain limitations in our approach to non- 
intrusive object introspection, and to the applications 
so developed. Most are introduced by ambiguities in 
the C++ language. C++ allows pointer to void and 
union as the types of data members. when our code 
generator parses class declarations with such data mem- 
bers, the information it collects and puts into the meta 
objects is ambiguous and useless for the meta class sup- 
porting libraries. For example, how does Objectstream 
output a data member of type void*? (Usually the 
type name is available as a string, say "BSTree". Now 
we have "void*", which says almost nothing.) Right 
now, Objectstream either does not support such data 
members (default), or needs users to provide customized 
1/0 routines and will hook them automatically to the 
supporting libraries. 

The very nature of late-binding applications can cause 
some troubles as well. For example, the following late- 
binding method invocation (described[ in Section 3) 

bstree. invoke (p,  insert, u g v )  ; 

need several run-time checks to insure type-safety (ob- 
ject p not necessary of type bstree, and method insert 
not 'necessarily defined in class bstree, and so on.) 
Standard C++ method invocations do not need these 
run-time checks. The application so developed then has 
to pay this and other (meta object) overhead for in- 
trospective object access. From our experience, such 
overhead is tolerant as it does not affect overall applica- 
tion performance in a major way. Better yet, by using 
our approach, non-introspective access to introspective 
objects still uses the standard C++ object model and 
does not incur any meta object overhead. 

\ - 
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7 CONCLUSION 

We present the concept of object introspection and 
a framework of non-intrusive implementation in C++ 
that works with standard compilers and existing class 
libraries. Several important implementation issues 
are discussed and two substantial applications are de- 
scribed. It is shown that object introspection can be 
added to C++ in a straightforward way and it makes 
easy the task of application reuse and integration. 
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