
Algorithmica (2011) 60: 274–300
DOI 10.1007/s00453-009-9336-x

Capacitated Domination Problem

Mong-Jen Kao · Chung-Shou Liao · D.T. Lee

Received: 22 October 2008 / Accepted: 19 June 2009 / Published online: 9 July 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider a generalization of the well-known domination problem on
graphs. The (soft) capacitated domination problem with demand constraints is to find
a dominating set D of minimum cardinality satisfying both the capacity and demand
constraints. The capacity constraint specifies that each vertex has a capacity that it
can use to meet the demands of dominated vertices in its closed neighborhood, and
the number of copies of each vertex allowed in D is unbounded. The demand con-
straint specifies the demand of each vertex in V to be met by the capacities of vertices
in D dominating it. In this paper, we study the capacitated domination problem on
trees from an algorithmic point of view. We present a linear time algorithm for the
unsplittable demand model, and a pseudo-polynomial time algorithm for the split-
table demand model. In addition, we show that the capacitated domination problem
on trees with splittable demand constraints is NP-complete (even for its integer ver-
sion) and provide a polynomial time approximation scheme (PTAS). We also give a
primal-dual approximation algorithm for the weighted capacitated domination prob-
lem with splittable demand constraints on general graphs.

Keywords Algorithm · Domination · Facility location

An extended abstract of this paper appeared in the 18th International Symposium on Algorithms
and Computation (ISAAC), pp. 256–267, 2007.

Supported in part by the National Science Council under the Grants NSC95-2221-E-001-016-MY3,
NSC96-2752-E-002-005-PAE, NSC96-2217-E-001-001, NSC96-3114-P-001-002-Y,
and NSC96-3114-P-001-007.

M.-J. Kao · C.-S. Liao (�) · D.T. Lee
Department of Computer Science and Information Engineering, National Taiwan University, Taipei,
Taiwan
e-mail: lcs.shou@gmail.com

C.-S. Liao · D.T. Lee
Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan

mailto:lcs.shou@gmail.com

Algorithmica (2011) 60: 274–300 275

1 Introduction

The domination problem on graphs is one of the well-known combinatorial optimiza-
tion problems. The domination problem can be described as follows. Let G = (V ,E)

denote an undirected graph with vertex set V and edge set E. G is a weighted graph
if each vertex v ∈ V is associated with a weight w(v) ∈ R

+, where R
+ denotes the

set of non-negative real numbers. A vertex v is said to dominate itself and each of
its neighbors. A set D ⊆ V is called a dominating set if every vertex in V is domi-
nated by at least one vertex in D. The goal is to find an optimal dominating set D∗
of minimum weight in G. The weight of D∗ is equal to the sum of the weights of all
the vertices in D∗, and the minimum weight of D∗ is called the weighted domination
number of G, denoted γw(G). If the weight of each vertex is unity, then γw(G) would
be the cardinality of the optimal dominating set D∗, and it is called the domination
number of G, denoted γ (G).

There has been considerable amount of research devoted to the metric case of the
capacitated facility location problem. The capacitated facility location problem is de-
fined as follows. Consider a set C of clients and a set F of facilities. Each client has
associated with it a demand and each facility has a capacity that specifies the maxi-
mum service the facility can provide to its clients to meet their demands. In addition
a facility also has a setup or operating cost if it is opened and service cost, which
is based on a predefined function A : F × C → R

+, among pairs of facilities and
clients, and A(f, c), f ∈ F,c ∈ C, denotes the service cost when client c is assigned
to be serviced by facility f . The metric service function, or the metric distance func-
tion, A, is nonnegative and symmetric, and obeys the triangle inequality. The goal is
to find a subset K ⊆ F of facilities to set up and an assignment of clients to facilities,
such that the demand requirements of all the clients are satisfied, facilities capacities
are not violated, and the total cost, including facility setup and service cost, is min-
imized. The capacity of a facility in the capacitated facility location problem is said
to be hard if the facility can be opened at most a certain limited number of times to
serve clients’ demands; it is said to be soft if the facility can be opened without any
restrictions on the number of times it can be opened. In addition, the demand of a
client is called unsplittable if we require that the entire demand of the client is served
by a single facility; otherwise, we call the demand splittable. In general, for each
client v, let the maximum number of distinct facilities to serve a client1 v be called
the demand split number of v, denoted kv . If kv = 1 for each demand v, then we call
this an unsplittable model; and if kv = ∞, then we call this a splittable model. When
kv = m for some integer m, then we call this an m-splittable model.

The soft capacitated facility location problem was considered in the literature
[1, 10, 20, 21, 29, 31] and approximation algorithms based on some linear program-
ming techniques, like LP-rounding and primal-dual algorithms were obtained. In
1997 Shmoys et al. [31] first presented a 5.69-approximation algorithm for the soft
uniform capacity model with demand constraints. Chudak and Shmoys [10] improved
this approximation factor to 3. Using primal-dual method Jain and Vazirani [20] gave
a 4-approximation algorithm for the generalized nonuniform capacity model. Arya

1We shall without confusion use the terms, client and its demand, interchangeably.

276 Algorithmica (2011) 60: 274–300

et al. [1] improved this approximation factor to 2 + √
3 based on local search heuris-

tics. Following the method of Jain and Vazirani [20], Jain et al. [21] further improved
the factor to 3. The latest result, with factor 2, due to Mahdian et al. [29], achieves
the integrality gap of the natural LP relaxation of this soft capacity model. The
hard capacitated facility location problem was treated differently however. Because
of the large integrality gap, linear programming techniques do not work efficiently,
and local search heuristics were proposed instead. Korupolu et al. [23] first gave a
(8 + ε)-approximation algorithm for the hard uniform capacity model. Chudak and
Williamson [11] improved the approximation factor to (6 + ε). Based on the scaling
technique, Charikar and Guha [5] improved the factor to (3 + 2

√
2). Levi et al. [24]

further improved the factor to 5. Pál et al. [30] presented a (9 + ε)-approximation
algorithm for the generalized hard nonuniform capacity model. This was improved
by Mahdian and Pál. [28], and Zhang et al. [32] to yield an approximation factor
(3 + 2

√
2). In addition, unlike the facility location problem, it is not known whether

the capacitated k-median problem has a constant approximation [4–6, 8, 20, 23], even
if the capacities are soft. There were only constant-factor ratio approximation algo-
rithms which exceed either k [4, 23] or the capacity constraint [6, 8]. The difference
between the capacitated k-median problem and the capacitated facility location prob-
lem is the extra constraint that the number of opening facilities is at most k.

In this paper we investigate the capacitated domination problem on graphs, which
is closely related to the capacitated facility location problem, in which the clients
and facilities are vertices of the graphs, and the set of facilities we open corresponds
to the dominating set, and all the distances are either 0 or ∞ (note that this is not
a metric distance function). The capacitated domination problem was introduced by
Haynes et al. [17], who discussed a lot of variations of domination problem. In addi-
tion, the k-tuple domination problem, i.e., to find a minimum vertex subset such that
every vertex in the graph is dominated by at least k vertices in this set, which was
investigated by Liao and Chang [25, 26] in 2002, is slightly similar to the capacitated
domination problem with k-splittable uniform demand model. They studied it on
special graph classes from an algorithmic point of view. The concept of capacitated
domination problem with demand constraints in graph theory is a more natural model
for many facility location problems in practice. For example, consider the connected
domination problem on unit-disk graphs [7], one of the virtual backbone models for
an ad-hoc wireless network, in which the users or clients have demands, while each
transmitter providing the services to users has a capacity.

The capacitated vertex cover problem is another famous problem related to the
capacitated domination problem on graphs. Chuzhoy and Naor [9] proved weighted
capacitated vertex cover problem with hard capacity and uniform demand is at least
as hard as the set cover problem and provided a logarithmic approximation algorithm.
For unweighted version with hard capacity and unsplittable nonuniform demand, they
proved that this model is unapproximable unless P = NP and gave a 3-approximation
algorithm for this model when each edge demand is uniform. Gandhi et al. [14] fur-
ther improved the approximation ratio 3 of the latter model to 2, which is the best
known ratio for the general vertex cover problem. In addition, Gandhi et al. [15]
obtained a 2-approximation algorithm for the weighted version, which allows some
vertices to exceed at most two times their capacity constraints. About the soft capac-
ity model, Gandhi et al. [15] provided an LP-rounding 2-approximation algorithm for

Algorithmica (2011) 60: 274–300 277

the soft capacitated vertex cover problem with uniform demand. Guha et al. [16] pre-
sented the same result by a primal-dual method, and a 3-approximation algorithm for
the generalized model with soft capacity and splittable nonuniform demand. They
also gave polynomial time algorithms for some restricted cases of soft capacitated
vertex cover problem on trees and showed that the weighted version on trees with
splittable uniform demand is NP-hard.

Our Contribution To the best of our knowledge this is the first paper considering
both notions of capacity and demand in domination problem on graphs, which is as
hard as set cover problem (a reduction from set cover problem to domination problem
on split graphs is intuitive). In particular, we study the soft capacitated domination
problem with demand constraints on trees from an algorithmic point of view. We
present a linear time algorithm for the unsplittable demand model. For the splittable
demand model on trees, we show it is NP-complete even when the vertex capac-
ity and demand are integers, in contrast to the linear time result of Guha et al. [16]
for the same model of capacitated vertex cover on trees. Furthermore, based on our
NP-completeness reduction, we develop a pseudo-polynomial time algorithm and
further a combinatorial polynomial time approximation scheme (PTAS) for split-
table demand model on trees. We also give a primal-dual (� + 1)-factor approxi-
mation algorithm for weighted capacitated domination problem with splittable de-
mand constraints on general graphs, where � is the maximum degree of the vertices.
The approximation factor is almost equal to one of the two well-known approxima-
tion ratios (� [2, 18] and O(lnn) [12, 22, 27]) of general domination problem. We
remark that Bar-Ilan et al. [3] considered the non-metric capacitated facility loca-
tion problem (a generalization of capacitated domination problem) and presented an
O(logn + logM) approximation algorithm for the integer version, which is close to
the threshold O(lnn) [13] for approximating domination problem, where M is the
largest parameter.

2 Preliminaries

Let G = (V ,E) be an undirected graph with vertex set V and edge set E. A vertex
w ∈ V is said to be a neighbor of or adjacent to a vertex v ∈ V if (v,w) ∈ E. The
neighborhood of a vertex v ∈ V is NG(v) = {w ∈ V | (v,w) ∈ E}. The closed neigh-
borhood of v ∈ V is NG[v] = NG(v) ∪ {v}. The closed degree of a vertex v ∈ V is
deg[v] = |NG[v]|. The closed degree of a graph G is �∗

G = maxv∈V deg[v].
In the capacitated domination problem with demand constraints, each vertex v ∈

V has a positive demand d(v), required of service from vertices in NG[v], and a
positive capacity c(v), which is the maximum service v can provide to vertices in
NG[v]. A multi-set D ⊆ V , with a multiplicity function x : V → Z

+ ∪ {0}, is called a
capacitated dominating multi-set if there exists an assignment function f : V ×D →
R

+ ∪ {0} such that for every v ∈ V and δ ∈ D ∩ V , the following constraints (∗) are
satisfied. Note that f (v, δ) denotes the amount of demand requirement of each vertex

278 Algorithmica (2011) 60: 274–300

v ∈ V that is assigned to a vertex δ ∈ D ∩ V , and f (v, δ) = 0 if v /∈ NG[δ].

1.
∑

∀δ∈NG[v]∩D

f (v, δ) ≥ d(v) (demand constraint for v),

2.
∑

∀v∈NG[δ]
f (v, δ) ≤ x(δ) × c(δ) (capacity constraint for δ).

(∗)

The first constraint stipulates that the demand d(v) for each vertex must be met by
the service rendered by vertices in NG[v]∩D. The second constraint restricts that the
service of any vertex δ ∈ V ∩ D rendered to the vertices in NG[δ] should not exceed
its total available capacity, i.e., x(δ)× c(δ), where x(δ) denotes the number of copies
of δ in D.

More formally, given a graph G = (V ,E), a capacity function c : V → R
+ ∪

{0}, and a demand function d : V → R
+ ∪ {0}, the capacitated domination problem

with demand constraints is to find a capacitated dominating multi-set D of G and
an assignment function f : V × D → R

+ ∪ {0}, which satisfies both the demand
constraint and capacity constraint (specified in (∗) such that

∑
v∈V x(v) is minimum,

where x(v), defined by a multiplicity function x : V → Z
+ ∪{0}, denotes the number

of copies of v ∈ V that belongs to D.
∑

v∈V x(v) is the cardinality or the size of the
multi-set D, denoted |D|.

One can consider the weighted capacitated domination problem by associating
with each vertex a positive real weight w(v), which denotes the cost incurred and may
differ for different vertex v. Then the problem becomes that of finding a capacitated
dominating multi-set such that the total weight

∑
v∈V w(v)×x(v) is minimum. There

are also variations in the assignment of demands for each vertex and in the selection
of multiple copies of vertices. We say the demand is unsplittable if we require that
f (v, δ) is either d(v) or 0 for each v ∈ V and δ ∈ NG[v] ∩ D, and splittable if no
such restriction exists on f . The capacity is said to be soft if the number of available
copies of each vertex is unbounded and hard otherwise.

The rest of this paper is organized as follows. In Sect. 3, we consider the soft ca-
pacitated domination problem with demand constraints on trees. We give a linear time
algorithm for unsplittable demand model. For splittable demand model, we show the
NP-completeness result and present a pseudo-polynomial time algorithm. In Sect. 4,
we provide a polynomial time approximation scheme for splittable demand model
on trees. We also consider the weighted capacitated domination problem on general
graphs, and provide a �∗-approximation algorithm for splittable demand model. Fi-
nally we conclude in Sect. 5 with some discussions of hard capacity model and future
work.

3 Capacitated Domination on Trees

Given a tree T = (V ,E) with capacity function c and demand function d , we shall
consider the capacitated domination problem with demand constraints on T . Guha
et al. [16] showed in 2002, that the weighted capacitated vertex cover problem on trees
is NP-hard and that the unweighted case can be solved in linear time. In this section,

Algorithmica (2011) 60: 274–300 279

however, we show that capacitated domination problem on trees for the unweighted
case is NP-complete when the demand is splittable.

In Sect. 3.1, we show that capacitated domination problem with unsplittable de-
mand on trees can be solved in linear time. In the later subsections, we consider the
case when the vertex demand is splittable. As a contrast to the linear time result given
by Guha et al. [16] in capacitated vertex cover problem on trees, we show in Sect. 3.2
that capacitated domination problem with splittable demand on trees is NP-complete,
even when the vertex capacity and demand are integers. In Sect. 3.3, we present a
pseudo-polynomial time algorithm for the integer version of the splittable demand
model.

3.1 Unsplittable Demand Model

In this subsection we show that capacitated domination problem with unsplittable
demand on trees can be solved in linear time. In particular, we consider a stronger
version of the original problem to find an optimal capacitated dominating multi-set
D with the maximum residue capacity at the root. The residue capacity of a vertex
δ ∈ D, denoted by RC[δ], is the remainder of its capacity after δ serves the demands
of vertices in NG[δ], i.e., RC[δ] = x(δ) × c(δ) − ∑

∀v∈NG[δ] f (v, δ). The algorithm
runs in a bottom-up manner. It processes one vertex at each iteration in the postorder
tree traversal. Since the demand is unsplittable, we will use the words assign the
demand of v to δ or assign v to δ alternatively for convenience.

Given a tree T = (V ,E) with a postorder tree traversal, let p(v) be the parent of
v ∈ V , Ch(v) the child set of v, and Tv the subtree rooted at v. At each iteration i, the
algorithm computes the minimum cardinality of the capacitated dominating multi-set
Di and the residue capacity of vi for Tvi

when vi assigned to itself or to one of its
children in Ch(vi) or when vi assigned to its parent p(vi). The minimum cardinality
of the capacitated dominating multi-set Di and the residue capacity of vi in the former
case are denoted W↓[vi] and RC↓[vi] respectively and in the latter they are denoted
W↑[vi] and RC↑[vi] respectively. W↑[vi] is assumed to be infinity if vi is the root
of T . Note that in the former case when there is more than one child of vi providing
minimum W↓[vi], we select the one with the maximum RC↓[vi], and in case of a tie,
we break it arbitrarily.

Lemma 3.1 Given a postorder tree traversal v1, v2, . . . , vn, we can at each itera-
tion i, 1 ≤ i ≤ n, immediately determine the assignment of the demand of vi opti-
mally to its parent p(vi) or otherwise, except for the case when W↓[vi] = W↑[vi]
and RC↓[vi] > RC↑[vi] (we call this case undetermined condition of vi).

Proof If W↑[vi] �= W↓[vi], we claim that the smaller one is the optimal demand as-
signment. Suppose W↑[vi] > W↓[vi]. If there were an optimal solution in which vi

is assigned to its parent p(vi), then we would simply use the demand assignment
corresponding to W↓[vi] and put an additional copy at p(vi). This solution has either
smaller cardinality, or the same cardinality but more residue capacity at p(vi). The
case W↑[vi] < W↓[vi] is obvious. As for W↑[vi] = W↓[vi] and RC↑[vi] ≥ RC↓[vi],
we would simply assign vi , to its parent p(vi) to obtain a larger residue capacity
at p(vi). �

280 Algorithmica (2011) 60: 274–300

The main idea of our algorithm, ALGORITHM MCDUT (see Appendix), is de-
scribed in the following. Given a tree T = (V ,E) with a postorder tree traversal
v1, v2, . . . , vn, we shall process vertices one at a time in the postorder. We maintain
four variables, W↑[vi], W↓[vi], RC↑[vi], RC↓[vi], and one pointer from vi to vj , if
necessary, where vj is the child of vi which gives the optimal W↓[vi], among all chil-
dren of vi . For convenience we assume that the capacity of the parent of vi , c(p(vi))

is available when we process vi . At each iteration i, we do the following computa-
tions.

Case (1) Computation of W↑[vi] and RC↑[vi]. If vi is to be assigned to p(vi), we
compute W↑[vi] as (1) the number of copies of p(vi) needed, i.e., � d(vi)

c(p(vi))
�, plus

(2) the summation of min{W↓[u], W↑[u]} for every child u of vi , and minus (3) the
saving of copies of vi , i.e., �RC[vi]

c(vi)
�, provided by the residue capacity of vi due to the

assignments of its children, if any, where RC[vi] = ∑
u∈Ch(vi),W↓[u]≥W↑[u](c(vi) −

(d(u) mod c(vi))).
We compute RC↑[vi] as RC[vi] mod c(vi).

Case (2) Computation of W↓[vi] and RC↓[vi].
Case (2-1) If vi is assigned to itself, we compute W↓[vi] in a way similar to Case (1)

with some modifications: part (1) is modified to be the number of copies of vi ,
i.e., � d(vi)

c(vi)
�. The computation of part (2) is the same. The computation of part (3)

the savings of copies of vi , is the same as before, i.e., �RC[vi]
c(vi)

�, except that RC[vi]
given above needs to be adjusted by adding (c(vi) − (d(vi) mod c(vi))).

Case (2-2) If vi is assigned to one of its children, say u∗ ∈ Ch(vi), we compute
W↓[vi] in a way similar to Case (1) with the following modifications: part (1) is
modified to be the number of copies of u∗, i.e., � d(vi)

c(u∗)�. The computation of part (2)
is the same as above and the computation of part (3) is modified, depending on the
status of u∗.

Case (2-2-1) Assignment of u∗ is determined We add the saving of copies of u∗,
�(RC[u∗] + (c(u∗) − (d(vi) mod c(u∗))))/c(u∗)�, to part (3), where RC[u∗] =
RC↑[u∗] if u∗ was assigned upward by Lemma 3.1; and RC[u∗] = RC↓[u∗], if u∗
was assigned downward.

Case (2-2-2) Assignment of u∗ is undetermined In this case, W↑[u∗] = W↓[u∗] and
RC↑[u∗] < RC↓[u∗]. We need to consider both cases in which u∗ is assigned up-
ward and downward, in order to obtain the optimal W↓[vi]. The case when u∗
is assigned upward is the same as Case (2-2-1). For the case when u∗ is as-
signed downward, we need to modify RC[vi] given in Case (1) by subtracting
from it (c(vi) − (d(u∗) mod c(vi))) and then compute for part (3) �RC[vi]

c(vi)
�+

�(RC↓[u∗] + (c(u∗) − (d(vi) mod c(u∗))))/c(u∗)�.

We compute RC↓[vi] as RC[vi] mod c(vi) for each subcase Case (2-1) and
Case (2-2).

After we process Case (2-1) and Case (2-2), we would obtain W↓[vi] for the case,
when vi is assigned to itself and when vi is assigned to each child u∗ ∈ Ch(vi),

Algorithmica (2011) 60: 274–300 281

and obtain RC↓[vi] = RC[vi] mod c(vi) accordingly. We shall select as the optimal
W↓[vi] the assignment for vi that gives the minimum W↓[vi] with the maximum
RC↓[vi] among all the cases. In addition, if the optimal W↓[vi] is obtained from
the assignment of vi to a child û, we add a pointer from vi to û, and furthermore
if û was undetermined, we record which assignment, upward or downward, of û in
Case (2-2-2) yields the optimal W↓[vi].

To be more precise, we will compute the demand assignment of vi at each iter-
ation i, 1 ≤ i ≤ n. Suppose vi is a leaf. We just check the undetermined condition
of vi , and classify its status by Lemma 3.1. Suppose vi is a non-leaf vertex. We not
only check the undetermined condition of vi by Lemma 3.1, but also reconsider those
undetermined children, if necessary, of vi . Suppose vj is the child of vi which gave
the optimal W↓[vi], j < i. We discuss how to handle those undetermined children of
vi as follows. If vi is determined to be assigned to its parent or itself, we assign all
its undetermined children upward to vi . If vi is determined to be assigned downward
to vj , we assign all the undetermined children u �= vj to vi . If vj itself is undeter-
mined, we then decide the assignment of vj , upward or downward, depending on
which gave the optimal W↓[vi]. On the other hand, if vi is undetermined, then all
the undetermined children u, u �= vj , of vi , where vj gave the optimal W↓[vi], are
assigned upward to vi similarly. The procedure guarantees that after each iteration i,
all the undetermined children of vi are determined if vi is determined, and there is
at most one undetermined child if vi is undetermined, a proof of which will be given
later. Based on this, we can backtrack by pointers to the undetermined descendants
downward and determine their assignment by repeating the same procedure. The fol-
lowing results characterize the invariant condition at each iteration.

Lemma 3.2 If vi is classified as undetermined at iteration i, then at most one child
of vi remains undetermined.

Proof Assume vj is the child of vi which gave the optimal W↓[vi]. For every unde-
termined child u of vi , i.e., W↑[u] = W↓[u] and RC↑[u] < RC↓[u], u �= vj , since the
residue capacity of u is useless, we can assign u upward to vi to provide more residue
capacity for vi . Thus there is at most one undetermined child of vi , i.e., vj possibly,
after iteration i. �

Lemma 3.3 If vi is classified as determined at iteration i, then each child of vi is
determined as well.

Proof It is similar to the proof of Lemma 3.2. If vi is determined to be assigned
downward to one of its children, vj , we assign to vi every undetermined child u

of vi , excluding vj . As for vj ’s assignment, since we have computed both cases of
W↑[vj] and W↓[vj] to obtain the optimal W↓[vi], vj is determined as well accord-
ingly. On the other hand, if vi is determined to be assigned to its parent or to itself, we
assign every undetermined child u of vi upward to vi because of the same reason as
above (the residue capacity of u is useless and the assignment provides more residue
capacity of vi). �

According to the above two lemmas, the next corollary is immediate.

282 Algorithmica (2011) 60: 274–300

Corollary 3.4 (Invariant Condition) After each iteration i, 1 ≤ i ≤ n, there is at most
one undetermined path consisting of all undetermined vertices in Tvi

starting with vi .

Based on the above lemmas, given a tree T = (V ,E) with a postorder tree traversal
v1, v2, . . . , vn, the ALGORITHM MCDUT given in Appendix solves the capacitated
domination problem with unsplittable demand on T . We give the following theorem
and remark that this algorithm can be modified to output the optimal capacitated

dominating multi-set (x(δ) = �
∑

v∈N[δ] f (v,δ)

c(δ)
�, ∀δ ∈ D) as well.

Theorem 3.5 ALGORITHM MCDUT solves the capacitated domination problem
with unsplittable demand on trees in linear time.

Proof The correctness is by induction based on Lemma 3.1 and Corollary 3.4. At
each iteration i, 1 ≤ i ≤ n, the assignment of vi is either determined or undetermined.
In the latter case there is at most one path consisting of undetermined vertices start-
ing with vi in Tvi

by Corollary 3.4. Once vi is determined, we can backtrack by the
pointers to obtain the demand assignment for all its undetermined descendants in Tvi

.
At the last iteration the root vn is determined since W↑[vn] = ∞ > W↓[vn] and all the
demand assignments are thus obtained. The time cost of computing W↑[vi], W↓[vi],
RC↑[vi], RC↓[vi] and the pointer, is O(|Ch(vi)|) at each iteration i, where Ch(vi) is
the child set of vi . If vi is determined, the demand assignment of vi takes constant
time. Otherwise, if vi is undetermined, our algorithm backtracks to decide the de-
mand assignment of vi only once by Lemma 3.3 and Corollary 3.4. The backtracking
technique thus takes at most O(|V |) time entirely in amortized analysis, where |V | is
the size of T . �

3.2 NP-Completeness for Splittable Demand Model

We next consider the case when the vertex demand can be split. In fact, we show the
problem under this model is NP-complete even when the vertex capacity and demand
are integers. We shall make a reduction from the decision problem Subset Sum, which
is a well-known NP-complete problem, to the decision version of capacitated domi-
nation problem with splittable demand on trees. The Subset Sum problem is defined
as follows.

Given a finite set S = {a1, a2, . . . , an}, ∀ai ∈ Z
+, and W ∈ Z

+, the decision
Subset Sum problem is to ask if there exists a subset A of {1,2, . . . , n} such that∑

i∈A ai = W . Without loss of generality, we assume that
∑n

i=1 ai ≥ W in this sub-
section.

Let M = (
∑n

i=1 ai) + 1, W ′ = M · W , and a′
i = M · ai . Given an instance of

the decision Subset Sum problem, we build a capacitated domination problem in-
stance T , where T is a tree consisting of n + 2 vertices, where vn+1 is the root with
capacity 1 and demand W , v0 is the only child of vn+1 with capacity M and demand∑n

i=1 a′
i −W ′, and v0 has as children, v1, v2, . . . , vn, which are leaf vertices and each

leaf vi has capacity M + a′
i − ai and demand M − ai .

Lemma 3.6 Let D be a feasible capacitated dominating multi-set of T , and let A =
{i |vi /∈ D}. The number of copies of v0 in D is no less than |A|.

Algorithmica (2011) 60: 274–300 283

Proof Let k be the number of copies of v0. Suppose that k < |A|. The capacity at
v0 must satisfy the demand of vertices in A. Thus we have k · M ≥ ∑

i∈A(M − ai),
which leads to

∑
i∈A ai − (|A| − k)M ≥ 0, a contradiction since |A| − k ≥ 1 and

M >
∑n

i=1 ai . �

Corollary 3.7 The cardinality of a feasible capacitated dominating multi-set of T is
no less than n.

Lemma 3.8 There exists a subset A of {1,2, . . . , n} such that
∑

i∈A ai = W if and
only if there exists a feasible capacitated dominating multi-set D of size n for T .

Proof If there is a subset A of {1,2, . . . , n} satisfying
∑

i∈A ai = W , then we con-
struct a capacitated dominating multi-set D as follows. For each i ∈ A, we have a
copy of v0 and assign the demand of vi to v0. Each such assignment leaves the residue
capacity ai at v0. We then assign the demand of vn+1 to v0 since

∑
i∈A ai = W .

For i /∈ A, i = 1,2, . . . , n, we have a copy of vi and assign the demand of vi to
itself. Each such assignment leaves residue capacity a′

i at vi for i /∈ A. The demand of
v0 is

∑n
i=1 a′

i − W ′ = ∑n
i=1 a′

i − ∑
i∈A a′

i = ∑
i /∈A a′

i , which can be satisfied exactly
by the sum of the residue capacity of vi , i /∈ A. Thus, we have a feasible capacitated
dominating multi-set D of size n.

On the other hand, if there is a feasible capacitated dominating multi-set D of
size n for the instance T , define A as {i |vi /∈ D}. By Lemma 3.6 we have at least
|A| copies of v0 and one copy each for the set {v1, . . . , vn} \ A of vertices. Thus the
demand of vn+1 is assigned to v0 in D and we have

∑
i∈A ai ≥ W . The demand of v0

is satisfied by the residue capacity of {v0} ∪ {v1, . . . , vn} \ A. We have (
∑

i /∈A a′
i) +

(
∑

i∈A ai − W) ≥ (
∑n

i=1 a′
i − W ′), which leads to

∑
i∈A ai ≤ W . Hence we have∑

i∈A ai = W and completes the proof. �

By Corollary 3.7 and Lemma 3.8, there exists a subset A of {1,2, . . . , n} such that∑
i∈A ai = W if and only if the cardinality of the optimal capacitated dominating

multi-set D for T is n. In addition, it is easy to show that the capacitated domination
problem with splittable demand on trees is in NP. We can verify whether a given
solution without demand assignment is feasible in polynomial time in a bottom-up
manner. Given a postorder tree traversal, for every vertex we serve its demand by
exhausting the sum of the residue capacity of its children first, if any, then its own
available capacity, and finally the available capacity of its parent. If it is not enough,
the solution is not feasible. Otherwise, we continue to serve the next one. We have
the following theorem immediately.

Theorem 3.9 The capacitated domination problem with splittable demand on trees
is NP-complete, even when the vertex capacity and demand are integers.

3.3 A Pseudo-Polynomial Time Algorithm for Splittable Demand Model

The reduction in the previous subsection points out the difficulty of the capacitated
domination problem with splittable demand on trees. Based on the transformation

284 Algorithmica (2011) 60: 274–300

from Subset Sum problem to capacitated domination problem with splittable demand
model, it is conceivable [19], but not explicitly, that there exists a pseudo-polynomial
time algorithm for its splittable demand model. The main idea is similar to the linear
time algorithm provided in Sect. 3.1.

Given a tree T = (V ,E) with a postorder tree traversal and v ∈ V , let Ch(v) be
the child set of v, p(v) be the parent of v, and Tv denote the subtree rooted at v. We
consider a stronger version of the original problem to find a capacitated dominating
multi-set D with the maximum residue capacity at the root. The algorithm runs in a
bottom-up manner and it processes one vertex at each iteration in the postorder tree
traversal.

At each iteration i, we maintain the residue demand of vi , denoted by RD[vi],
and the residue capacity of vi , denoted by RC[vi]. Initially we have RD[vi] = d(vi)

and RC[vi] = 0 for every vi ∈ V . As the vertex vi is considered, the algorithm first
uses up all the available residue capacity, if any, from Ch(vi) and then from {vi},
attempting to assign as much RD[vi] as possible so that either RD[vi] is satisfied
or all the available residue capacity is exhausted. We shall describe the first step,
exhausting all the available residue capacity from Ch(vi) ∪ {vi}, in detail later.

After the first step, if RD[vi] is satisfied, then RC[vi] is also maximized. Other-
wise, if RD[vi] �= 0, that is, the available residue capacity is used up but RD[vi] is
not satisfied, we process RD[vi] in a greedy manner as follows. Find u∗ ∈ N [vi] such
that c(u∗) is maxu∈N [vi]{c(u)}. Create �RD[vi]/c(u∗)� copies of u∗ ∈ D to meet the
demand RD[vi] of vi . We then have for vi a new residue demand RD[vi] which is
RD[vi] mod c(u∗). The algorithm further decides whether the new RD[vi] can be
determined immediately. We recall that Lemma 3.1 characterizes the undetermined
condition at each iteration i in the unsplittable demand model. A similar undeter-
mined condition also holds in the splittable demand model.

Lemma 3.10 Given a tree T = (V ,E) with a postorder tree traversal v1, v2, . . . , vn,
we can at each iteration i, 1 ≤ i ≤ n, immediately determine the optimal assignment
of the residue demand RD[vi] of vi , except for the case when RD[vi] ≤ c(p(vi)) <

c(vi) (this is called the undetermined condition of vi).

Proof The argument is similar to Lemma 3.1. After the first step, we have RD[vi] ≤
c(u∗), where c(u∗) = maxv∈N [vi]{c(v)}. If RD[vi] > max{c(p(vi)), c(vi)}, then u∗ ∈
Ch(vi) and we immediately assign RD[vi] to u∗. Otherwise, the demand assignment
is easy to do in case max{c(p(vi)), c(vi)} ≥ RD[vi] > min{c(p(vi)), c(vi)}. Finally,
if RD[vi] ≤ c(vi) ≤ c(p(vi)), we assign RD[vi] upward to p(vi) since it provides
more residue capacity at p(vi). �

If vi can be determined immediately, then we have RD[vi] = 0. Otherwise we
have RC[vi] = 0 by the first step and mark vi as undetermined. The two invariant
conditions hold after each iteration i, 1 ≤ i ≤ n, (1) RD[vi] · RC[vi] = 0; and (2)
RD[vi] �= 0 only if RD[vi] ≤ c(p(vi)) < c(vi).

Now we describe the first step, exhausting all the available residue capac-
ity from Ch(vi) ∪ {vi}, of our algorithm in detail. When the vertex vi is consid-
ered, the algorithm exhausts the available residue capacity from Ch(vi) first. Let

Algorithmica (2011) 60: 274–300 285

Chd(vi) = {p1,p2, . . . , pl} be the set of determined children of vi and Chu(vi) =
{q1, q2, . . . , qm} be the set of undetermined children of vi . Note that RD[pj] = 0,
1 ≤ j ≤ l, and RD[qk] ≤ c(vi) < c(qk), 1 ≤ k ≤ m. There may be some residue ca-
pacity at vi contributed by those determined children which are assigned upward. The
first step has the following two phases.

Phase (1) We exhaust the total residue capacity in Chd(vi), i.e.,
∑

pj ∈Chd(vi)
RC[pj].

It is obvious that the residue capacity RC[pj] is useless after the iteration i,
∀pj ∈ Chd(vi). We assign RD[vi] to p1,p2, . . . , pl as far as possible. If RD[vi] ≤∑

pj ∈Chd(vi)
RC[pj], then RD[vi] can be satisfied. We then assign q1, q2, . . . , qm

upward to vi since it provides p(vi) more residue capacity. The first step is
done. Otherwise, if RD[vi] >

∑
pj ∈Chd(vi)

RC[pj], we update RD[vi] = RD[vi] −∑
pj ∈Chd(vi)

RC[pj] and enter the next phase.

Phase (2) We arrange the demand assignment of the vertices in Chu(vi) to satisfy
RD[vi] while RC[vi] is maximized.
If RD[vi] >

∑
qk∈Chu(vi)

(c(qk) − RD[qk]), then it is impossible that RD[vi] can be
satisfied by any arrangement of the total available residue capacity of Chu(vi), since
by the undetermined condition of qk , c(qk) > c(vi) for each qk ∈ Chu(vi) and we
assign q1, q2, . . . , qm downward to themselves. Subsequently, we use up all available
residue capacity in Chu(vi) to satisfy RD[vi], and then assign the rest of RD[vi],
RD[vi] − ∑

qk∈Chu(vi)
(c(qk) − RD[qk]), to itself with the residue capacity of vi ,

RC[vi]. This complete the first step.
Otherwise, i.e., RD[vi] ≤ ∑

qk∈Chu(vi)
(c(qk) − RD[qk]), we will proceed to

arrange the demand assignment of the vertices in Chu(vi) to satisfy RD[vi] while
maximizing RC[vi]. This problem reduces to the following RELAXED KNAPSACK

PROBLEM, which is a variation of the well-known Knapsack Problem. Note that the
first invariant condition, that is, RD[vi] is satisfied or RC[vi] is exhausted, holds in
both phases.

Definition 3.11 (The Relaxed Knapsack Problem) Given a set of m ordered pairs
(ak, bk) denoting respectively the size and profit of the kth item, ∀ak, bk ∈ Z

+ ∪ {0},
1 ≤ k ≤ m, and a nonnegative integer W , find a subset A ⊆ {1,2, . . . ,m} such that∑

k∈A bk − max{0,
∑

k∈A ak − W } is maximized.

We select the items and place them into a knapsack of the relaxed size W to
maximize the sum of the profit

∑
k∈A bk . In particular, the additional compensa-

tion
∑

k∈A ak − W is required if the total size of the selected items,
∑

k∈A ak , ex-
ceeds W . We shall present an O(m2M) pseudo-polynomial time algorithm, where
M = max1≤k≤m{bk}, to solve the RELAXED KNAPSACK PROBLEM at the end of this
subsection.

The transformation is done in linear time as follows. Let W = ∑
qk∈Chu(vi)

(c(qk)−
RD[qk])−RD[vi], ak = c(qk)−RD[qk], and bk = c(vi)−RD[qk], for 1 ≤ k ≤ m. We
illustrate this further in detail. We know each vertex qk in Chu(vi) has c(qk) > c(vi).
Thus, it provides more residue capacity for RD[vi] to assign RD[qk] to qk itself than
to assign RD[qk] to vi . If we assign every vertex in Chu(vi) downward to itself, then

286 Algorithmica (2011) 60: 274–300

the sum of the residue capacity in Chu(vi) is
∑

qk∈Chu(vi)
(c(qk)− RD[qk])− RD[vi]

after RD[vi] is satisfied. This is the relaxed size W of the knapsack. If we as-
sign RD[qk], qk ∈ Chu(vi), upward to vi , the knapsack size is decreased by ak =
c(qk) − RD[qk] and the total profit is increased by bk = c(vi) − RD[qk]. Therefore,
there is a subset A ⊆ {1,2, . . . ,m} such that

∑
k∈A bk − max{0,

∑
k∈A ak − W } is

maximized if and only if there exists an optimal demand assignment of the vertices
in Chu(vi) such that RD[vi] can be satisfied while maximizing RC[vi] for Phase (2)
of the first step.

Theorem 3.12 The demand assignment of vertices in Chu(vi) can be optimally de-
termined in O(|Chu(vi)|2c(vi)) time such that RD[vi] is satisfied while maximizing
RC[vi], for Phase (2) of the first step at each iteration i, 1 ≤ i ≤ n.

According to Lemma 3.10 and Theorem 3.12, the following corollary is immedi-
ate.

Corollary 3.13 There exists at most one undetermined vertex, namely vi , in Tvi
, after

each iteration i, 1 ≤ i ≤ n.

Based on Theorem 3.12 and Corollary 3.13, the time needed at each iteration i is
O(|Ch(vi)|2c(vi)) +O(|Ch(vi)|) = O(|Ch(vi)|2c(vi)). The overall time complexity
is

∑
vi∈V O(c(vi)|Ch(vi)|2) = O(C|V |2), where C = maxvi∈V c(vi) is the maximum

capacity. The ALGORITHM MCDST is presented in Appendix.

Theorem 3.14 Given a tree T = (V ,E) with a postorder tree traversal, ALGO-
RITHM MCDST solves the capacitated domination problem with splittable demand
on T in O(C|V |2) time, where C is the maximum capacity.

3.3.1 The Relaxed Knapsack Problem

We describe below the algorithm DP_RKP based on dynamic programming to solve
the RELAXED KNAPSACK PROBLEM.

Let MinW(k,B) denote the minimum total size among all the combinations of
the first k items achieving the total profit B exactly. We let MinW(k,B) = ∞ if no
such combination exists. Let M = max1≤k≤m{bk}, and MinW(0,B) = ∞ initially for
0 ≤ B ≤ mM .

For each (k,B) with 1 ≤ k ≤ m and 0 ≤ B ≤ mM , the algorithm computes
MinW(k,B) based on MinW(k − 1,B ′), 0 ≤ B ′ ≤ mM , by considering the follow-
ing three cases: (1) the kth item is not picked by the algorithm; (2) the kth item is
picked and the total size we picked does not exceed W ; (3) the kth item is picked
and the total size we picked exceeds W . The recurrence formula for MinW(k,B) is

Algorithmica (2011) 60: 274–300 287

summarized as follows.

MinW(k,B) = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MinW(k − 1,B),

MinW(k − 1,B − bk) + ak,

if B ≥ bk and MinW(k − 1,B − bk) + ak ≤ W,

min{MinW(k − 1,B ′) + ak | MinW(k − 1,B ′) + ak > W and

B = (B ′ + bk) − (MinW(k − 1,B ′) + ak − W),

for each 0 ≤ B ′ ≤ mM}.
At each iteration k, we compute MinW(k,B) for every 0 ≤ B ≤ mM . As

MinW(m,B) is obtained for each 0 ≤ B ≤ mM , the algorithm outputs the maximum
total profit B∗ with MinW(m,B∗) < ∞.

In addition, by using a backtracking technique, we can modify the algorithm to
output the solution A ⊆ {1,2, . . . ,m} as well.

Lemma 3.15 The RELAXED KNAPSACK PROBLEM can be solved by dynamic pro-
gramming in O(m2M) time.

Proof The correctness is obvious based on the recurrence formula. For each
MinW(k,B), the straightforward approach to computing the third case of the for-
mula takes O(mM) time.

However, we can reduce the time cost by pre-considering the third case of
MinW(k + 1,B0) after MinW(k,B) is computed, where B0 = (B + bk+1) −
(MinW(k,B)+ ak+1 −W). To be precise, when MinW(k,B) is computed, we check
that whether MinW(k,B) + ak+1 exceeds W . If it does, we update MinW(k + 1,B0)

in advance. Otherwise, we do nothing. This reduces the time cost of the third
case to amortized O(1) time. The overall time needed is therefore O(m · mM) =
O(m2M). �

4 Approximation Algorithms

We investigate approximation algorithms for capacitated domination problem with
demand constraints. In Sect. 4.1, we recall the splittable demand model on trees. We
first review the RELAXED KNAPSACK PROBLEM and develop a fully polynomial
time approximation scheme (FPTAS) for this problem. Based on the FPTAS result,
we give a polynomial time approximation scheme (PTAS) for the capacitated domina-
tion problem with splittable demand on trees. In Sect. 4.2, we consider weighted ca-
pacitated domination problem with splittable demand on general graphs and present
a primal-dual algorithm [9, 16, 20] that gives a �∗-approximation, where �∗ is the
closed degree of the input graph.

4.1 Approximation on Trees

We showed that the capacitated domination problem with splittable demand on trees
is NP-complete in Sect. 3.2, even when the vertex capacity and demand are integers.

288 Algorithmica (2011) 60: 274–300

By our pseudo-polynomial time algorithm for the RELAXED KNAPSACK PROBLEM,
we further showed that it can be solved in pseudo-polynomial time for the integer
version in Sect. 3.3. In this subsection, we first give a fully polynomial time ap-
proximation scheme (FPTAS) for the RELAXED KNAPSACK PROBLEM. The idea is
similar to the well-known FPTAS result of Ibarra and Kim [19] for the Knapsack
Problem. Based on our FPTAS result, we then present a polynomial time approx-
imation scheme for the capacitated domination problem with splittable demand on
trees.

4.1.1 FPTAS for the Relaxed Knapsack Problem

Given a Relaxed Knapsack Problem instance, (ai, bi), 1 ≤ i ≤ n, where ai and bi

are the size and the profit of the ith item, and W ≥ 0, let M = max1≤i≤n{bi} be the
maximum profit. We re-scale the input to apply the dynamic programming algorithm
DP_RKP provided in Sect. 3.3.1.

Algorithm FPTAS_RKP (FPTAS for RELAXED KNAPSACK PROBLEM)

1. Given ε > 0, let k = εM
2n+1 , a′

i = � ai

k
�, b′

i = � bi

k
�, and W ′ = �W

k
�.

2. Use (a′
i , b

′
i), 1 ≤ i ≤ n, and W ′ as input parameters of the new Relaxed Knapsack

Problem instance.
Apply DP_RKP given in Sect. 3.3.1 to obtain a maximum total profit B∗.

3. Output the solution A∗ by the backtracking technique from B∗.

Note that, without loss of generality, we may assume k ≥ 1 since if it is not the
case, we simply apply DP_RKP without re-scaling. The solution we obtained for the
given Relaxed Knapsack Problem instance will be optimal and the time required will
be no more than that of FPTAS_RKP required.

We have the following proposition. The proof is straightforward and hence omit-
ted.

Proposition 4.1 We have r ≤ s� r
s
� ≤ r + s and r − s ≤ s� r

s
� ≤ r , for every r, s ∈ R

with s > 0.

For any specified solution A, we denote the total profit of the original problem
instance by profit(A) = ∑

i∈A bi − max{0,
∑

i∈A ai − W } and the total profit of the
new problem instance by profit′(A) = ∑

i∈A b′
i − max{0,

∑
i∈A a′

i − W ′}. We have
the following lemma.

Lemma 4.2 Let A∗ be the solution obtained by Algorithm FPTAS_RKP. We have
profit(A∗) ≥ (1 − ε) · profit(O), where O is the optimal solution of the original prob-
lem.

Proof Let A be any feasible solution. We have 0 ≤ profit(A) − k· profit′(A) =∑
i∈A(bi − k� bi

k
�) + (max{0,

∑
i∈A k� ai

k
� − k�W

k
�} − max{0,

∑
i∈A ai − W }). By

Proposition 4.1, we can obtain
∑

i∈A(bi − k� bi

k
�) ≤ nk and 0 ≤ (

∑
i∈A k� ai

k
� −

k�W
k

�) − (
∑

i∈A ai − W) ≤ (n + 1)k.

Algorithmica (2011) 60: 274–300 289

We then consider the item max{0,
∑

i∈A k� ai

k
� − k�W

k
�} − max{0,

∑
i∈A ai −

W } in the following. Since
∑

i∈A k� ai

k
� − k�W

k
� ≥ ∑

i∈A ai − W , the inequality∑
i∈A k� ai

k
� − k�W

k
� ≤ 0 would imply

∑
i∈A ai − W ≤ 0. Furthermore, the inequal-

ity
∑

i∈A ai − W ≤ 0 would imply (
∑

i∈A k� ai

k
� − k�W

k
�) − 0 ≤ (

∑
i∈A k� ai

k
� −

k�W
k

�) − (
∑

i∈A ai − W) ≤ (n + 1)k. Therefore we can obtain 0 ≤ profit(A) − k·
profit′(A) ≤ nk + (n + 1)k = k(2n + 1).

On the other hand, since A∗ is the optimal solution of the new problem in-
stance, we have profit(A∗) ≥ k· profit′(A∗) ≥ k· profit′(O) ≥ profit(O)−k(2n+1) =
profit(O) − εM ≥ (1 − ε)· profit(O), which proves the lemma. �

By Lemma 4.2, the profit of the solution obtained is greater than or equal to (1−ε)·
profit(O), where O is the optimal solution. The running time of the algorithm is
O(n2�M

k
�) = O(n2�n

ε
�) by Lemma 3.15. The following theorem is immediate.

Theorem 4.3 Algorithm FPTAS_RKP is an FPTAS for the RELAXED KNAPSACK

PROBLEM which gives a (1 − ε)-approximation in O(n2�n
ε
�) time.

4.1.2 A Simple 2-Approximation on Trees

Based on our FPTAS result of the RELAXED KNAPSACK PROBLEM, we provide a
simple 2-approximation algorithm for the capacitated domination problem with split-
table demand on a tree T = (V ,E) in O(|V |3�) time, where � is the maximum de-
gree, as follows. Given a capacitated domination problem instance, let ε = 1

�
. Con-

sider Phase (2) of our first step for every vi ∈ V in Sect. 3.3. We apply Algorithm
FPTAS_RKP instead of DP_RKP to arrange the demand assignment of vertices in
Chu(vi), and have an additional copy of vi after the arrangement. Note that we have
this copy only when FPTAS_RKP is applied.

Lemma 4.4 The approximation algorithm based on FPTAS_RKP yields a 2-
approximation factor for the capacitated domination problem with splittable demand
on a tree T = (V ,E) in O(|V |3�) time, where � is the maximum degree.

Proof For any vertex vi ∈ V , the maximum residue capacity of vi is at most
|Chu(vi)| · c(vi) after arranging the demand assignment of Chu(vi). By the choice
of ε, the error produced by FPTAS_RKP is at most ε · |Chu(vi)| · c(vi) ≤ c(vi),
which can be supplemented by an additional copy. The approximation ratio is there-
fore at most 2 for each vertex. The overall time complexity is

∑
vi∈V (O(|Ch(vi)|) +

O(|Chu(vi)|3 1
ε
)) = O(|V |3�). �

4.1.3 PTAS on Trees

The basic idea of the 2-approximation algorithm extends to a polynomial time ap-
proximation scheme for the capacitated domination with splittable demand on trees.
Given an integer constant k > 0, the approach is to apply FPTAS_RKP only when
it requires at least k copies to satisfy the arrangement of the demand assignment of
Chu(vi) in Phase (2) of our first step in Sect. 3.3.

290 Algorithmica (2011) 60: 274–300

The process is done as follows. For j = 1,2, . . . , k, we verify that whether j

copies are sufficient for the demand assignment of Chu(vi). If it holds, then we have
found the optimal arrangement, which corresponds to the smallest such j , and no
approximation is required at this stage. Otherwise we apply FPTAS_RKP to arrange
Chu(vi) and have an additional copy of vi . The approximation ratio is therefore k+1

k
.

For the time complexity, it takes (O
∑k

j=1

(|Chu(vi)|
j

)
) = O(|Chu(vi)|k) time to ver-

ify the number of copies required in the arrangement of Chu(vi). The overall time is∑
vi∈V (O(|Ch(vi)|) + |Chu(vi)|k + O(|Chu(vi)|3 1

ε
)) = O(|V |k + |V |3�).

Theorem 4.5 We have a polynomial time approximation scheme for the capaci-
tated domination problem with splittable demand on trees that computes a k+1

k
-

approximation solution in O(|V |k + |V |3�) time, where k is an integer constant
and � is the maximum degree.

4.2 General Graphs

In this subsection, we present a primal-dual algorithm [9, 16, 20] that gives a �∗-
approximation for weighted capacitated domination with splittable demand on gen-
eral graphs, where �∗ is the closed degree of the input graph. The algorithm is based
on the dual fitting technique.

An integer linear programming (ILP) of this problem is written in (1). A feasi-
ble primal solution corresponds to a feasible capacitated dominating multi-set on a
given weighted graph. The additional constraint d(vj)x(vi) − f (vj , vi) ≥ 0, which
is unnecessary in the ILP formulation, is required to bound the integrality gap be-
tween the fractional optimum and the integral optimum in the relaxation. Actually
the integrality gap could be large without this constraint. For example, consider a star
which consists of n vertices with uniform capacity n, uniform demand 1, and uniform
weight 1. The integral optimum is simply to have one copy at the center. However,
there could be one optimal fractional solution with 1/n copies placed at each vertex,
giving one copy at each vertex after rounding.

Minimize
n∑

i=1

w(vi)x(vi)

c(vi)x(vi) −
∑

vj ∈N [vi]
f (vj , vi) ≥ 0, i = 1,2, . . . , n

∑

vj ∈N [vi]
f (vi, vj) ≥ d(vi), i = 1,2, . . . , n

d(vj)x(vi) − f (vj , vi) ≥ 0, vj ∈ N [vi], i = 1,2, . . . , n

x(vi) ∈ Z
+ ∪ {0}, i = 1,2, . . . , n

(1)

The dual program of the relaxation of (1) is described in (2). The objective value
of a dual feasible solution is a lower bound of any integral optimum of the primal
program. Based on the dual fitting technique, we increase every yi simultaneously
as large as possible to maximize the objective function, while we maintain the dual

Algorithmica (2011) 60: 274–300 291

feasibility.

Maximize
n∑

i=1

d(vi)yi

c(vi)zi +
∑

vj ∈N [vi]
d(vj)gi,j ≤ w(vi), i = 1,2, . . . , n

yi ≤ zj + gj,i , vj ∈ N [vi], i = 1,2, . . . , n

yi ≥ 0, zi ≥ 0, gj,i ≥ 0, vj ∈ N [vi], i = 1,2, . . . , n

(2)

Given a weighted graph G = (V ,E), let V φ ⊆ V denote the set of vertices whose
demands have not been assigned yet. For every vertex v, we use d

φ
N(v) to denote the

total amount of unassigned demand of all the closed neighbors of v. In addition, we
define the inequality d

φ
N(v) ≤ c(v) to be the critical condition of v and Dc

uv̄ to be
the amount of demand of a closed neighbor u of v, d(u), which is to be assigned to
vertices other than v after the critical condition of v holds. Now we describe our AL-
GORITHM MCDAWG (see Appendix) briefly. Initially no demand is assigned and we
mark all the vertices closed. As the algorithm runs, several vertices are marked open
while their weight constraints of the dual program are met with equality. As soon as
one vertex v is marked open, all unassigned demands of the closed neighbors of v

are assigned to v (the amount is d
φ
N(v)). Subsequently, some demand of the closed

neighbor, say u, of v (u = v possibly), which was previously assigned to v, gets re-
assigned to a closed neighbor w of u, w �= v, when w is marked open and the critical
condition of w holds (the reassigned amount is the f (u, v) portion of Dc

uw̄). All the
demand assignment can be arranged accordingly, and finally the capacitated domi-
nating multi-set is D = {v; v is marked open} and x(v) = �(∑u∈N [v] f (u, v))/c(v)�,
∀v ∈ D.

The main process is described in detail as follows. In the dual program, all the
dual variables yi are zero initially. This is a dual feasible solution with all zj = 0 and
gj,i = 0. We increase all the dual variables yi simultaneously, for each vertex vi ∈ V φ

whose demand is unassigned. To maintain the dual feasibility of the constraint yi ≤
zj + gj,i , we have to increase zj or gj,i , for every vj ∈ N [vi], while we increase yi .
To be more precise, if the closed neighbors of vj have a large amount of unassigned

demands, specifically, d
φ
N(vj) > c(vj), then we increase zj . Otherwise, we increase

gj,i . When we increase the dual variables simultaneously for each vertex in V φ , we
stop increasing the dual variable vk as soon as the weight constraint of vk , c(vk)zk +∑

v�∈N [vk] d(v�)gk,� ≤ w(vk), is met with equality. We then mark this vertex vk open

and assign to vk d
φ
N(vk) unassigned demand from the closed neighbors of vk . In

addition, if the critical condition of vk , i.e., d
φ
N(vk) ≤ c(vk), holds at the same time,

we also reassign to vk Dc
uv̄k

demand from every closed neighbor u of vk . Note that
for every closed neighbor u of vk , we have to update Dc

uw̄ , ∀w ∈ N [u].

Lemma 4.6 The total weight of each open vertex,
∑

v∈D w(v) · x(v), can be distrib-
uted so that each unit of the demand (say from vj) costs at most deg[vj] · yj weight,
where deg[vj] is the closed degree of vj .

292 Algorithmica (2011) 60: 274–300

Proof We divide the open vertices into two groups by the critical condition. A vertex
vi is defined to be light if the critical condition of vi , d

φ
N(vi) ≤ c(vi), holds, when it

is marked open, and defined to be heavy otherwise. The charging scheme is specified
in the following.

Consider a heavy vertex vi . When vi is marked open, we have d
φ
N(vi) > c(vi)

and c(vi)zi + ∑
vj ∈N [vi] d(vj)gi,j = w(vi), and assign to vi all d

φ
N(vi) unassigned

demand of its closed neighbors. In particular, some of these demands, denoted by a
subset R(vi), will be reassigned to other vertices subsequently. Based on our dual
fitting rule, we have gi,j = 0 and yj = zi for vj ∈ N [vi], which implies w(vi) =
c(vi)zi = c(vi)yj . If we want to distribute w(vi) so that each unit of the demand (say
from vj) costs at most yj weight, then vj needs c(vi) units of demand to be charged,
for each copy of vi .

Suppose d
φ
N(vi) = p · c(vi) + q , where 0 ≤ q < c(vi). If R(vi) ≥ q , then we need

at most p copies of vi , and the total weight can be distributed to any p · c(vi) units of
the d

φ
N(vi) demand assigned to vi . Hence, each unit of the d

φ
N(vi) demand (say from

vj) assigned to vi is charged at most yj weight. If 0 ≤ R(vi) < q , then we need p +1
copies of vi and the total weight needs (p + 1)c(vi) demand to be charged. We first
charge all the units of the d

φ
N(vi) demand once. We then need to charge c(vi) − q

units of demand. Since there are at least p · c(vi) un-reassigned units of the d
φ
N(vi)

demand and p ≥ 1 (since vi is heavy and d
φ
N(vi) > c(vi)), we charge c(vi) − q units

of the un-reassigned demand again.
On the other hand, if vi is a light vertex, we need only one copy of vi

(dφ
N(vi) ≤ c(vi)) when vi is marked open. If vi is light in the beginning, that is,∑
vj ∈N [vi] d(vj) ≤ c(vi), then we have zi = 0 and yj = gi,j for vj ∈ N [vi], based on

our dual fitting rule. Thus w(vi) = ∑
vj ∈N [vi] d(vj)gi,j = ∑

vj ∈N [vi] d(vj)yj . The

weight of only one copy, w(vi), can be distributed to all the units of d
φ
N(vi)(=∑

vj ∈N [vi] d(vj)) demand assigned to vi , and each unit of demand (say from vj)
gets a charge of yj .

Otherwise, if
∑

vj ∈N [vi] d(vj) > c(vi) initially, then d
φ
N(vi) = c(vi) at some point

in time, as we increase the dual variables simultaneously for each vertex in V φ . After
the time, we fix the value of zi and subsequently increase gi,j for vj ∈ N [vi] ∩ V φ ,

based on our dual fitting rule. Note that c(vi) = d
φ
N(vi) + ∑

vj ∈N [vi] D
c
vj v̄i

=
∑

vj ∈N [vi]∩V φ d(vj) + ∑
vj ∈N [vi] D

c
vj v̄i

, since we assign the Dc
vj v̄i

portion of d
φ
N(vi)

demand to vertices other than vi for vj ∈ N [vi] after the time. Thus, as vi is marked
open, we have w(vi) = c(vi)zi + ∑

vj ∈N [vi] d(vj)gi,j = (
∑

vj ∈N [vi]∩V φ d(vj) +∑
vj ∈N [vi] D

c
vj v̄i

)zi + (
∑

vj ∈N [vi]∩V φ d(vj)gi,j + ∑
vj ∈N [vi]\V φ d(vj)gi,j) =∑

vj ∈N [vi]∩V φ d(vj)(zi + gi,j)+ (
∑

vj ∈N [vi] D
c
vj v̄i

)zi +∑
vj ∈N [vi]\V φ d(vj)gi,j . The

first item is equal to
∑

vj ∈N [vi]∩V φ d(vj)yj because yj = zi + gi,j . The sec-

ond item
∑

vj ∈N [vi] D
c
vj v̄i

zi = ∑
vj ∈N [vi]\V φ Dc

vj v̄i
zi (Dc

vj v̄i
= 0 if vj ∈ V φ) is no

larger than
∑

vj ∈N [vi]\V φ d(vj)zi since Dc
vj v̄i

≤ d(vj), ∀vj . Therefore the weight

w(vi) is no large than
∑

vj ∈N [vi]∩V φ d(vj)yj + ∑
vj ∈N [vi]\V φ d(vj)(zi + gi,j) =

Algorithmica (2011) 60: 274–300 293

∑
vj ∈N [vi] d(vj)yj , because yj = zi +gi,j . Hence each unit of demand (say from vj)

assigned to vi gets a charge of yj again.
Finally, for every unit d of demand d(vj) of a vertex vj ∈ V , without loss of

generality, assume deg[vj] > 1 and let A ⊆ N [vj] be the set of vertices that have
charged d . If |A| = 1, then d is charged at most two (≤ deg[vj]) times (by a heavy
closed neighbor). If |A| ≥ 2, then every light vertex in A charges d once, and each
heavy vertex in A also charges d once since the demand d is reassigned (|A| ≥ 2).
Thus d gets a charge of |A| · yj ≤ deg[vj] · yj . �

Theorem 4.7 ALGORITHM MCDAWG obtains a �∗-approximation solution for
weighted capacitated domination problem with splittable demand on a general graph
G = (V ,E), where �∗ is the maximum closed degree of G.

Proof Let D∗ be the multi-set of open vertices returned by ALGORITHM MCDAWG
and w(D∗) = ∑

v∈D∗ w(v)x(v). Since the objective value
∑

v d(v)yv of a dual fea-
sible solution is a lower bound of any integral optimum of the primal program,
by Lemma 4.6, we have w(D∗) ≤ ∑

v∈V d(v) · (deg[v]yv) ≤ �∗ · ∑
v∈V d(v)yv ≤

�∗ · w(OPT), where OPT is an optimal solution. �

5 Conclusion

In this paper we have presented a linear time algorithm for capacitated domination
problem with unsplittable demand on trees. As for the splittable demand model on
trees, we have shown that it is NP-complete, and solvable in pseudo-polynomial time.
We have also provided two approximation algorithms. One is polynomial time ap-
proximation scheme (PTAS) for trees and the other is �∗-factor by using primal-dual
method for general weighted graphs, where �∗ is the closed degree of the input graph.
Finally we conclude with some comments followed by future work.

5.1 Discussion

Consider the hard capacity model. Recall that the hard capacity model restricts the
number of available copies of each vertex to a given function of vertices. We refer
to the result of Chuzhoy and Naor [9], and find that the hard capacitated domina-
tion problem with unsplittable demand on graphs is also unapproximable, even on
bipartite graphs.

For trees, it is not difficult to show that the hard capacitated domination problem
with unsplittable demand is NP-hard. We provide here a reduction from Subset Sum.
Given a Subset Sum instance with parameters W and ai , 1 ≤ i ≤ n, we construct a
star T of n + 1 vertices. Let M = max{ai} + W + 1. The number of the bounded
available copies, capacity, and demand of the center are W , M , and 0, respectively.
The capacity and demand of the n leaves are ai and Mai , respectively.

Lemma 5.1 There is a subset A ⊆ {1, . . . , n} with
∑

i∈A ai = W if and only if the
cardinality of the optimal capacitated dominating multi-set on T is kM + W , for
some k.

294 Algorithmica (2011) 60: 274–300

Proof It is trivial for the necessary condition because M > W by the definition of M .
As for the sufficient condition, given the cardinality S of any feasible capacitated
dominating multi-set, the number of copies in the center is well defined by the re-
mainder of S

M
, since M > W . �

We conjecture that the hard capacitated domination problem with splittable de-
mand on trees is unapproximable. On the other hand, for the soft uniform capacity
model, e.g., when each vertex has the same capacity, we believe that the capacitated
domination problem with splittable demand on trees can be solved in linear time be-
cause no undetermined condition exists for each vertex. However, our linear time
algorithm does not extend to the uniform splittable demand model in which each
vertex has the same demand.

5.2 Future Work

We present a �∗-approximation for the capacitated domination problem with split-
table demand on general graphs, which corresponds to the �-factor result for the
classical domination problem, where � is the maximum (open) degree of the graph.
However, the approximation for the unsplittable demand model on general graphs
still remains open. In contrast to the other O(lnn)-factor approximation result for the
classical domination problem, it would not be surprised if there is a similar result for
the capacitated domination problem.

Recall the facility location problem. It is natural to introduce the concept of ser-
vice cost to the capacitated domination problem. In addition, it is also interesting to
explore the complexity of capacitated domination problem with demand constraints
on other graph classes.

Appendix

Algorithm Min_Capacitated_Domination_Unsplittable_demand_on_Trees MCDUT
Input

1. A tree T = (V ,E) with a postorder tree traversal v1, v2, . . . , vn

2. A capacity function c : V → R
+ ∪ {0}

3. A demand function d : V → R
+ ∪ {0}

Output
The minimum cardinality of a capacitated dominating set D of T , |D| = W↓[vn], and
the optimal demand assignment function f : V × D → R

+ ∪ {0}, where f (v, û)

corresponds to each û ∈ D, ∀v ∈ V .
Begin

for i = 1 to n

Let Ch(vi) be the child set of vi and p(vi) the parent of vi .

/* Case 1: assume d(vi) is assigned upward to its parent of vi , p(vi). */
if i < n /* vi is not root. */

RC↑[vi] := ∑
u∈Ch(vi), W↓[u]≥W↑[u](c(vi) − (d(u) mod c(vi)))

W↑[vi] := �d(vi)/c(p(vi))� + ∑
u∈Ch(vi),W↓[u]<W↑[u] W↓[u]

+ ∑
u∈Ch(vi),W↓[u]≥W↑[u] W↑[u] − �RC↑[vi]/c(vi)�

Algorithmica (2011) 60: 274–300 295

RC↑[vi] := RC↑[vi] mod c(vi)

end if

/* Case 2: assume d(vi) is assigned to one of Ch(vi) ∪ {vi}. */
/* Case 2-1: assume d(vi) is assigned to {vi} itself. */
RCvi [vi] := ∑

u∈Ch(vi),W↓[u]≥W↑[u](c(vi) − (d(u) mod c(vi))) + (c(vi)

− (d(vi) mod c(vi)))

Wvi [vi] := �d(vi)/c(vi)� + ∑
u∈Ch(vi),W↓[u]<W↑[u] W↓[u]

+ ∑
u∈Ch(vi),W↓[u]≥W↑[u] W↑[u] − �RCvi [vi]/c(vi)�

RCvi [vi] := RCvi [vi] mod c(vi)

/* Case 2-2: assume d(vi) is assigned to û ∈ Ch(vi). */
Initially WCh(vi) = ∞, RCCh(vi) = 0.
for every u∗ ∈ Ch(vi)

RC∗
Ch(vi)

[vi] := ∑
u∈Ch(vi),W↓[u]≥W↑[u](c(vi) − (d(u) mod c(vi)))

W∗
Ch(vi)

[vi] := �d(vi)/c(u
∗)� + ∑

u∈Ch(vi),W↓[u]<W↑[u] W↓[u]
+ ∑

u∈Ch(vi),W↓[u]≥W↑[u] W↑[u] − �RC∗
Ch(vi)

[vi]/c(vi)�
RC∗

Ch(vi)
[vi] := RC∗

Ch(vi)
[vi] mod c(vi)

/* Consider RC↑[u∗] or RC↓[u∗] to reduce W∗
Ch(vi)

[vi]. */

if W↓[u∗] ≥ W↑[u∗]
W∗

Ch(vi)
[vi] := W∗

Ch(vi)
[vi] − �(RC↑[u∗] + (c(u∗) − (d(vi) mod c(u∗))))

/c(u∗)�
else

W∗
Ch(vi)

[vi] := W∗
Ch(vi)

[vi] − �(RC↓[u∗] + (c(u∗) − (d(vi) mod c(u∗))))

/c(u∗)�
end if
if W∗

Ch(vi)
[vi] < WCh(vi)[vi] or (W∗

Ch(vi)
[vi] = WCh(vi)[vi] and

RC∗
Ch(vi)

[vi] > RCCh(vi)[vi])

WCh(vi)[vi] = W∗
Ch(vi)

[vi], RCCh(vi)[vi] = RC∗
Ch(vi)

[vi], and û = u∗
if W↓[û] ≥ W↑[û]

flag[û] := 1
else

flag[û] := 0
end if

end if

/* Consider the case d(u∗) is not assigned upward if u∗ is undetermined. */
if W↓[u∗] = W↑[u∗] and RC↓[u∗] > RC↑[u∗]

RC∗
Ch(vi)

[vi] := ∑
u∈Ch(vi),u �=u∗,W↓[u]≥W↑[u](c(vi) − (d(u) mod c(vi)))

W∗
Ch(vi)

[vi] := �d(vi)/c(u
∗)� + ∑

u∈Ch(vi), W↓[u]<W↑[u] W↓[u]
+ ∑

u∈Ch(vi), u �=u∗, W↓[u]≥W↑[u] W↑[u] + W↓[u∗]
− �RC∗

Ch(vi)
[vi]/c(vi)�

RC∗
Ch(vi)

[vi] := RC∗
Ch(vi)

[vi] mod c(vi)

/* Consider RC↓[u∗] to reduce W∗
Ch(vi)

[vi]. */

W∗
Ch(vi)

[vi] := W∗
Ch(vi)

[vi] − �(RC↓[u∗] + (c(u∗) − (d(vi) mod c(u∗))))

/c(u∗)�
if W∗

Ch(vi)
[vi] < WCh(vi)[vi] or (W∗

Ch(vi)
[vi] = WCh(vi)[vi] and

296 Algorithmica (2011) 60: 274–300

RC∗
Ch(vi)

[vi] > RCCh(vi)[vi])

WCh(vi)[vi] = W∗
Ch(vi)

[vi], RCCh(vi)[vi] = RC∗
Ch(vi)

[vi], û = u∗, and

flag[û] := 0
end if

end if
end for
if Wvi [vi] < WCh(vi)[vi] or (Wvi [vi] = WCh(vi)[vi] and RCvi [vi] ≥ RCCh(vi)[vi])

W↓[vi] = Wvi [vi], RC↓[vi] = RCvi [vi], û = vi

else
W↓[vi] = WCh(vi)[vi], RC↓[vi] = RCCh(vi)[vi]

end if

/* determine the demand assignment and the pointer */
if W↑[vi] < W↓[vi] or (W↑[vi] = W↓[vi] and RC↑[vi] ≥ RC↓[vi])

/* vi is determined to be assigned upward */
û = p(vi), f (vi,p(vi)) = d(vi)

else if W↑[vi] > W↓[vi] /* vi is determined to be assigned downward */
f (vi , û) = d(vi), assign û and all its undetermined descendants downward by
pointers until flag = 1

else /* vi is undetermined */
Set a pointer from vi to û

end if
for every undetermined u∗ ∈ Ch(vi)

if u∗ �= û or (u∗ = û and flag[û] = 1)
f (u∗, vi) = d(u∗) and every undetermined descendant of u∗ is set to be
assigned upward by pointers

end if
end for

end for
End

Algorithm Min_Capacitated_Domination_Splittable_demand_on_Trees MCDST
Input

1. A tree T = (V ,E) with a postorder tree traversal v1, v2, . . . , vn

2. A capacity function c : V → Z
+ ∪ {0}

3. A demand function d : V → Z
+ ∪ {0}

Output
The minimum cardinality of a capacitated dominating set D of T and the optimal
demand assignment function f : V × D → Z

+ ∪ {0}, where f (v, û) corresponds
to each û ∈ D, ∀v ∈ V .

Begin
for i = 1 to n

Let Ch(vi) be the child set of vi and p(vi) the parent of vi .
Let Chd(vi) and Chu(vi) be the determined and undetermined child sets of vi ,
respectively.

/* exhaust the residue capacity of Chd(vi) */
for each pj ∈ Chd(vi) do

if RD[vi] ≤ RC[pj] then
f (vi,pj) = f (vi ,pj) + RD[vi]

Algorithmica (2011) 60: 274–300 297

RD[vi] = 0
break

end if
f (vi ,pj) = f (vi,pj) + RC[pj]
RD[vi] = RD[vi] − RC[pj]

end for
/* perform the transformation to Relaxed Knapsack Problem */
W = 0
for each qk ∈ Chu(vi) do

Let ak = c(qk) − RD[qk] and bk = c(vi) − RD[qk]
W = W + ak

end for
W = W − RD[vi]

Use (a, b,W) as the Relaxed Knapsack Problem instance and solve it.
Let B∗ be the solution and backtrack B∗ to obtain the optimal set A.

/* determine the arrangement of the undetermined children */
for each qk ∈ Chu(vi) do

if k ∈ A then /* assign RD[qk] upward */
f (qk, vi) = f (qk, vi) + RD[qk]
RC[vi] = RC[vi] + c(vi) − RD[qk]

else /* assign RD[qk] downward */
f (qk, qk) = f (qk, qk) + RD[qk]
if RD[vi] < c(qk) − RD[qk] then

f (vi , qk) = f (vi , qk) + RD[vi]
RD[vi] = 0

else
f (vi , qk) = f (vi , qk) + (c(qk) − RD[qk])
RD[vi] = RD[vi] − (c(qk) − RD[qk])

end if
end if

end for
/* exhaust the residue capacity of vi , RC[vi] */
if RC[vi] ≥ RD[vi] > 0 then

f (vi , vi) = f (vi , vi) + RD[vi]
RC[vi] = RC[vi] − RD[vi]
RD[vi] = 0

else
f (vi , vi) = f (vi , vi) + RC[vi]
RD[vi] = RD[vi] − RC[vi]
RC[vi] = 0

end if
Let u∗ be the vertex with maximum capacity in N [vi] = Ch(vi) ∪ {vi} ∪ {p(vi)}.
f (vi , u

∗) = f (vi , u
∗) + �RD[vi]

c(u∗) � · c(u∗)

RD[vi] = RD[vi] mod c(u∗)

/* check the undetermined condition of vi */
if 0 < RD[vi] ≤ c(p(vi)) < c(vi) then

Mark vi as undetermined

298 Algorithmica (2011) 60: 274–300

else
Mark vi as determined

if RD[vi] > max{c(vi), c(p(vi))} then
/* assign vi to u∗ */
f (vi, u

∗) = f (vi , u
∗) + RD[vi]

else if 0 < RD[vi] ≤ c(p(vi)) then
/* assign vi to p(vi)

f (vi ,p(vi)) = f (vi,p(vi)) + RD[vi]
RC[p(vi)] = c(p(vi)) − RD[vi]

else if 0 < RD[vi] then
/* assign vi to vi itself
f (vi, vi) = f (vi , vi) + RD[vi]
RC[vi] = c(vi) − RD[vi]

end if
RD[vi] = 0

end if
end for

End

Algorithm Min_Capacitated_Domination_Approximation_on_Weighted_Graphs
MCDAWG

Input
1. A graph G = (V ,E)

2. A capacity function c : V → R
+ ∪ {0}

3. A demand function d : V → R
+ ∪ {0}

4. A cost function w : V → R
+ ∪ {0}

Output
An feasible demand assignment function f : V × D → R

+ ∪ {0} with
�∗-approximation

Begin
V φ := V [V φ is the set of unassigned vertices].
Vc := V [Vc is the set of closed vertices].
for every v ∈ V

D
φ
N

(v) := V φ ∩ N [v]. d
φ
N

(v) := ∑
u∈D

φ
N(v)

d(u).

wφ(v) := w(v).
f (u, v) = 0, u ∈ N [v].

end for
while V φ �= ∅

rv := wφ(v)/min{c(v), d
φ
N

(v)}, v ∈ V φ .
u := arg min{rv : v ∈ V φ}. /* break ties arbitrarily */
V φ := V φ\{u}.
wφ(v) := wφ(v) − ru · min{c(v), d

φ
N

(v)}, v ∈ V φ .

f (p,u) = f (p,u) + d(p), for p ∈ D
φ
N

(u).

if d
φ
N

(u) ≤ c(u) /* reassignment operations */
for every v ∈ N [u] with Dc

vū
�= 0

f (v,u) = f (v,u) + Dc
vū

.
while Dc

vū
�= 0

/* update f (v,w), w ∈ N [v], after the reassignment */

Algorithmica (2011) 60: 274–300 299

Find a vertex w ∈ N [v] such that w �= v and f (v,w) �= 0.
if f (v,w) > Dc

vū
f (v,w) = f (v,w) − Dc

vū
.

Dc
vū

= 0.
else

Dc
vū

= Dc
vū

− f (v,w).
f (v,w) = 0.

end if
end while

end for
end if

for every p ∈ D
φ
N

(u)

/* update Dc
qp̄

, q ∈ D
φ
N

(p), ∀p ∈ D
φ
N

(u), after the reassignment */

V φ := V φ\{p}, D
φ
N

(p) := D
φ
N

(p)\{u}.
for every q ∈ D

φ
N

(p)

D
φ
N

(q) = D
φ
N

(q)\{p}.
if d

φ
N

(q) ≤ c(q)

Dc
qp̄

= Dc
qp̄

+ d(p).

else if d
φ
N

(q) − d(p) ≤ c(q)

Dc
qp̄

= Dc
qp̄

+ d(p) + c(q) − d
φ
N

(q).

end if

d
φ
N

(q) = d
φ
N

(q) − d(p).
end for

end for
end while

End

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics
for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)

2. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover prob-
lem. J. Algorithms 2, 198–203 (1981)

3. Bar-Ilan, J., Kortsarz, G., Peleg, D.: Generalized submodular cover problems and applications. Theor.
Comput. Sci. 250, 179–200 (2001)

4. Bartal, Y., Charikar, M., Raz, D.: Approximating min-sum k-clustering in metric spaces. In: Proceed-
ings of 33th ACM Symposium on Theory of Computing, pp. 11–20 (2001)

5. Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location and k-median prob-
lems. In: Proceedings of 40th IEEE Symposium of Foundations of Computer Science, pp. 378–388
(1999)

6. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the
k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

7. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.-Z.: A polynomial-time approximation scheme for the
minimum-connected dominating set in ad hoc wireless networks. Networks 42(4), 202–208 (2003)

8. Chuzhoy, J., Rabani, Y.: Approximating k-median with non-uniform capacities. In: Proceedings of
the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 952–958 (2005)

9. Chuzhoy, J., Naor, J.S.: Covering problems with hard capacities. SIAM J. Comput. 36(2), 498–515
(2006)

300 Algorithmica (2011) 60: 274–300

10. Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for a capacitated facility location
problem. In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms, pp. 875–876
(1999)

11. Chudak, F.A., Williamson, D.P.: Improved approximation algorithms for capacitated facility location
problems. Math. Program. 102(2), 207–222 (2005)

12. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)
13. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)
14. Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved approximation algo-

rithm for vertex cover with hard capacities. J. Comput. Syst. Sci. 72(1), 16–33 (2006)
15. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and its applications to

approximation algorithms. J. ACM 53(3), 324–360 (2006)
16. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. J. Algorithms 48(1), 257–270

(2003)
17. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: The Theory. Dekker, New York

(1998)
18. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J.

Comput. 11(3), 555–556 (1982)
19. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems.

J. ACM 22(4), 463–468 (1975)
20. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems

using the primal-dual schema and Lagrangian relaxation. J. ACM 48(2), 274–296 (2001)
21. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proceed-

ings of 34th ACM Symposium on Theory of Computing, pp. 731–740 (2002)
22. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3),

256–278 (1974)
23. Korupolu, M., Plaxton, C., Rajaraman, R.: Analysis of a local search heuristic for facility location

problems. J. Algorithms 37(1), 146–188 (2000)
24. Levi, R., Shmoys, D.B., Swamy, C.: LP-based approximation algorithms for capacitated facility loca-

tion. In: Proceedings of 10th Conference on Integer Programming and Combinatorial Optimization,
pp. 206–218 (2004)

25. Liao, C.S., Chang, G.J.: Algorithmic aspect of k-tuple domination in graphs. Taiwan. J. Math. 6,
415–420 (2002)

26. Liao, C.S., Chang, G.J.: k-tuple domination in graphs. Inf. Process. Lett. 87(1), 45–50 (2003)
27. Lovász, L.: On the ratio of optimal and fractional covers. Discrete Math. 13, 383–390 (1975)
28. Mahdian, M., Pál, M.: Universal facility location. In: Proceedings of 11th European Symposium on

Algorithms, pp. 409–421 (2003)
29. Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility location problems.

SIAM J. Comput. 36(2), 411–432 (2006)
30. Pál, M., Tardos, É., Wexler, T.: Facility location with nonuniform hard capacities. In: Proceedings of

42th Symposium of Foundations of Computer Science, pp. 329–338 (2001)
31. Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility location problems. In:

Proceedings of 29th ACM Symposium on Theory of Computing, pp. 265–274 (1997)
32. Zhang, J., Chen, B., Ye, Y.: A multi-exchange local search algorithm for the capacitated facility loca-

tion problem. Math. Oper. Res. 30(2), 389–403 (2005)

	Capacitated Domination Problem
	Abstract
	Introduction
	Our Contribution

	Preliminaries
	Capacitated Domination on Trees
	Unsplittable Demand Model
	Case (1)
	Case (2)

	NP-Completeness for Splittable Demand Model
	A Pseudo-Polynomial Time Algorithm for Splittable Demand Model
	Phase (1)
	Phase (2)
	The Relaxed Knapsack Problem

	Approximation Algorithms
	Approximation on Trees
	FPTAS for the Relaxed Knapsack Problem
	A Simple 2-Approximation on Trees
	PTAS on Trees

	General Graphs

	Conclusion
	Discussion
	Future Work

	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

