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Abstract—Scene images typically include diverse and distinc-
tive properties. It is reasonable to consider different features
in establishing a scene category recognition system with a
promising performance. We propose an adaptive model to
represent various features in a unified domain, i.e., a set of
kernels, and transform the discriminant information contained
in each kernel into a set of weak learners, called dyadic
hypercuts. Based on this model, we present a novel approach
to carrying out incremental multiple kernel learning for feature
fusion by applying AdaBoost to the union of the sets of weak
learners. We further evaluate the performance of this approach
by a benchmark dataset for scene category recognition. Exper-
imental results show a significantly improved performance in
both accuracy and efficiency.
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I. INTRODUCTION

Visual recognition tasks for images of multiple cate-
gories have gained significant advances. The state-of-the-art
methods have been developed by following some common
strategies, such as designing a set of salient features based
on which we derive a statistical model to learn optimal
classifiers from training data, or clustering a number of
semantic classes based on interested properties. However,
major obstacles, e.g., lighting conditions, occlusions, and
large intra-class variations, should be overcome in order to
handle the recognition tasks more successfully.

Visual recognition models for image categorization usu-
ally utilize different and diverse properties to discriminate
categories, and most methods learn promising recognition
models by exploring these properties in training images. For
example, images are represented by significant features and
then operated by various scene classification methods [3],
[11], [17], [8]. Further, methods considering the intra-class
relationships between sub-image entities or co-occurrence
of different objects were proposed [21], [13], [15], in which
the bag-of-features and region-based methods were chosen.
Furthermore, the performance of the method based on lo-
cal features with co-occurrence property was significantly
improved by including spatial relations [13].

Previous efforts of devising robust visual features and
the corresponding distances have obtained significant results.
Nevertheless, it is well-known that no single visual feature
can be sufficient for recognition tasks. For example, the
images in the first row of Fig. 1 should have a high recog-
nition rate based on keypoint-based features [2], since those

Figure 1: Example of images for scene category recognition. The
three rows of images show scenes of category industrial
site, street scene and living room respectively. Due
to the diverse properties, recognizing these categories requires
category-dependent combinations of several visual features.

images consist of commonly shared patches of features. In
contrast, for the images in the second and third rows, gist
feature [3] might provide more recognition power. Thus, it
is reasonable to make use of combined information cues
from different features to improve recognition performance.
Furthermore, to account for the fact that the optimal features
for classification vary from category to category, we consider
the use of category-dependent adaptive classifiers.

Inspired by the good performance of multiple kernel
learning (MKL) [20], [22], [14], [16], we adopt an adap-
tive learning approach to designing kernel machines for
scene recognition. The use of multiple kernels not only
provides richer information for recognition, but also gives
an effective platform of feature fusion. In our approach,
adaptive classifiers are learned from multiple kernels via a
boosting algorithm. Empirically our method demonstrates a
significantly improved performance.

II. MKL FOR FEATURE FUSION

We describe some key concepts about multiple kernel
learning and its use for feature fusion in this section.

A. Conjoining kernel representation

Cognitive discoveries in prior work have demonstrated
the importance of the use of multiple features, such as



shape, texture, or color, to obtain a promising performance.
However, the forms of the diverse visual features, e.g., his-
tograms, feature vectors, or bag-of-words, may be different.
To consider various visual features concurrently, we estab-
lish a kernel matrix to describe the pair-wise relationships
among images under each visual feature. More specifically,
suppose we have a training data set of C categories, D =
{(xi, yi)}li=1, where xi is a training data, containing M
kinds of different visual features, xi,m, m = 1, 2, . . . ,M .
i.e., xi = (xi,1, xi,2, . . . , xi,M ), yi ∈ {1, 2, ..., C}, and l
is the number of training data. For each visual feature m,
we convert pairwise distances between data, measured by
Euclidean distance, to the mth kernel matrix based on radial
basis function (RBF) kernel function:

Km(xi, xj) = e−γm∥xi,m−xj,m∥2

, for m = 1, 2, . . . ,M
(1)

where γm is a positive constant. After that, we obtain a set of
kernels {Km}Mm=1, and each kernel is derived by conjoining
each visual feature and its corresponding distance function.

B. Multiple kernel learning
Learning problems of classification or regression can be

efficiently solved by kernel methods, such as support vector
machines (SVMs). Generally, a kernel matrix is constructed
from data, denoted as K(xi, xj), and specifies the similarity
between two data xi and xj . For such learning problems, the
formulation of the learned model is of the form

f(x) =
l∑

i=1

αiyiK(x, xi) + b (2)

where l is the number of training data, {αi}li=1 and b are
learned constants, and {(xi, yi)}li=1 are training data.

To enhance the interpretability of the resulting classifier,
recent research efforts, e.g., [20] have shown a significant
progress on learning SVMs with multiple kernels. In such
methods, an ensemble kernel, which is a convex combination
of multiple kernels, will be learned and is of the following
form

K(xi, xj) =
M∑

m=1

cmKm(xi, xj), (3)

cm ≥ 0, and

M∑
m=1

cm = 1,

where M is the number of kernels. By substituting multiple
kernels into (2), we obtain the formulation of learned models
of MKL from binary-class data {(xi, yi ∈ ±1)}:

f(x) =
l∑

i=1

αiyi

M∑
m=1

cmKm(x, xi) + b (4)

The multiple kernel learning problem is to optimize
both the sample coefficients {αi}li=1 and kernel weights
{cm}Mm=1. However, the learning process of MKL is com-
putationally expensive and difficult to implement.

III. OUR APPROACH

The proposed approach that carries out MKL in a boosting
way is described in this section. We start by depicting
the dyadic hypercuts which are constructed from kernels
and serve as weak learners in the work. Then, we use
AdaBoost to combine these dyadic hypercuts generated from
different kernels. The resulting approach accomplishes MKL
in an incremental manner, and can control the tradeoff
between classification accuracy and efficiency via adjusting
the number of selected weak learners.

A. Dyadic hypercut

It is known that the cost of classifying testing data
by a kernel machine depends on the number of kernel
function evaluations. Therefore, we exploit dyadic hypercuts
proposed by Moghaddam and Shakhnarovich [19], which
are generated from a kernel matrix, and can be combined to
produce a strong classifier via a boosting algorithm. In this
way, we can control the run-time computational cost of a
learned kernel machine by adjusting the number of selected
weak learners.

In our case of multiple kernels, a dyadic hypercut h can
be constructed with a specific kernel Km, positive sample
xi and negative sample xj . The constructed dyadic hypercut
weak learner h has the following expression:

h(x) = sign(Km(x, xi)−Km(x, xj) + δ) (5)

where δ is a threshold. Totally, the size of the generated
weak learner pool is |{h}| = M ×Np×Nn, where M , Np,
and Nn are the numbers of kernels, positive training data,
and negative training data respectively.

B. Incremental multiple kernel learning via boosting

With diverse visual features, we can transfer information
embedded in each kernel m to a set of dyadic hyper-
cuts through (5). The resulting weak learner pool, which
is the union of the generated dyadic hypercuts from all
the kernels, will contain useful information for classifica-
tion from multiple visual features. We select and combine
those weak learners to obtain an ensemble classifier via
a practical framework, Adaboost [1]. AdaBoost iteratively
selects discriminant weak learners via maintaining a weight
distribution Dt over data. At each iteration t, AdaBoost
selects dyadic hypercut ht with the minimal weighted error
ϵt, determines the weight αt of ht, and updates the next
distribution of data weight Dt+1. The learned classifier
H(x), which is a linear combination of selected weak
learners, is shown as follows

H(x) = sign(
T∑

t=1

αtht(x)) (6)

We provide an incremental way of a learning classifier
with multiple kernels based on AdaBoost. It carries out mul-
tiple kernel learning, and the tradeoff between classification



accuracy and efficiency can be controlled via adjusting the
number of boosted weak learners. In addition, for scene
category recognition, we could learn a boosted classifier
for each category, since the optimal feature combination for
separating images of a category from the rest varies from
category to category.

IV. KERNELS FOR SCENE RECOGNITION

In this section, we introduce visual features and their
associated distance functions used to characterize images.
Each of them captures distinctive properties of images, such
as shape, texture, or some sensitive properties. In the work,
a kernel is constructed for each visual feature. We briefly
describe them as follows:

Gist: We adopt the gist descriptor [4] as the first feature
for its compactness and high performance. The gist descrip-
tor performs Fourier transform analysis to each individual
sub-region of an image, and the image is then summarized
by a set of perceptual properties. Euclidean distance is used
to estimate the distance between a pair images under gist
descriptor.

Pyramid HOG (Histogram of Oriented Gradients):
Shape-based features provide a strong evidence for image
categorization, and this phenomenon has been reported in the
literature of object recognition. To utilize the discriminant
power of shape information, we adopt the Pyramid HOG
descriptor [9] for shape feature extraction. We use χ2

distance to measure the dissimilarity between two images
under this representation.

SIFT: We apply DoG detector and use the SIFT (Scale
Invariant Feature Transform) descriptor [2] to depict interest
points for each image. We also transform all the descriptors
by k-means clustering, following by vector quantization [17]
to convert each image into a feature vector. In our experi-
ment, we implement two kinds of settings: The first one sets
the number of clusters to 200 (BoW-200) and the second sets
it to 800 (BoW-800). We use the χ2distance as the similarity
measure.

V. EXPERIMENTAL RESULTS

Scene recognition/classification involves not only data of
diverse categories but also large intraclass variations. Fur-
thermore, problems like different scales, views, or lighting
conditions also give challenges in designing recognition
algorithms. Therefore, we propose an approach for tackling
these problems by fusing multiple features. The proposed
approach is compared with the codebook approaches [17],
[11], [8] and other learning algorithms, especially with
a multiple kernel learning software, simpleMKL [20], in
which a classifier is learned by taking multiple kernels into
account simultaneously. For scene category recognition, we
implement the one-versus-all rule for multi-class classifica-
tion: a classifier is learned for each category, and used to
separate images of the category from the rest. We carry

Table I: Accuracy rates for scene recognition.

Method Dataset Classifier Accuracy%
our method NS15 Boosted MKL 88.6

Rakotomamonjy [20] ” simpleMKL 87.9
Rasiwasia [21] ” Bayes 72.5
Lazebnik [17] ” SVM 72.2

our method NS13 Boosted MKL 91.8
Rakotomamonjy [20] ” simpleMKL 90.2

Rasiwasia [21] ” Bayes 76.2
Lazebnik [17] ” SVM 74.7

out our experiments on the set of fifteen natural scene
categories, which is collected by Lazebnik et al [17]. We
will provide the experimental results and some discussions
in the following sections.

A. Dataset

The dataset is composed of images from fifteen natural
scene categories, NS15. Thirteen of these categories were
provided by [11]. Eight among those were collected by [3].
Each category includes 200-400 images, where 100 of them
are used for training, and the rest are for testing. All the
experiments are repeated 5 times with different randomly
selected training and testing images.

B. Classification results

Most of the previous methods[8], [17], applying to the
database, use the discriminative classifiers, such as SVMs,
to perform category recognition. We instead exploit the
dyadic hypercuts with AdaBoost for classification. Fig. 2
shows the classification accuracy of each visual feature and
fusion of diverse visual features. As we can see, using only
single visual feature is not sufficient to obtain a satisfactory
result (with recognition rates 50% ∼ 70%). In contrast, to
transfer those visual features to multiple kernels could give
a significant improvement (with recognition rate 90%).

Since each scene category includes distinct properties, our
approach can select the useful combination of visual features
via weak learners to best separate images of the category
from the rest. Moreover, the tradeoff between classification
accuracy and efficiency can be controlled by adjusting the
number of boosted weak learners. In Fig. 3, we show
different combinations of the four kinds of visual features
(weighted weak learners) used for different categories, where
each bar represents its corresponding proportion.

We report the results of our approach and compare to that
of the state-of-the-art systems in Table ??. The proposed
method achieves recognition rates of 88.6% and 91.8% on
NS15 and NS13 respectively, and outperforms the state-of-
the-art systems. The results validate the successfulness of
our method in fusing multiple features to boost classification
accuracy.



Figure 2: The recognition rates with each single and multiple
kernels over 500 boosting iterations. The recognition rates are
52.86%, 68.04%, 69.15%, 72.16%, 88.94% for Pyramid HOG,
Gist, BoW(200), BoW(800) and fusion features, respectively.

VI. CONCLUSIONS

We have proposed a useful method by taking advantage
of multiple features for classifying scene images. In addi-
tion, our approach not only provides a way of achieving
incremental multiple kernel learning but also can control
the tradeoff between classification accuracy and efficiency.
Experimental results show that our proposed method can
significantly improve the recognition performance.
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