
Broadcasting on Wormhole-Routed 2D Tori with Arbitrary Size*

Yomin Houa, Chien-Min Wangb, Ming-Jer Tsaib, and Lih-Hsing Hsua
aDepartment of Computer and Information Science

National Chiao-Tung University
Hsinchu, Taiwan, ROC

Email:{gis81556,lhhsu}@cis.nctu.edu.tw
bInstitute of Information Science, Academia Sinica

Taipei, Taiwan, ROC
Email: {cmwang,mjtsai}@iis.sinica.edu.tw

                                               
* This work was supported by National Science Council, Republic of China, under Grant NSC88-2213-E-001-008.

Abstract
For distributed memory parallel computers, broadcast

operations are widely used in a variety of applications. In
this paper, we propose an efficient algorithm for broad-
casting on an all-port wormhole-routed 2D torus with ar-
bitrary size. The underlying network is assumed to support
only the dimension-ordered unicast. By taking the advan-
tage of the all-port model and the distance insensitivity of
the wormhole routing, the proposed algorithm can greatly
reduce the number of message-passing steps. In addition,
it can be proved to be depth contention-free. The perform-
ance study in this paper clearly shows the advantage of
the proposed algorithm.

1. INTRODUCTION

A massively parallel computer (MPC) consists of a
large number of identical processing elements and an in-
terconnection network. Each processing element has its
own processor, local memory, and other supporting de-
vices. Processors in a MPC communicate by sending mes-
sages through the interconnection network. One of the
most fundamental communication operations is broadcast,
in which the same message is delivered from a source node
to all nodes in the network. Efficient broadcast communi-
cation is useful in message-passing applications, and is
also necessary in several other operations, such as replica-
tion and barrier synchronization [1], which are supported
in data parallel languages.

Early systems that used the store-and-forward switch-
ing usually adopted the hypercube topology because its
relatively dense interconnection network resulted in

shorter message paths. However, many new-generation
wormhole-routed MPCs use low-dimensional mesh and
torus topologies. These topologies are simpler and more
easily to construct than hypercubes. Although they exhibit
larger internode distances, the relative distance insensitiv-
ity of wormhole routing obviates this problem. Dally [2]
had shown that low-dimensional networks have lower la-
tency and higher hot-spot throughput than high-
dimensional networks with the same bisection width.

Most existing MPCs support broadcast in software. In
these environments, broadcast must be implemented by
sending multiple unicast messages. The simplest way is to
send a separate copy of the broadcast message directly
from the source to every other node. However, this strategy
is unacceptable for its poor performance. An alternative
approach is to use a broadcast tree to improve the per-
formance. In each message-passing step of a broadcast tree,
each node holding a copy of the message forwards it to
some subset of the other nodes that have not yet received it.
The number of messages a node can send out concurrently
is determined by the system’s port model. In an all-port
system, each node can send and receive messages to and
from all its neighbors at the same time.

In this paper, we address the problem of broadcasting
on an all-port wormhole-routed two-dimensional (2D)
torus with arbitrary size. Our method is intrigued from the
idea of recursively decomposing a 2D torus into a number
of smaller blocks. Following the decomposition, the
broadcast message is also forwarded to every node. The
proposed algorithm can be proved to be depth contention-
free, and can greatly reduce the number of message-
passing steps.

The remainder of the paper is organized as follows.



Section 2 describes the specific architectural characteris-
tics of the systems considered in this paper, and Section 3
illustrates the issues and the problems involved in sup-
porting efficient broadcast communication in such systems.
In Sections 4, related works are briefly discussed. Section
5 gives the details of the proposed broadcast algorithm.
The performance of the proposed algorithm is studied in
Section 6. Finally, Section 7 concludes this paper.

2. The system model

The time required to move data between nodes is criti-
cal to the system performance. It can be evaluated by
communication latency, which is the interval from the
time the source node begins to send out a message until the
destination node has received the message. Communica-
tion latency is composed of two parts: software latency and
network latency. The software latency is the time required
for the system to handle the message at both the source
and destination nodes. The network latency equals the
elapsed time after the head of a message has entered the
network at the source until the tail of the message emerges
from the network at the destination. In addition to the time
for transmitting a message through channels, network la-
tency also contains the blocking time, which includes all
possible delays encountered during the lifetime of a mes-
sage. For example, there may be delays due to channel
contention, i.e., some channel is required by two or more
unicasts simultaneously.

For software-supported broadcast, the total latency,
called broadcast latency, is the interval from the time the
source node begins to send the message until the last node
has received the message. Since several message-passing
steps may be required for broadcasting, broadcast latency
is severely affected by the number of message-passing
steps and the communication latency in each step. The
way to minimize broadcast latency depends on the par-
ticular system architecture. The system architectures under
consideration in this paper are characterized by four prop-
erties described below.

First, their topologies are 2D tori. A 2D torus Tn0×n1 is
an undirected graph of n0×n1 nodes. Each node is denoted
as (x, y), where 0≤x<n0 and 0≤y<n1. Node (x, y) has an
edge connecting to ((x±1) mod n0, y) along dimension 0,
and an edge connecting to (x, (y±1) mod n1) along dimen-
sion 1. Each edge consists of two directed channels point-
ing in opposite directions. Without loss of generality, we
may assume that the source node for broadcasting is at the
center of the network, i.e., (n0/2-1, n1/2-1), since the
torus is a node symmetric topology.

Second, the wormhole routing switching strategy [8] is
used. With wormhole routing, each message is divided
into a number of flits. The header flit(s) carries the address

information and governs the route while the remaining
flits of the message follow in a pipeline fashion. One of the
attractions of wormhole routing is that only small flit buff-
ers are required. Another attraction is that, in the absence
of channel contention, the network latencies of wormhole
routing are relatively independent of the distance between
the source and destination nodes.

Third, the all-port architecture is utilized. In worm-
hole-routed MPCs, communications among nodes are
handled by a separate router, as shown in Fig. 1. The ex-
ternal channels connect the router to neighboring routers,
and the internal channels connect to its local processor.
The port model refers to the number of internal channels
in each node. In the case of an all-port system, every ex-
ternal channel has a corresponding internal channel, thus
allowing the node to send and receive messages to and
from all its neighbors concurrently.

Finally, these systems use the deterministic dimension-
ordered routing algorithm [8], which reserves links in a
strictly increasing order of dimensions when sending mes-
sages. To provide shortest routing paths, virtual channels
have to be added to prevent deadlock in a torus network.
Dally[3] had illustrated the method to implement dead-
lock-free message routing with virtual channels. By ac-
counting for the merits of the dimension-ordered routing
algorithm, the designer of unicast-based collective opera-
tions may be able to eliminate channel contention so that
the performance can be improved.

3. The problem

The most important issue for an efficient broadcast al-
gorithm is to minimize the broadcast latency. To imple-
ment the broadcast operation in a network with N nodes,
(N-1) unicasts have to be generated so that every node can
receive the broadcast message. If all these (N-1) unicasts
are sent by the source node, then the broadcast latency will
be the sum of the communication latencies of the (N-1)
unicasts in the worst case. Obviously, this strategy is unac-
ceptable for its poor performance. By organizing these
unicasts as a broadcast tree, better performance may be
obtained. Fig. 2 shows the difference of these two imple-
mentations for broadcasting on a 4×4 torus. In Fig. 2(a),
(0,0) generates 15 unicasts to send the broadcast message.
In Fig. 2(b), an example of a broadcast tree is illustrated.

Router

Local
Processor/memory

Internal input channels Internal output channels

External output
channels

External input
channels

Fig. 1. The all-port node architecture.



The performance of a broadcast tree depends on the
system’s architecture, especially the switching strategy,
the port model, and the unicast routing algorithm. By ex-
ploiting the distance insensitivity of wormhole routing, the
communication latencies of the unicasts in a broadcast tree
are approximately the same in the absence of channel
contention. For this reason, in the absence of channel
contention, the broadcast latency is approximate the time
for performing the longest sequence of unicasts in the
broadcast tree. For example, the longest sequence of
unicasts in Fig. 2(b) is first from (0, 0) to (2, 0), then from
(2, 0) to (2, 1), and finally from (2, 1) to either (1, 1) or (2,
2). However, if channel contention happens in some
unicasts, their communication latencies may increase, and
the broadcast latency may also increase and becomes un-
predictable. From the above discussion, it is obvious that
an efficient broadcast algorithm should minimize the
number of unicasts in the longest sequence, i.e., minimize
the number of message-passing steps, and prevent channel
contention. To formally define the requirements of an effi-
cient implementation for broadcasting on a dimension-
ordered wormhole-routed network, some definitions are
given below and several theorems for contention-free
broadcast algorithms are also presented.

A unicast operation in a broadcast tree can be denoted
as an ordered quadruple (u, v, p(u, v), t) [7], where u and v
are the source and destination nodes, respectively, p(u, v)
is a path based on dimension-ordered routing, and t is the
message-passing step of the broadcast at which the unicast
is performed. Two unicasts (u, v, p(u, v), t) and (x, y, p(x,
y), τ) are contention-free if they will not contend for the
same channel at the same time. In the following discussion,
we shall use Ci(p(u, v)) to denote the ith channel in p(u, v).
Definition 1: An implementation I(B) of a broadcast B is a
sequence of unicast sets U1, U2, …, Uk, satisfying the fol-
lowing conditions.

1)  For every unicast (u, v, p(u, v), t)∈U1, u=s0, where s0

is the source node of B.
2)  For every unicast (u, v, p(u, v), t)∈ Ut, u≠s0 and 1<t≤k,

there must exist a set Uj with j<t which has (w, u, p(w,
u), j) as a member for some node w.

3)  For any two unicasts (u, v, p(u, v), t) and (x, y, p(x, y),
t) in Ut, 1≤t≤k, if u=x, then C1(p(u, v)) ≠ C1(p(x, y)).

4)  For every node di, di≠s0, there exist exactly one node
w such that (w, di, p(w, di), j) appear in Uj for some
integer j, 1≤j≤k.

The first condition in Definition 1 states that only the
source node is sending messages in the first step. The sec-
ond condition guarantees that a node, except the source
node, has received the message before it may forward the
message to other nodes. The third condition implies that
the messages sent by the same node in a step must use dif-
ferent output channels. Finally, the last condition ensures
that every node receives the broadcast message exactly
once. In the example illustrated in Fig. 2(b), there are three
unicast sets in the implementation. A broadcast imple-
mentation is said to be stepwise contention-free if the ele-
ments in each unicast set Ui are pairwise contention-free,
and depth contention-free if any two unicasts in the broad-
cast implementation are contention-free. Theorem 1 and
Theorem 2 give sufficient conditions for two unicasts in an
implementation to be contention-free, and Theorem 3
gives sufficient conditions for an implementation to be
depth contention-free.
Definition 2: Given a broadcast implementation I(B)= {U1,
U2,…, Uk}, a node v is in the reachable set of node u, de-
noted as Ru, if and only if v=u or there exists j, 1≤j≤k, such
that (w, v, p(w, v), j)∈ Uj for some node w∈ Ru.
Theorem 1: Given a broadcast implementation I(B), if at
least one of the following three conditions holds for any
two unicasts (u, v, p(u, v), t) and (x, y, p(x, y), τ) in I(B),
where t≤τ, then they are contention-free.

1)  x∈Rv.
2)  p(u, v) and p(x, y) are arc-disjoint.
3)  u=x and C1(p(u, v)) = C1(p(x, y)).

Proof: We shall show that channel contention does not
arise in these three conditions.
1)  If x∈Rv, then (u, v, p(u, v), t) must be completed before

(x, y, p(x, y), τ) begins, as shown in Fig. 3(a). Clearly,
they are contention-free. (Note: u∉Ry since t≤τ.)

2)  If p(u, v) and p(x, y) are arc-disjoint, then, by definition,
the two unicasts must be contention-free.

3)  If u=x and C1(p(u, v)) = C1(p(x, y)), then we can derive
t<τ since u can send only one message through the
same output channel at a time as defined in Definition 1.
Fig. 3(b) illustrates this situation. Note that u sends the

0,2

0 ,1

3 ,3

0 ,0

0 ,0

0 ,03 ,2

(a)

3,0

3,1

0,3

0 ,0

0 ,1

0,2

3,3 1,3 3 ,2 1,2

2,0

1,0 2,3 2,1

1,1 2 ,2

0 ,0

U1

U2

U3

(b)

Fig. 2. Examples of broadcast ing on a 4 ×4 torus.

(a)

u

v

x

y

[t]

[τ]

(b)

u

v

x

y

[τ] [t]

Fig. 3. Conditions 1 and 3 in Theo rem 1.



message to v before sending it to y. Even if τ=t+1 and
the sending latency is 0, no channel contention will
happen. �

Theorem 2: Given a broadcast implementation I(B), if at
least one of the following three conditions holds for any
two unicasts (u, v, p(u, v), t) and (x, y, p(x, y), τ) in I(B),
where t≤τ, and there is no channel contention between (u,
v, p(u, v), t) and any other unicast, then they are conten-
tion-free.
1)  x∈Rw, (u, w, p(u, w), t+l)∈I(B) for some node w and

positive integer l, and C1(p(u, v)) = C1(p(u, w)).
2)  x∈Rw, (u, w, p(u, w), t)∈I(B) for some node w, and (u, v,

p(u, v), t) is sent out before (u, w, p(u, w), t) is sent out
by the same node u.

3)  x∈Rw, (u, w, p(u, w), t+l)∈I(B) for some node w and
positive integer l; (u, z, p(u, z), t)∈I(B) for some node z
and C1(p(u, z)) = C1(p(u, w)); and (u, v, p(u, v), t) is
sent out before (u, z, p(u, z), t) is sent out by the same
node u.

Proof: We shall show that channel contention does not
arise in these three conditions.
1)  This condition is shown in Fig. 4(a). As proved in Con-

dition 3 of Theorem 1, node u must complete sending
the message to node v before it can start to send the
message to node w. Since node w is either an ancestor of
x or x itself and there is no channel contention between
(u, v, p(u, v), t) and any other unicast, clearly, node v
will r eceive the message prior to node x. This prevents
channel contention between (u, v, p(u, v), t) and (x, y,
p(x, y), τ).

2)  Fig. 4(b) illustrates this condition. Let c be a common
channel of p(u, v) and p(x, y). Suppose c is from node z
to node z'. Since z is a node in p(u, v) and dimension-
ordered routing is used, the path from u to z in p(u, v) is
the shortest path from u to z. Hence, without contending
any channel with other unicast, (u, v, p(u, v), t) must
have passed through c completely before (x, y, p(x, y), τ)
reserves it because (u, v, p(u, v), t) is sent out before (u,
w, p(u, w), t). This prevents channel contention between
(u, v, p(u, v), t) and (x, y, p(x, y), τ).

3)  As shown in Fig. 4(c), this condition is a combination of
Conditions 1 and 2. From the proof of Conditions 1 and

2, there is no channel contention between (u, v, p(u, v),
t) and (x, y, p(x, y), τ). �

Theorem 3: Given a broadcast implementation I(B), if at
least one of the conditions in Theorem 1 or Theorem 2
holds for every pair of unicasts in I(B), then I(B) is depth
contention-free.
Proof: Let I(B)= {U1, U2,…, Um}. We shall prove that, for
any two unicasts in {U1, U2,…, Ui}, 1≤i≤m, there is no
channel contention. The proof is by mathematic induction
on i.

For i=1, since all the unicasts in U1 are generated by the
source node, they must be arc-disjoint. Hence, there is no
channel contention between any two unicasts in U1. Sup-
pose there is no channel contention between any two
unicasts in {U1, U2,…, Uk}, 1≤k<m. We shall prove that,
for any two unicasts in {U1, U2,…, Uk+1}, there is no
channel contention.

Consider those unicasts in Uk+1. Any two of them must
be arc-disjoint because no other condition in Theorem 1 or
Theorem 2 can hold for them. Therefore, there is no chan-
nel contention between any two unicasts in Uk+1. From the
assumption, there is no channel contention between any
two unicasts in {U1, U2,…, Uk}. Hence, if there is channel
contention between two unicasts in {U1, U2,…, Uk+1}, then
one of them should be in Uk+1, and the other one should be
in {U1, U2,…, Uk}.

Let (u, v, p(u, v), t) ∈{ U1, U2,…, Uk} and (x0, y0, p(x0,
y0), τ0) ∈Uk+1 be two unicasts that contend for the same
channel. If any condition in Theorem 1 holds for them,
they must be contention-free. Hence, only those conditions
in Theorem 2 may hold for them. Moreover, there must
exist another unicast (x1, y1, p(x1, y1), τ1), k<τ1, which
contends for some channel with (u, v, p(u, v), t) before the
time the channel contention between (u, v, p(u, v), t) and
(x0, y0, p(x0, y0), τ0) occurs. Since the two unicasts (u, v,
p(u, v), t) and (x1, y1, p(x1, y1), τ1) are not contention-free
either, similar situation happens again. Thus, for any (xi,
yi, p(xi, yi), τi), k<τi, which contends for some channel
with (u, v, p(u, v), t), there must exist another unicast (xi+1,
yi+1, p(xi+1, yi+1), τi+1), k<τi+1, which contends for some
channel with (u, v, p(u, v), t) before the time the channel
contention between (u, v, p(u, v), t) and (xi, yi, p(xi, yi), τi)
occurs. Since this infinite situation could never happen,
there must be no channel contention between (u, v, p(u, v),
t) and (x0, y0, p(x0, y0), τ0). Therefore, there is no channel
contention between any two unicasts in {U1, U2,…, Uk+1},
1≤k<m. Hence, by mathematic induction, I(B) is depth
contention-free. �

4. Related works

The problem of broadcasting on wormhole-routed net-

(a)

u

v

x

y

w

[t+l] [t]

[τ]

(b)

u

v

x

y

w

[t] [ t]

[τ]

(c)

u

v

x

y

w

[t]

[t]

[τ]

z

[t+l]

Fig. 4. Conditions in Theo rem 2.



works has been studied extensively. A recent survey can be
found in [6]. In terms of the all-port model, Ho and Kao [4]
developed an optimal broadcast algorithm for hypercubes.
On meshes and tori, Tsai and Mckinley [9], [10] proposed
the extended dominating nodes (EDN) approach for
broadcasting. Their algorithm requires d steps for broad-
casting on a 2d×2d torus, and is proved to be stepwise con-
tention-free. However, channel contention may happen
between two unicasts in different steps. To eliminate the
channel contention, we had proposed a depth contention-
free broadcast algorithm [5], which also requires only d
steps for broadcasting on a 2d×2d torus.

For broadcasting on an all-port n0×n1 torus, n0≤n1,
Tseng [11] proposed a dilated-diagonal-based scheme.
This algorithm required 2log5n+1 steps for a square n×n
torus. For a nonsquare n0×n1 torus, n0<n1, (log5n0 +
log5(n0/2) + log5(n1/n0) + t) steps are required, where
t=2 if n0 is even, and t=3 if n0 is odd. However, this algo-
rithm did not consider broadcasting on an n0×n1 torus,
where n0>n1. Furthermore, channel contention may hap-
pen in Tseng's algorithm.

5. The proposed algorithm

In this section, we shall propose a broadcast algorithm
for all-port 2D tori with arbitrary size that is both efficient
and depth contention-free.

5.1 Straight pattern and Turn pattern

The proposed broadcast algorithm is based on two
broadcast patterns, Straight pattern (S-pattern) and Turn
pattern (T-pattern). Fig. 5 shows these two patterns. Fol-
lowing each pattern, a node can send four unicasts concur-
rently if the size of the network is large enough. At the
first step of broadcasting, a pattern will be chosen by the
source node to sent the broadcast message. According to
the pattern, the torus network can be divided into five
smaller blocks as shown by dashed lines in Fig. 5. A block
is a connected sub-network of the torus network. After the
first step finished, there are five nodes holding the broad-
cast message. Each of them is in different blocks and will
take the responsibility of broadcasting the message to all

nodes of the block. From Fig. 5, it can be observed that, by
appropriately choosing the sizes of the blocks, the five
blocks will be independent and every node will belong to
exactly one block no matter which pattern is used. Recur-
sively applying the above concept, a torus will be decom-
posed into a set of smaller blocks at each step and the mes-
sage will be forwarded to every node following the decom-
position. In the following paragraphs, we will show how to
decide the pattern to be used at each step and the sizes of
the blocks.

Let W(n0, k) be the maximum n1 such that the broadcast
operation can be finished in k steps for an n0×n1 torus. We
can give it a recursive definition that

W(n0, k)= MAX{ WS(n0, k), WT(n0, k) }, where
WT(n, k)= 5W(n, k-1), and
WS(n, k)= 2WS(n, k-1)+ MIN{  WS(n/3, k-1),

WS(n/3, k-1) }.
If W(n0, k)= WS(n0, k), then S-pattern is adopted for

broadcasting. Otherwise, T-pattern is adopted. Note that
the five blocks after applying T-pattern are out of align-
ment. Therefore, T-pattern can only be adopted by a block
whose size along dimension 0 is the same as that of the
torus since there exist wraparound channels in torus net-
works. Also note that MIN{ WS(n/3, k-1), WS(n/3, k-1) }
is considered in the definition of WS(n, k). This ensures
that all the nodes in a block will be in some smaller block
after S-pattern is applied.

Suppose S= (XS, YS) is the source node for broadcasting
on an n0×n1 torus, a pre-computed table can be consulted
to find k' such that W(n0, k'-1)< n1≤ W(n0, k'). The pattern
to be used can also be determined. Fig. 6 shows the block
sizes for these two patterns, and Fig. 7 shows the addresses
of the nodes that receive the broadcast message from node
S. In Fig. 6 and Fig. 7, n0 is assumed to be divisible by 3
and n1 is assumed to be divisible by 5. If indivisible condi-
tion happens, the even policy is used such that the differ-
ence between any two parts is no more than one. Consider
the example of broadcasting on a 3×8 torus. T-pattern will
be adopted and the torus will be divided into 5 blocks at
the first step. Since 8 is indivisible by 5, the even policy is
used and the sizes of the 5 blocks are 3×1, 3×2, 3×2, 3×2
and 3×1, respectively.

For successfully applying the recursive decomposition

(a) S-pattern

S A

B

C

D

(b) T-pattern

S

A

B

C
D

Fig. 5. Straight pattern and Turn pattern.

(a) S-pattern

(n0/3)×(n1-2WS(n0, k'-1))

(b) T-pattern

n0×WS(n0, k'-1) n0×(n1/5)

n0×(n1/5)

n0×(n1/5)

n0×(n1/5)

n0×(n1/5)n0×WS(n0, k'-1)

Fig. 6. Block sizes for S-pattern and T-pattern.



process for broadcasting, the degenerated patterns for
small blocks should also be determined. Because neither
S-pattern nor T-pattern can be performed completely for
an n0×n1 block, where n0<3 or n1<3, a degenerated pattern
should be used for broadcasting. Fig. 8 shows the degener-
ated patterns considered in the proposed algorithm. When
broadcasting, a torus is recursively decomposed into a set
of smaller blocks. Finally, each of the blocks consists of
one node only, and the broadcast message can be for-
warded to every node following the decomposition.

5.2 The broadcast algorithm

The above subsection has illustrated the concept and
the requirements for successfully applying S-pattern and

T-pattern to broadcast on a 2D torus. Fig. 9 gives the detail
of the broadcast algorithm. The while-loop  of Fig. 9 is
the main part of the algorithm. Once a node receives the
broadcasting message, it becomes the source node of the
n0×n1 block, and begins to broadcast the message. In the
while-loop , the pattern to be used is determined by
look_table() , then pattern_send() is called to send
out the message and set the block sizes. The while-loop

ends when the block size is 1×1, i.e., only one node in the
block. This algorithm can broadcast a message to every
node correctly. The proof is presented in Theorem 4. It can
also be proved that the algorithm is depth contention-free
as shown in Theorem 5.
Theorem 4. The proposed algorithm delivers a message
exactly once to every node in an n0×n1 torus.
Proof: It can be observed that an n0×n1 torus is also a
block. From the algorithm, if a block consists of more than
one nodes, it will be decomposed into a set of independent
blocks following one of the patterns shown in Fig. 5 and
Fig. 8. The size of each block for the patterns in Fig. 5 is
determined as shown in Fig. 6, and the block sizes for the
patterns in Fig. 8 can be obtained similarly. Therefore, af-
ter each step, every node will belong to exactly one of the
blocks, and only one node in each block will hold the
broadcast message. Moreover, each node holding the mes-
sage will take the responsibility of broadcasting in the
block and will not send the message to any node in other
blocks. Therefore, following the decomposition, the mes-
sage will be forwarded to every node exactly once. �
Lemma 1. Suppose S-pattern is adopted for broadcasting
in block B. Let u be one of the four unicasts of S-pattern
and v be any unicast in B. At least one condition in
Theorem 1 or Theorem 2 holds for u and v.
Proof: Let the five smaller blocks after applying S-pattern
be BS, BA, BB, BC, and BD, and the source nodes of these
blocks be S, A, B, C, and D, respectively. Note that S is
also the source node of block B. Suppose S-pattern is
adopted for broadcasting in block B at step t. The four
unicasts of S-pattern should be (S, A, p(S, A), t), (S, B, p(S,
B), t), (S, C, p(S, C), t), and (S, D, p(S, D), t). Clearly, all
these four unicasts are arc-disjoint. Consider the unicast (S,
A, p(S, A), t).
1. Because it passes BS and BA only, for any unicast v in

BB, BC and BD, (S, A, p(S, A), t) and v are arc-disjoint.
Hence, Condition 2 of Theorem 1 holds.

(a) S-pattern.

S=(XS, YS) A=(XS+n0/3, YS)

B=(XS, YS+(n1/2-Ws(n0, k'-1)/2))

C=(XS-n0/3, YS)

D=(XS, YS-(n1/2-Ws(n0, k'-1)/2))

(b) T-pattern.

S=(XS, YS) A=(XS+1, YS+2n1/5)

B=(XS, YS+n1/5)

C=(XS-1, YS-2n1/5)

D=(XS, YS-n1/5)

Fig. 7. Destinat ion nodes for S-pattern and T-pattern.

(a) n0>2, n1=2.

(c) n0=2, n1>2.

(d) n0=2, n1=2.

(e) n0=2, n1=1. (g) n0=1, n1=2.

(b) n0>2, n1=1.

(f) n0=1, n1>2.

Fig. 8. The degen erated patterns.

/* Broadcasting on a n0×n1 torus. */
Procedure dcf_broadcast(int n0, int n1)
{
 char pre_ptn ; /* Pattern been used for sending

message to this processor. */
 char ptn ; /* Pattern to be used for broadcasting */
 if( node_id == bcst_source_node ){

/* I am source node */
Prepare the broadcast message B_MSG;
pre_ptn  = ' ';

 }else{
b_receive(& n0,& n1,& pre_ptn ,&B_MSG);

     /* Receive the broadcast message, the previously
used pattern, and the block size n0×n1. */

 }
 while( n0 > 1 || n1 > 1){
 ptn = look_table( n0, n1, pre_ptn ).
      /* look_table()return a pattern to be used. */
 pattern_send( ptn , & n0, & n1, B_MSG);
      /* Follow ptn  to send out messages. Set the block

sizes for each block. */
 pre_ptn = ptn ;
 }
}

Fig. 9. The proposed broad cast a lgorithm.



2. For each unicast (x, y, p(x, y), τ) in BA, x∈RA, Condi-
tion 1 of Theorem 1 must hold.

3. For each unicast (x, y, p(x, y), τ) in BS, if it passes some
channel of p(S, A), then one of following conditions
holds.
(1)  x=S. Since node S uses S-pattern at step t, from the

algorithm, it will use S-pattern or the degenerated
patterns at the following steps. Therefore, y must be
a node in p(S, A) and C1(p(x, y)) = C1(p(S, A)).
Hence, Condition 3 of Theorem 1 holds for (S, A,
p(S, A), t) and (x, y, p(x, y), τ).

(2)  There exists an ancestor node w of x, and w receives
the message directly from S at step t+l for some
positive integer l. As we had mentioned above, node
S must use S-pattern or one of the degenerated pat-
terns at step t+l. Therefore, w must be a node in p(S,
A) and C1(p(S, w)) = C1(p(S, A)). Hence, Condition
1 of Theorem 2 holds for (S, A, p(S, A), t) and (x, y,
p(x, y), τ).

From the above discussion, if v is any unicast in B, at
least one condition in Theorem 1 or Theorem 2 holds for
(S, A, p(S, A), t) and v. Similar proof can be applied to (S,
B, p(S, B), t), (S, C, p(S, C), t), and (S, D, p(S, D), t). This
completes the proof. �

Lemma 2. Suppose T-pattern is adopted for broadcasting
in block B. Let u be one of the four unicasts of T-pattern
and v be any unicast in B. At least one condition in
Theorem 1 or Theorem 2 holds for u and v.
Proof: Let the five smaller blocks after applying T-pattern
be BS, BA, BB, BC, and BD, and the source nodes of these
blocks be S, A, B, C, and D, respectively. Note that S is
also the source node of block B. Suppose T-pattern is
adopted for broadcasting in block B at step t. The four
unicasts of T-pattern should be (S, A, p(S, A), t), (S, B, p(S,
B), t), (S, C, p(S, C), t), and (S, D, p(S, D), t). Clearly, all
these four unicasts are arc-disjoint. Consider the unicast (S,
A, p(S, A), t).
1. Because it passes BS, BA and BB only, for any unicast v

in BC and BD, (S, A, p(S, A), t) and v are arc-disjoint.
Hence, Condition 2 of Theorem 1 holds.

2. For each unicast (x, y, p(x, y), τ) in BA, x∈RA, Condi-
tion 1 of Theorem 1 must hold.

3. For each unicast (x, y, p(x, y), τ) in BB, x∈RB. Since (S,
A, p(S, A), t) is sent out before (S, B, p(S, B), t), Condi-
tion 2 of Theorem 2 holds for (S, A, p(S, A), t) and (x, y,
p(x, y), τ).

4. For each unicast (x, y, p(x, y), τ) in BS, if it passes some
channel of p(S, A) along dimension 0, then x=S because
there is only one channel p(S, A) along dimension 0.
Hence, Condition 3 of Theorem 1 holds for (S, A, p(S,
A), t) and (x, y, p(x, y), τ).

If (x, y, p(x, y), τ) passes some channel of p(S, A)

along dimension 1, then there exists an ancestor node w
of x, w receives the message directly from S and one of
following conditions holds.
(1)  C1(p(S, w)) = C1(p(S, A)). Hence, Condition 1 of

Theorem 2 holds for (S, A, p(S, A), t) and (x, y, p(x,
y), τ).

(2)  C1(p(S, w)) = C1(p(S, B)). Since (S, A, p(S, A), t) is
sent out before (S, B, p(S, B), t), Condition 3 of
Theorem 2 holds for (S, A, p(S, A), t) and (x, y, p(x,
y), τ).

From the above discussion, if v is any unicast in B, at
least one condition in Theorem 1 or Theorem 2 holds for
(S, A, p(S, A), t) and v. Similar proof can be applied to (S,
C, p(S, C), t). The proof for (S, B, p(S, B), t) and (S, D, p(S,
D), t) is similar to the proof in Lemma 1. This completes
the proof. �

Lemma 3. Suppose one of the seven patterns in Fig. 8 is
adopted for broadcasting in block B. Let u be a unicast of
the pattern and v be any unicast in B. At least one condi-
tion in Theorem 1 or Theorem 2 holds for u and v.
Proof: It can be observed that each pattern in Fig. 8 is a
special case of S-pattern. Hence, this lemma can be proved
from Lemma 1. �

Theorem 5. The proposed algorithm for broadcasting on
an n0×n1 torus is depth contention-free.
Proof: As we have proved in Theorem 4, an n0×n1 torus is
a block and will be decomposed recursively following the
patterns in Fig. 5 and Fig. 8. Since all the blocks in a step
are independent, from Lemmas 1~3, it can be easily
proved that at least one condition in Theorem 1 or
Theorem 2 holds for any two unicasts in the proposed al-
gorithm. Therefore, from Theorem 3, the proposed algo-
rithm is depth contention-free. �

6. Performance study

In this section, the performance of the proposed algo-
rithm is studied. In an all-port 2D torus, each node can
send messages to at most four nodes simultaneously. Thus,
there exists a theoretical lower bound, log5(n0×n1), on
the number of message-passing steps for broadcasting on

N=n0×n1 log5(n1) Tseng
n0≤n1

DCF
n0≤n1

DCF

9 ~ 25 2 4.90 2.70 2.82
26 ~ 125 3 6.17 3.84 3.95

126 ~ 625 4 7.19 4.85 5.10
626 ~ 3125 5 8.19 5.89 6.24

3126 ~ 15625 6 9.20 6.95 7.37
15626 ~ 78125 7 10.19 7.95 8.49
78126 ~ 390625 8 11.20 8.98 9.62

390626 ~ 1953125 9 12.19 10.02 10.74
1953126 ~ 9765625 10 13.20 11.03 11.87

Table 1. Average number of steps for broad-
cast ing on n0×n1 tori.



an n0×n1 torus. However, this lower bound may not be
achievable because it is not always possible for every node
to send the message to four new nodes in every step under
the constrain of dimension-ordered routing. For Tseng's
algorithm on an n0×n1 torus, the number of message-
passing steps can be represented as follows.

 

 

 

2 1

2
2

2
3

5 0 0 1

5 0 5
0

5
1

0
0 1 0

5 0 5
0

5
1

0
0 1 0

0 1

log ,

log log log ,

log log log ,

.

n n n

n
n n

n
n n n

n
n n

n
n n n

n n

+ =

+ 





+








 + <

+ 





+








 + <

>
















,  if  

,  if   and  is even

,  if   and  is odd

not considered ,  if  

The analysis of the proposed algorithm on an n0×n1

torus is discussed as follows. At each step, the nodes
holding the broadcast message may use different patterns
for broadcasting. Which pattern to use in a block depends
on the size of the block. The number of steps k' for the
proposed algorithm is decided by W(n0, k') such that W(n0,
k'-1)< n1≤ W(n0, k'). Since it is difficult to give an analyti-
cal solution for W(n0, k'), k' is unable to be formulated by a
general equation.

To compare Tseng's algorithm with the proposed algo-
rithm, the number of steps for broadcasting on a torus with
N nodes is computed. For tori with N nodes, the average
numbers of steps for 5i≤N<5i+1, 1≤i≤9, are shown in Table
1. Only those tori that consist of at least 3 nodes along
each dimension are considered. In the first column of
Table 1, the range of N is illustrated. Column 2 shows the
theoretical lower bound for broadcasting on a torus with N
nodes. The average number of steps for Tseng's algorithm
is shown in column 3. Note that only those tori with n0≤n1

are considered for Tseng's algorithm. In order to compare
with Tseng's algorithm, we also consider only those tori
with n0≤n1 for the proposed algorithm in column 4. It can
be observed that the proposed algorithm requires about 2
fewer steps than Tseng’s algorithm. Moreover, no channel
contention will occur for the proposed algorithm. Broad-
casting on the tori with n0>n1 is not considered in Tseng's
algorithm. The proposed broadcast algorithm does not
have such problem and can be used for arbitrary tori. Col-
umn 5 shows the average numbers of steps for all the tori
with arbitrary size by using the proposed algorithm.

7. Conclusion

In this paper, we propose a new algorithm for broad-
casting messages on all-port wormhole-routed 2D tori
with arbitrary size. The underlying network is assumed to
support only the dimension-ordered unicast. When broad-
casting, each node holding the broadcast message follows
one of the two patterns, S-pattern and T-pattern, to send
out the message. The torus network is recursively decom-

posed into a set of smaller blocks at each step such that
exactly one node in each block holds the message. Fol-
lowing the decomposition, the message is forwarded to
every node. The performance study shows that the pro-
posed algorithm requires about 2 fewer steps than the
Tseng’s algorithm in average. Furthermore, the proposed
algorithm achieves the goal of being depth contention-free
and being applicable to a 2D torus with arbitrary size.

References

[1] Tim S. Axelrod, “Effects of synchronization barriers on
multiprocessor performance,” Parallel Computing, Vol. 3,
No. 2, May. 1986, pp. 129-140.

[2] Willian J. Dally, “Performance Analysis of k-ary n-cube
Interconnection Networks,” IEEE Transactions on Comput-
ers, Vol. 39, No. 6, Jun. 1990, pp. 775-785.

[3] Willian J. Dally and Charles L. Seitz, “Deadlock-Free Mes-
sage Routing in Multiprocessor Interconnection Networks,”
IEEE Transactions on Computers, Vol. C-36, No. 5, May.
1987, pp. 547-553.

[4] Ching-Ten Ho and Ming-Yang Kao, “Optimal Broadcast in
All-Port Wormhole-Routed Hypercubes,” IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 6, No. 2,
Feb. 1995, pp. 200-204.

[5] Yomin Hou, Chien-Min Wang and Lih-Hsing Hsu, “Depth
Contention-Free Broadcasting on Torus Networks,” Inter-
national Conference on Supercomputing, Jul. 1998, pp.
393-400.

[6] Philip K. McKinley, Yih-jia Tsai, and David F. Robinson,
“Collective Communication in Wormhole-routed Massively
Parallel Computers,” IEEE Computer, Vol. 28, No. 12, Dec.
1995, pp. 39-50.

[7] Philip K. McKinley, Hong Xu, Abdol-Hossein Esfahanian,
and Lionel M. Ni, “Unicast-Based Multicast Communica-
tion in Wormhole-Routed Networks,” IEEE Transactions
on Parallel and Distributed Systems, Vol. 5, No. 12, Dec.
1994, pp. 1252-1265.

[8] Lionel M. Ni and Philip K. McKinley, “A Survey of Worm-
hole Routing Techniques in Direct Networks,” IEEE Com-
puter, Vol. 26, Feb. 1993, pp. 62-76.

[9] Yih-jia Tsai and Philip K. McKinley, “An Extended Domi-
nating Node Approach to Collective Communication in
Wormhole-Routed 2D Meshes,” Proc. Scalable High Per-
formance Computing Conf., May. 1994, pp. 199-206.

[10] Yih-jia Tsai and Philip K. McKinley, “A Broadcast Algo-
rithm for All-Port Wormhole-Routed Torus Networks,”
IEEE Transactions on Parallel and Distributed Systems,
Vol. 7, No. 8, Aug. 1996, pp. 876-885.

[11] Yu-Chee Tseng, “A Dilated-Diagonal-Based Scheme for
Broadcast in a Wormhole-Routed 2D Torus,” IEEE Trans-
actions on Computers, Vol. 46, No. 8, Aug. 1997, pp. 947-
952.


