
Multi-Party k-Means Clustering with Privacy Consideration

Teng-Kai Yu*, D.T. Lee**, Shih-Ming Chang
Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan
tkyu@ntu.edu.tw, dtlee@csie.ntu.edu.tw, r97922124@ntu.edu.tw

Justin Zhan
National Center for the Protection of the Financial Infrastructure

Dakota State University, Madison, South Dakota, USA
justinzzhan@gmail.com

Abstract— The k-means clustering algorithm is a widely used
scheme to solve the clustering problem which classifies a given
set of n data points in m-dimensional space into k clusters,
whose centers are obtained by the centroids of the points in the
same cluster. The problem with privacy consideration has been
studied, when the data is distributed among different parties
and the privacy of the distributed data is to be preserved. In
this paper, we apply the concept of parallel computing to solve
the privacy-preserving multi-party k-means clustering problem,
when the data is vertically partitioned and horizontally partitioned
respectively among different parties. We present algorithms for
solving the problems for these two data partition models that
run in O(nk) time and in O(m(k + log(n/k))) time respectively.
The time complexities of the algorithms are much better than
others without parallel computing.

I. Introduction

IN the modern ages, the usage of internet has become
more and more popular. Many kinds of information are

transported through the internet in huge amounts on a daily
basis, such as personal medical records, credit card numbers,
business transactions, etc. When dealing with this sensitive
information, the privacy issues become major concerns, as
any leakage or compromise of data may result in potential
harm to individuals or financial losses to corporates.

Clustering is a process of grouping a set of objects into
classes or clusters so that objects within a cluster are similar
in comparison with one another, but are dissimilar to objects
in other clusters [18]. In other words, clustering is to partition
a set of data into groups according to some similarity
measures of the data. It is widely used in the applications of
financial affairs, marketing, insurance, medicine, chemistry,
machine learning, data mining, etc. In general, the data
objects with multiple attributes can be considered as points
in m-dimensional space for some integer m > 1, and the k-
cluster problem is formally defined as follows. Given a set of
n points in <m, find a set of k centers {c1, c2, . . . , ck} so as to
minimize the sum of the squares of the Euclidean distances

*Also with Institute of Information Science, Academia Sinica, Nankang,
Taipei, Taiwan.

**Also with Institute of Information Science, Academia Sinica, Nankang,
Taipei, Taiwan, and Taiwan Information Security Center, Research Center
for Information Technology Innovation, Academia Sinica, Nankang, Taipei,
Taiwan.

of each point to its nearest center. It was shown in [2] [7] [10]
that the k-cluster problem is NP-hard when the dimension m
is part of the input, even for k = 2. And only recently it has
been shown that the k-cluster problem for a set of n points
in the plane [27], i.e. m = 2 is also NP-hard. If both k and m
are fixed, the problem can be solved exactly in polynomial
time [19].

The k-cluster problem being NP-hard, approximation or
heuristic algorithms have been proposed [3] [8] [11] [12] [23]
[24] [26] [28]. Among them the k-means clustering algorithm
[11] [26] is a simple but widely used heuristic algorithm to
the k-cluster problem.

In the original problem it is assumed that the set of
data for the k-cluster problem is centralized. The k-means
clustering algorithm [11] [26], shown in Section II-A, is quite
straightforward. When the data is distributed among many
parties, [9] gave a parallel algorithm to solve it. But if the
parties who own the data want to preserve their private data,
a solution to the privacy-preserving k-clustering problem
becomes less obvious. How we conduct clustering and also
preserve private data is an interesting problem. Depending on
the problems we deal with and the ways in which the data
is distributed among multiple parties, the privacy issues will
arise in different situations. These kinds of problems have
been studied in the field of privacy-preserving data mining
or PPDM for short [1] [25].

Many research works studied the privacy-preserving of
k-means clustering algorithms, and considered various data
partition models: vertically partitioned data [31], horizontally
partitioned data [22], and arbitrarily partitioned data [5]
[21]. We will introduce in the paper the notion of parallel
computing into the privacy-preserving multi-party k-means
clustering problem and give efficient algorithms for vertically
and horizontally partitioned data models respectively. As
expected, the parallel algorithms are much faster than those
without parallelism. We show that the speedup of these
parallel algorithms is optimal for vertically partitioned data
model and is nearly optimal for horizontally partitioned data
model.

We summarize our contributions of this paper as follows.
Let n be the number of points, m the dimensionality or the

number of attributes of data points, and k the number of
clusters.
• We introduce the notion of parallelism into privacy-

preserving multi-party k-means clustering problem for
the following two data partition models.

• For vertically partitioned data, we present a parallel
algorithm that runs in O(nk) time, when the number
of parties (or processors) is m.

• For horizontally partitioned data, we present a parallel
algorithm that runs in O(m(k+ log(n/k))) time, when the
number of parties (or processors) is n.

In Section II, we will introduce some preliminaries. In Sec-
tion III, we will deal with the privacy-preserving multi-party
k-means clustering problem for vertically partitioned data and
horizontally partitioned data. We conclude in Section IV with
some discussions and suggestions of future work.

II. Preliminaries

In this section, we will present some preliminaries. We first
introduce the k-means clustering algorithm in Section II-A.
We then explain our communication model in Section II-B.
In Section II-C, we will introduce homomorphic encryption.
Based on the homomorphic encryption, the scheme of secure
add and compare will be presented in Section II-D. In
Section II-E we present the single round robin method that
will be used for data exchange and communication.

A. k-means clustering algorithm

Recall that we are given a set of n data points in <m,
m > 1, and want to partition the set of points into k
clusters so as to minimize a certain objective function. Since
the general problem is NP-hard, heuristics or approximation
algorithms are considered. We shall focus on the k-means
clustering algorithm [11] [26] which is one of the most often
used heuristic algorithm for the k-cluster problem. We only
address the heuristic algorithm itself with an emphasis on its
efficiency, and do not consider its performance with respect
to the optimal solution. Without loss of generality we shall
assume that the number n of data points is significantly larger
than the number m of attributes and the output size k, the
number of clusters. The k-means clustering algorithm [11]
[26] is summarized below.

Algorithm 1: k-means clustering.
Input: n points in <m, m > 1.
Output: k centers, each of which is the centroid of points
belonging to the same cluster.

1) Arbitrarily select a set of k centers C =

{c1, c2, . . . , ck}.
2) For every point, find its closest center ci and assign

it to cluster i.
3) Based on the cluster assignment, calculate the new

set of centers C′ = {c′1, c′2, . . . , c′k} for all clusters.
4) If the difference between C and C′ is small enough,

then we terminate the algorithm and output C.
5) If not, replace C by C′ and goto Step 2.

In short, we arbitrarily choose the initial positions of these
k centers C = {c1, c2, . . . , ck} in Step 1. In Steps 2 to 5, we
first assign each point to the cluster whose center is closest to
it, where we use Euclidean distance as the distance function.
We then in Step 3 re-calculate a new set of k clusters centered
at C′ = {c′1, c′2, . . . , c′k} based on the cluster assignment in
Step 2. The new center of each cluster is calculated by
using the arithmetic mean method, i.e. by computing the
arithmetic mean of the points in the cluster. We decide if the
old set of centers is good enough by checking in Step 4 if
the difference1 of new set of centers C′ and the old set of
centers C is small enough within a given threshold. If so,
we terminate the algorithm and return C as the final result.
Otherwise, in Step 5, we will use the new set of centers C′
and iterate the process. The computation of distance between
two sets of centers is not our concern of this paper, so we
can adopt any method.

Due to privacy concerns, the data used to compute the
cluster centers may not be revealed if they belong to different
parties. Depending on the data distribution models, the
operations specified in Steps 2, 3 and 4 will be handled
differently. We will discuss the details later.

B. Communication model

Let us first describe the communication model that we
assume in this paper as follows:
• For each pair of parties there exists a connection be-

tween them, i.e. the parties form a complete graph.
• Every party can work independently in parallel.
• In each unit of time, a party can do only one of the three

operations: (1) broadcast one package of data to all other
parties; (2) send one package of data to another party;
(3) receive one package of data from another party.

• In each unit of time, if a party broadcasts data, all other
parties will be occupied to receive that data.

The size of one package of data is assumed to be a
constant.

As far as privacy preservation is concerned, we assume a
semi-honest adversary model, also called honest but curious
adversary model [15]. We assume that a semi-honest party
will correctly follow the protocol, but whenever opportunities
present themselves, it will unearth the information that it is
not supposed to know by the data that it has obtained . Thus if
we want to prevent leakage of data, we need to transfer data
carefully. The following encryption scheme is thus adopted.

C. Homomorphic encryption

Let (G, E,D,M) be a homomorphic encryption scheme
[29], where G is an algorithm for generating keys, E and
D are the encryption and decryption functions, and M is the
message space. It has the following properties:
• (G, E,D) is semantically secure [16].
• E(a1) × E(a2) = E(a1 + a2), for a1, a2 ∈ M.
• E(a1)α = E(α · a1), for a1 ∈ M and α ∈ IIN.

1The stopping condition varies. We can also terminate the algorithm by
fixing the number of iterations, if the convergence rate is too slow.

2

We assume that the time complexities of key generation,
encryption and decryption operations are all constant.

D. Secure add and compare

Based on the homomorphic encryption, we introduce the
secure add and compare scheme [31] here. It is a variation of
the circuit evaluation scheme due to Yao [34]. This scheme
has been shown to be semantically secure [16] and will be
an important primitive operation of our algorithm. For two
parties, P1 and P2, such that P1 has numbers a1 and b1,
and P2 has numbers a2 and b2, we want to securely find if
a1 + a2 < b1 + b2 without revealing the following two pieces
of information to the other party: (1) the numbers possessed
by each party; and (2) the difference between a1 + a2 and
b1 + b2.

Secure add and compare
1) P1 generates an encryption-decryption key pair (e, d)

of one of the homomorphic encryption schemes and
sends e and e(a1 − b1) to P2.

2) P2 calculates e(α · s) = e(α · ((a1 − b1) + (a2 − b2)))
= (e(a1 − b1)× e(a2 − b2))α and sends it to P1, where
α ∈ IIN.

3) P1 decrypts the data and if α·s ≥ 0→ a1+a2 ≥ b1+b2;
else a1 + a2 < b1 + b2.

It is obvious that the Secure add and compare algo-
rithm has time complexity O(1) for both computational and
communication operations, and we can therefore assume that
Secure add and compare operation is a primitive function
which takes constant time.

We now introduce another primitive function that will be
used later on.

E. Single round robin

The following theorem in [32] is the basis for our single
round robin scheme.

• An n-clique, or complete graph of n vertices, denoted
Kn, can be decomposed into n − 1 perfect matchings
when n is even.

Furthermore, an easy construction method was given so
that every vertex can find its matching partners of all the
n − 1 perfect matchings of Kn in linear time. Each perfect
matching in Kn is used to represent operations that can be
performed simultaneously in parallel.

Recall that one of the basic problems to deal with is
that given n parties P1, P2, . . . , Pn, every party wants to
communicate with all other parties. The communication
model is similar to Section II-B. We can only use send but
not broadcast. We assume the number of parties to be even,
for otherwise we can add a dummy party Pn+1 if n is odd. In
each round of the single round robin we have n/2 matching
pairs. That is, each party in each round communicates with
the party it is matched to, so that in n− 1 rounds each party
can communicate with n − 1 different parties corresponding
to the n − 1 edge-disjoint perfect matchings.

Thus, if there are n parties and each has a personal data,
then every party can collect all of the data owned by the
other n − 1 parties after n − 1 rounds of single round robin
communication.

III. Parallel Privacy-Preserving Multi-Party k-Means

Algorithms

In the classical k-means clustering algorithm, the data of
all the points and centers are centralized. But when the data
is distributed among many parties, it requires some efforts
if privacy issues need to be addressed. For example, if each
of the n parties, which possesses the data of one of the n
points, needs to preserve its data, we need to modify Step 3
of the k-means clustering algorithm to compute new centers.

In the k-means clustering algorithm, we have n points in
an m-dimensional space, where each one of them is regarded
as a 1 × m row vector. If we combine these n row vectors
together, we get an n × m matrix Mp, which is shown below,
where pi, j means the jth entry of point pi.

Mp =



p1,1 p1,2 · · · p1,m
p2,1 p2,2 · · · p2,m
...

...
. . .

...
pn,1 pn,2 · · · pn,m



Similarly the k-centers can be represented as a k×m matrix
Mc as shown below, where ci, j means the jth entry of center
ci.

Mc =



c1,1 c1,2 · · · c1,m
c2,1 c2,2 · · · c2,m
...

...
. . .

...
ck,1 ck,2 · · · ck,m



In this paper we consider two kinds of data partition
models (1) vertically partitioned data, i.e. each party has a
column of Mp and Mc, and (2) horizontally partitioned data,
i.e. each party has a row of Mp. We will introduce the notion
of parallel computing to solve this problem under these two
data partition models.

We will deal with vertically partitioned data in Section
III-A and horizontally partitioned data in Section III-B.

A. Vertically partitioned data

In the vertically partitioned data case, we assume that there
are m parties, P1, P2, . . . , Pm, and that party Pi has the raw
data of the ith column of Mp, and the ith column of Mc.

Since all the data is partitioned into m parties, the privacy
issue will arise in Steps 2 and 4 of Algorithm 1. But Step 4
is much easier than Step 2, so we will focus on Step 2. The
privacy issues concerned are as follows:

1) A party cannot know the data of points possessed by
other parties.

2) A party cannot know the data of centers possessed by
other parties.

3) A party cannot know the distances between any points
and centers.

3

Vaidya and Clifton [31] presented an algorithm to deal
with this problem for multi-party case. They used two impor-
tant functions, vectors summing to zero and secure add and
compare. We will also use these two functions. Furthermore,
we will introduce parallelism to speed up, assuming each
party has computation capabilities and can perform com-
putation independently following the communication model
described above.

In Step 2 of Algorithm 1, we need to find the closest
center for each point. We will first present an algorithm for
one point and parallelize it later.

We focus on a point p : (p1, p2, . . . , pm) to find its closest
center. For a party Pi, it only has the entry pi of p and the

ith column of MC , i.e.



c1i

c2i
...

cki


. Let x ji = (pi - c ji)2. P1 has

the k× 1 vector X1 =



x11
x21
...

xk1


, P2 has X2 =



x12
x22
...

xk2


, . . ., and

pm has Xm =



x1m

x2m
...

xkm


. Thus the distance of the point p to

center c j is the square root of
m∑

i=1
x ji.

If we can collect the distances of p and {c1, c2, . . . , ck}, we
can find the closest center of a point p. The following is an
algorithm for finding the closest center for a point p.

Algorithm 2-1: find the closest center of point p.
1) P1 creates an encryption-decryption key pair (e, d)

of one of the homomorphic encryption schemes and
broadcasts e to all other parties.

2) P1, . . . , Pm send e(X1), . . . , e(Xm) to P2 respectively.
3) P2 arbitrarily creates two k × 1 vectors V1 and V2

such that V1 + V2 =
−→
0 .

4) P2 sends e(X1 + X2 + . . .+ Xm + V1) = e(X1)× e(X2)×
. . . × e(Xm) × e(V1) to P1.

5) P1 and P2 do secure add and compare on X1 + X2 +

. . . + Xm + V1 and V2 to find the center c with the
smallest

m∑
i=1

x ji for j = 1, 2, . . . , k.

6) P1 broadcasts cluster c to all other parties, and every
party assigns this point to cluster c.

We discuss the correctness, privacy issues and time com-
plexities of Algorithm 2-1 below. In Step 3 of Algorithm 2-1,
the notion of vectors summing to zero is introduced in [31].

It is obvious that the above algorithm finds for each point
p its closest center. As for the privacy issues, since only P1
knows the decryption key, the data e(Xi) for i = 1, . . . ,m sent
to P2 is semantically secure. When the data is collected at P1,
it is mixed with V1. Since V1 is only known to P2, P1 cannot
learn anything from X3 + X4 + . . . + Xm + V1. Thus the first

and second privacy issues considered in Section III-A are
addressed. The secure add and compare scheme preserves
the third privacy issue in a semantically secure way.

For computational complexity, Step 1 takes constant time
to create a (e, d) pair. In Step 2, encryption e(Xi) of Xi takes
O(k) time for each party, but the parties can do the encryption
simultaneously. In Step 3, creating summing to zero vectors
also takes O(k) time. The product of e(X1) to e(Xm) and
e(V1) can be computed in O(mk) time in Step 4. Step 5
does secure add and compare k − 1 times and takes O(k)
time. The secure add and compare method was described in
Section II-D, and takes constant time in both computational
and communication complexity. Thus the total computational
complexity is O(mk).

For communication complexity, Step 1 takes O(1) time to
broadcast the encryption key. Step 2 takes O(mk) time for
P2 to receive data. Step 4 takes O(k) time to send data, Step
5 takes O(k) time to do secure add and compare, and Step 6
takes O(1) time. Thus it totally takes O(mk) communication
time.

Since we have n points, the total time required to find all
closest centers of the n points is O(nmk).2 �

The above algorithm is similar to [31] and does not use the
concept of parallel computing. Now we want to use parallel
computing to speed up Algorithm 2-1.

Considering Step 2 of Algorithm 2-1, it takes O(mk)
time to collect e(X1), . . . , e(Xm) for one point. For n points,
it takes totally O(nmk) time. Using the concept of binary
tree merging scheme where each party plays the role of
aggregating the product of e(X1), . . . , e(Xm) in Steps 2 and
4, we can easily obtain an O(k log m) time algorithm for
collecting data for one point, resulting in a total running
time of O(nk log m) time for n points.

We will give a more efficient method to deal with Step 2 to
Step 4 of Algorithm 2-1 that runs O(nk) time and deal with
Step 5 Algorithm 2-1 in totally O(nk/m) time for n points,
i.e. totally O(nk) time. Since we have m processors (parties),
this speedup is optimal for Algorithm 2-1. The details are
given below.

In Algorithm 2-1 we use P1 and P2 to calculate the
solution. P1 and P2 are considered as a pair of computation
partners. To make Algorithm 2-1 parallel, we let P2i−1 and
P2i be partners to each other, for i = 1, . . . , bm/2c. If m is odd
we just create a dummy party to make the total number of
partners even. The party whose partner is a dummy party, is
assumed to be idle in the parallel computation step. We leave
out the details as this does not affect the time complexity.
Without loss of generality we shall assume the number m of
parties to be even, so there are exactly m/2 pairs of partners.
Each of the m parties will collaborate with its partner to find
the closest center for one of the n points in each iteration,
and thus we totally need to run dn/me iterations to find all

2Both of the computational and communication time complexities are the
same as those in [31], except that the size of a package is considered as b
bits in [31], but as a constant in our case.

4

closest centers for n points.
We modify Algorithm 2-1 a little to explain how to

compute in parallel. In Step 1, every party creates its own
encryption-decryption key pair (ei, di) and broadcasts to all
other parties. In Step 2, we use the single round robin method
(presented in Section II-E) to exchange data, so we can
collect the data needed in m rounds, where we can send
in parallel specific data to a specific party in each round by
the perfect matching. For party P2i let its partner be P2i−1
and they collaboratively compute the closest center for point
pl. For each party P j, it needs to send its X j related to point
pl to P2i−1 using encryption key e2i, as shown in Algorithm
2-2 Step 2. The symmetric operations for data sent to P2i

are similar. In the rest of steps, we replace P1 and P2 by P2i

and its partner P2i−1, denoted as Pi and Pi
′ in the following

algorithm.

Algorithm 2-2: Pi and its partner Pi
′ find the closest center

of point pl.
1) Pi creates an encryption-decryption key pair (ei, di)

of one of the homomorphic encryption schemes and
broadcasts ei to all other parties.

2) For P j, send ei(X j) to Pi
′, where X j is related to point

pl.
3) Pi

′ arbitrarily creates two k × 1 vectors V and V ′

such that V + V ′ =
−→
0 .

4) Pi
′ sends ei(ΣX j + V) = Πei(X j) × ei(V) to Pi, where

j = 1, . . . ,m.
5) Pi and Pi

′ do secure add and compare to find the
closest center c of point pl.

6) Pi broadcasts cluster c to all other parties, and every
party assigns point pl to cluster c.

The correctness and privacy issues addressed are similar
to Algorithm 2-1. As for time complexity we make the
following argument.

For computational complexity, the analysis for Algorithm
2-1 applies, and it takes O(mk) time for each iteration. For
communication complexity, since broadcasting will occupy
all parties 1 unit of time, Step 1 takes O(m) time. Step 2
can be done in O(mk) time by using the single round robin
scheme. Step 4 takes O(k) time. Step 5 takes O(k) time to
perform secure add and compare, and Step 6 takes O(m)
time to broadcast. The total communication complexity is
thus O(mk) for each iteration.

Since we need to run dn/me iterations, the total time
complexity is O(n/m) × O(mk) = O(nk) for finding the
closest centers for n points in both computational and
communication complexities. This has an O(m) speedup
factor comparing to the sequential time complexity of
Algorithm 2-1. �

Having discussed Step 2 of the basic k-means clustering
algorithm, Algorithm 1, we briefly discuss other steps in the
following. In Step 3, since it uses arithmetic mean, every
party can calculate new centers of its dimension by itself.
Thus there are no privacy issues involved in Step 3. In Step

4, we add the differences together and compare it to the
threshold. The differences can be calculated by the same
method as Step 2 of Algorithm 2-1 within no more than
O(mk) time even without parallel computing.3 The privacy
issues of Step 4 are also similar to Step 2 of Algorithm 1.
The updates in Step 5 can be done by each party itself. This
completes the discussion. More detailed information of these
three steps can be found in [31].

Theorem 3.1: The Privacy-Preserving Multi-party k-
means Clustering Problem for vertically partitioned data of
n points in <m can be solved in time O(nk) �

More discussions: In Step 5 of Algorithm 2-1, we do
secure add and compare k−1 times. During the comparisons,
the information about the identity of the two centers being
compared will be revealed. This information revealing is not
that fatal, but it still needs to be addressed, if it is a concern.
We can handle this problem as follows. We can let P1 have
another partner, say P3. In Step 4 before P2 sends data to
P1, P2 performs a random permutation π on the k rows of
all vectors, and then sends π(e(X1 + X2 + . . . + Xm + V1))
to P1 and π(V2) to P3. P1 and P3 do secure add and
compare to find the smallest row i and send to P2 to find
the closest center j = π−1(i). Adding this extra work will not
change the computational and communication complexities
of Algorithm 2-1, neither Algorithm 2-2.

In this section, we assume that every party only knows the
ith column of the Mc. But if we let every party know the entire
Mc, it will not make the problem easier. Thus whether a party
knows partial or whole Mc is not an essential constraint.

In all the discussions above, we assume that there are m
parties. But there may be less than m parties and each party
possesses more than one column of Mp. If the data is evenly
partitioned, the problem can be treated similarly and can be
solved in time O(nmk/r), where r is the number of parties. If
the partition is uneven, the time needed will become O(nqk)
with bottleneck occurring at the party which possesses the
most columns q of data in Step 2 to Step 4 in Algorithm 2-1
and 2-2.

The algorithm secure add and compare presented in Sec-
tion II-D can be extended to a multi-party version. Given
n parties P1, P2, . . . , Pn, and that Pi has numbers ai and bi,

for i = 1, 2, . . . , n, we want to securely find if
n∑

i=1
ai <

n∑
i=1

bi

without revealing the following two types of information to
the other parties: (1) ai, bi, ai + bi, (ai − bi), ai ∗ bi; (2) the

difference between
n∑

i=1
ai and

n∑
i=1

bi.

3We can easily find an O(k log m) parallel algorithm.

5

Multi-party secure add and compare
1) P1 creates an encryption-decryption key pair (e, d)

of one of the homomorphic encryption schemes and
broadcasts e to all other parties, and then sends e(a1−
b1) to P2.

2) For i = 3, 4, . . . , n, Pi sends e(ai − bi) to P2.
3) P2 calculates e(α · s) = e(α ·

n∑
i=1

(ai − bi)) = (
n
π

i=1
(e(ai −

bi)))α and sends it to P1, where α ∈ IIN.
4) In P1, if α · s ≥ 0 →

n∑
i=1

ai ≥
n∑

i=1
bi; else

n∑
i=1

ai <
n∑

i=1
bi.

It takes O(n) time with the bottleneck in Step 2. If we use
a tree structure merging scheme, we can accomplish it in
O(log n) time. In some cases we can transfer data in parallel
like in Algorithm 2-2. For the problem in this section, we can
use this Multi-party secure add and compare algorithm to
replace the one used in Step 2 to Step 5 of Algorithm 2-1
and 2-2. This will conduct the same time complexities.

B. Horizontally partitioned data

In this case, each party Pi has the raw data of the ith row
of Mp and we assume that every party knows the whole
Mc. Thus every party can easily find for its own data the
closest center. Therefore, it will have no privacy issues at
all in Step 2 of the Algorithm 1, and neither in Steps 4 and
5. The privacy issues listed below will arise in Step 3 for
calculating the new centers in each iteration:

1) A party cannot know the data of points possessed by
other parties.

2) A party cannot know the closest centers of points
possessed by other parties.

3) A party cannot know the number of points, if any,
assigned to a center for all of the centers.

Jha et al. [22] presented an encryption based algorithm to
find new centers (Step 3 of Algorithm 1) for two-party case
in Section 4.2 of [22].4 Their algorithm cannot be directly
applied to solve the multi-party case. Because e(0) must
be 0 or 1, since e(0) × e(0) = e(0), whether there is any
point assigned to a center can be easily guessed during data
exchange.5 Thus it needs extra efforts, and we will use the
idea of vectors summing to zero to overcome this problem.

Similar to the case of vertically partitioned data, we first
present a sequential algorithm to calculate one new center,
and then give a parallel algorithm to speed up the process to
find all k new centers.

For any party, whether or not to assign its point to cluster
c can be decided by itself. For Pi, if its point is assigned to
c, we assign 1 to yi and let Xi be the data of the point held
by Pi. Otherwise, Xi ← −→0 and yi ← 0. Therefore, the new

position of c is (
n∑

i=1
Xi)/(

n∑
i=1

yi) if (
n∑

i=1
yi) , 0. In Step 2 and Step

4They also gave a non-encryption based method, but we will not discuss
it here.

5In practice, some encryption schemes have already introduced a random
number to the data, and every execution of e(a) will produce a different
number other than 0 or 1. If we adopt these encryption schemes, the usage
of vectors summing to zero can be eliminated.

3 of the Algorithm 3-1, we will use the vectors summing to
zero scheme to avoid the easy guessing of point-to-cluster
assignments.

Algorithm 3-1: Compute the new center position for cluster
c.

1) P1 creates an encryption-decryption key pair (e, d)
of one of the homomorphic encryption schemes and
broadcasts e to other parties.

2) P1 arbitrarily creates n 1 × m random vectors
V1,V2, . . . ,Vn and n random numbers a1, a2, . . . , an

such that
∑

i Vi =
−→
0 and

∑
i ai = 0 for i = 1, . . . , n,

and then sends Vi and ai to Pi.
3) Pi i = 1, . . . , n, sends e(Xi + Vi) and e(yi + ai) to P2.
4) P2 calculates e(

∑
i Xi) =

∏
i e(Xi + Vi) and e(

∑
i yi) =∏

i e(yi + ai), for i = 1, . . . , n.
5) P2 arbitrarily chooses α ∈ IIN, and calculates

e(α
∑

i Xi) = e(
∑

i Xi)α and e(α
∑

i yi) = e(
∑

i yi)α, for
i = 1, . . . , n.

6) P2 sends e(α
∑

i Xi) and e(α
∑

i yi) to P1.
7) If α

∑
i yi = 0, P1 arbitrarily chooses a new posi-

tion and broadcasts to other parties. Otherwise, P1
calculates (α

∑
i Xi)/(α

∑
i yi) and broadcasts to other

parties.

We discuss the correctness, privacy issues and time com-
plexities of Algorithm 3-1 below.

It is not difficult to see that the above algorithm works
correctly. As for the privacy issues we consider the following.
When a party sends its data of a point to P2, its data is mixed
with a random vector only known to P1 and encrypted by an
encryption key that can only be decrypted by P1. When P1
receives the data, it is already multiplied by a factor α, which
is only known to P2. Thus the first privacy issue is addressed.
The second privacy issue is addressed with vectors summing
to zero. With that P2 can only get data mixed with random
vectors. So the relations of points and centers will not be
revealed. For the last privacy issue, P2 first gets e(yi + ai) in
Step 3, and the privacy is protected by random number ai

and homomorphic encryption. Later P2 gets e(
∑

i yi) in Step
4, which is semantically secure by homomorphic encryption.
In the final step, P1 gets α

∑
i yi, which is protected by the

random number α.
As for computational complexity, Step 1 takes O(1) time,

Step 2 takes O(nm) time, Step 4 takes O(nm) time, and Step
5 and 7 both take O(m) time. For communication complexity,
Step 1 takes O(1) time, Step 2 takes O(nm) time, Step 3
takes O(nm) time, and Steps 6 and 7 take O(m) time. Since
we need to calculate k new centers, it totally takes O(nmk)
time in both computational and communication complexity.�

In Step 2 of Algorithm 3-1, P1 needs to distribute n 1×m
random vectors and n random numbers to P1, P2, . . . , Pn, and
it takes O(nm) time for each center. As a first step to speed it
up, we consider a height-balanced tree T of bounded degree,
where (1) the vertex set is P1, P2, . . . , Pn, (2) the edges form a
height-balanced tree with P1 as the root, and (3) the height of

6

T is O(log n). Using such a tree T , we will distribute random
vectors and random numbers through T . Let Child(Pi) denote
the set of children of Pi in T . We start from the root P1. P1
generates 1 + |Child(P1)| 1 × m random vectors summing to−→
0 , then P1 keeps one random vector and sends others to its
children (each child receiving one different random vector).
When a party Pi receives a random vector

−→
V , it generates

1 + |Child(Pi)| random vectors summing to
−→
V , then Pi keeps

one random vector and sends others to its children. It is
obvious that the sum of these random vectors is

−→
0 . Random

numbers are distributed similarly. Using this method we can
distribute n 1×m random vectors and n random numbers in
O(m log n) time for each center.

Note however that in Step 3 of Algorithm 3-1, we cannot
use the same tree T that was used to distribute random
vectors and random numbers in a top down manner to collect
the encrypted data in a bottom up manner. For example, if
Pi is the parent of a leaf P j in T , then Pi knows the random
number a j distributed to P j. If the same tree were used
to collect encrypted data, Pi could then compare e(a j) and
e(a j+1) with e(a j+y j) that it receives from P j to find what y j

is. Thus we need to do some modification. Consider another
height-balanced tree T ′ of bounded degree which is edge-
disjoint from T , where (1) the vertex set is P1, P2, . . . , Pn,
(2) the edges form a height-balanced tree with P2 as the root,
(3) the height of T ′ is O(log n), and (4) P1 must be a leaf
(since P1 knows the decryption key). We can easily find such
a tree T ′, and can collect data from the leaves of T ′ from
bottom up to the root P2. The multiplication operations in
Step 4 of Algorithm 3-1 can be done during data collection.
Thus Steps 3 and 4 of Algorithm 3-1 can be done also in
O(m log n) time for each center.

This tree distribution scheme will make the final complex-
ity of Algorithm 3-1 become O(mk log n).

Let us consider another special case. If the number of
parties (points) is equal to k, n = k, how fast can we collect
data for new k-centers? We let each party collect the data
for one of the k centers (each party also has a partner like
Section III-A). We use the Algorithm 3-1 to collect data for
each center. The total message size is O(mk) for a center and
O(mk2) for all of the k centers. If we use single round robin
similar to Algorithm 2-2 to transfer the data, it can be done
in k − 1 rounds and totally uses O(mk) time.

Now we are prepared to give a new algorithm to solve the
original problem, it will take in O(m(k+log(n/k))) time. This
algorithm has two phases. In the first phase, we divide the n
parties into bn/kc groups G1,G2, . . . ,Gbn/kc, where each group
has k or k + 1 parties. Let group 1 have k parties P1, . . . , Pk,
Pi generate an encryption-decryption key pair (ei, di) and
broadcast ei to all other parties, for i = 1, . . . , k. In each
group, the ith party and its partner will collect the data related
to center ci into the partner, where the encryption key used
is ei and every party choose the party next to it in the group
as partner (last party chooses the first party as partner). By
the discussion of the special case in above paragraph, all of
the groups can collect data in O(mk) time.

Now in each group, the k parties have collected the data of
the k centers. For a center c, its data is collected into one of
the parties in each group. If we collect all the data of these
O(n/k) parties, the new position of c can be calculated. We
can use the O(m log n) method presented above, and the time
complexity is O(m log(n/k)) for center c since the number
of parties is O(n/k). Since the parties possessing the data
of the k centers are disjoint, they can process in parallel
simultaneously.

Phase 1 needs O(mk) time and phase 2 needs
O(m log(n/k)) time, and the totally time complexity is
O(m(k + log(n/k))). This algorithm is for solving the bot-
tleneck steps of Algorithm 3-1, Step 2 to 4. Thus the totally
time complexity for solving this problem is reduced to
O(m(k + log(n/k))).

Theorem 3.2: Privacy-preserving Multi-party k-means
Clustering Problem for horizontal partitioned data can be
solved in time complexity O(m(k + log(n/k))). �

More discussions: If we use the spirit of Divide-and-
Conquer (D&C) to solve this problem, the recurrence relation
will be like below:

T (n) = T (n/2) + 1 n > k
T (n) = k n ≤ k

The solution of this recurrence relation is O(k + log(n/k)).
Timing the message size O(m) becomes O(m(k + log(n/k))).
Actually, our method presented above can be regarded as a
bottom-up implementation of the D&C algorithm.

IV. Conclusion

In this paper, we have introduced parallel computing into
privacy-preserving multi-party k-means clustering problem
for a set of n points in <m, under two data partition
models: vertical and horizontal partition model. This is
the first paper introducing parallelism to this problem. The
time complexities for vertically and horizontally partitioned
data are O(nk) and O(m(k + log(n/k))) respectively, in both
computational and communication complexity.6 Each of the
data partition model has associated with it a certain hot
spots, e.g., assignment of points to clusters and computation
of new centers, when addressing the privacy issues. When
the data distribution is arbitrary, this problem may be more
complicated and worth further investigation. Whether the
idea of parallel computing can be further extended and
applied to other problems with privacy consideration remains
to be seen. It is our hope that more privacy-preserving data
mining problems can be identified for which the idea of
parallelism can be found fruitful.

V. Acknowledgement

This work was supported in part by the National Science
Council, Taiwan, under the Grants NSC 98-2221-E-001-007-
MY3 and NSC 98-2221-E-001-008-MY3, and by the Taiwan

6For communication complexity, the complexity depends on the size of
messages, or package of data, which is assumed to be a constant.

7

Information Security Center (TWISC) under the Grants NSC
97-2219-E-001-001 and NSC 97-2745-P-001-001.

Part of this work was completed during the visit of Teng-
Kai Yu at the Carnegie Mellon CyLab Japan, Kobe, Japan.

References

[1] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceed-
ings of the 2000 ACM SIGMOD Conference on Management of Data,
pages 439-450, Dallas, TX, May 2000.

[2] D. Aloise, A. Deshpande, P. Hansen, P. Popat. NP-Hardness of Eu-
clidean Sum-of-Squares Clustering. Technical Report G-2008-33, Les
Cahiers du GERAD, April 2008. To appear in Machine Learning.

[3] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful
seeding. In Proc. ACM-SIAM Symp. Discrete Algorithms, 2007.

[4] P. Berkhin. Survey of clustering data mining techniques. Technical
report, Accrue Software, San Jose. CA, 2002.

[5] P. Bunn, R. Ostrovsky. Secure Two-Party k-Means Clustering. In Pro-
ceedings of the 14th ACM conference on Computer and communications
security, Alexandria, Virginia, USA, pages 486-497, 2007.

[6] J. Brickell, and V. Shmatikov. Privacy-Preserving Graph Algorithms in
the Semi-honest Model. Proceedings of AsiaCrypt, 2005.

[7] S. Dasgupta. The hardness of k-means clustering. Technical Report
CS2007-0890, University of California, San Diego, 2007.

[8] F. de la Vega, M. Karpinski, C. Kenyon. Approximation schemes for
clustering problems. In Proc. ACM Symp. Theory of Computing, 50-58,
2003.

[9] I. Dhillon, D. Modha. A Data-Clustering Algorithm On Distributed
Memory Multiprocessors. In Large-Scale Parallel Data Mining, Lecture
Notes in Artificial Intelligence, 2000.

[10] P. Drineas, A. Friexe, R. Kannan, S. Vempala, and V. Vinay. Clustering
large graphs via the singular value decomposition. Machine Learning,
56:9-33, 2004.

[11] R. Duda and P. E. Hart. Pattern Classification and Scene Analysis.
John Wiley & Sons, 1973.

[12] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic
Press, San Diego, CA, 1990.

[13] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen. On secure scalar
product computation for privacy-preserving data mining. In The 7th
Annual International Conf. in Information Security and Cryptology,
2004.

[14] O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools.
Cambridge University Press, May 2001.

[15] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Appli-
cations. Cambridge University Press, 2004.

[16] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of
Computer and Systems Science, 28: pages 270-299, 1984.

[17] O. Goldreich and E. Petrank. Quantifying knowledge complexity.
Computational Complexity, volume 8, pages 50-98, 1999.

[18] J. Han and M. Kamber. Data Ming: Concepts and Techniques. Morgan
Kaufmann, 2000.

[19] M. Inaba, N. Katoh, and H. Imai. Applications of weighted Voronoi
diagrams and randomization to variance-based clustering. In Proc.
Annual Symp. on Comput. Geom., pages 332-339, 1994.

[20] A. İnan, S. V. Kaya, Y. Saygın, E. Savasş, A. A. Hintoǧlu, A. Levi.
Privacy preserving clustering on horizontally partitioned data. Data and
Knowledge Engineering, Volume 63, Issue 3, pages 646-666, 2007.

[21] G. Jagannathan, R. N. Wright. Privacy-Preserving Distributed k-
Means Clustering over Arbitrarily Partitioned Data. In Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, Chicago, Illinois, USA, pages 593-599, 2005.

[22] S. Jha, L. Kruger and P. McDaniel. Privacy Preserving Clustering.
10th European Symp. on Research in Computer Security, pages 397-
417, 2005.

[23] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and
A. Wu. A local search approximation algorithm for k-means clustering.
Comput. Geom., 28:89-112. 2004.

[24] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + ε)
approximation algorithm for k-means clustering in any dimensions. in
Proc. IEEE Symp. Foundations of Computer Science, pages 454-462,
2004.

[25] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Advances
in Cryptology (Crypto 2000), pages 36-54, August 2000.

[26] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28:129-136, 1982.

[27] M. Mahajan, P. Nimbhorkar and K. Varadarajan. The Planar k-means
Problem is NP-hard. In Proceedings of the 3rd International Workshop
on Algorithms and Computation, Kolkata, India, LNCS Vol. 5431, pages
274-285, 2009.

[28] R. Ostrovsky, Y. Rabani, L. Schulman, and C. Swamy. The effective-
ness of Lloyd-type methods for the k-means problem. In Proc. IEEE
Symp. Foundations of Computer Science, 2006.

[29] P. Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In: Advances in cryptography-EUROCRYPT’ 99, Prague,
Czech Republic, pages 223-238, May 1999.

[30] J. Vaidya and C. Clifton. Privacy Preserving Association Rule Mining
in Vertically Partitioned Data. In Proceedings of The 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 639-644, 2002.

[31] J. Vaidya and C. Clifton. Privacy-Preserving k-Means Clustering over
Vertically Partitioned Data. Proc. 9th ACM SIGDD Inter. Conf. on
Knowledge Discovery and Data Mining, pages 206-215, 2003.

[32] D. B. West. Introduction to Graph Theory, 2nd Edition, pages 274-276,
2001.

[33] A. Yao. Protocols for Secure Computations. Proceedings of the annual
IEEE Symposium on Foundations of Computer Science 23, 1982.

[34] A. Yao. How to generate and exchange secrets. In Proc. 27th IEEE
Symp. on Foundations of Computer Science, pages 162-167, 1986.

[35] Z.J. Zhan. Privacy-Preserving Collaborative Data Mining. PhD theis,
University of Otawa, Canada, 2006.

[36] J. Zhan, S. Matwina, L.W. Chang. Privacy-preserving collaborative as-
sociation rule mining. Journal of Network and Computer Applications,
30, pages 1216-1227, 2007.

8

