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Abstract. This paper revisits the k-nearest-neighbor (k-NN) Voronoi
diagram and presents the first output-sensitive paradigm for its con-
struction. It introduces the k-NN Delaunay graph, which corresponds
to the graph theoretic dual of the k-NN Voronoi diagram, and uses it
as a base to directly compute the k-NN Voronoi diagram in R?. In the
L1, Lo metrics this results in O((n + m)logn) time algorithm, using
segment-dragging queries, where m is the structural complexity (size)
of the k-NN Voronoi diagram of n point sites in the plane. The paper
also gives a tighter bound on the structural complexity of the k-NN
Voronoi diagram in the Lo, (equiv. L1) metric, which is shown to be
O(min{k(n — k), (n — k)?}).

1 Introduction

Given a set S of n point sites € R? and an integer k, 1 < k < n, the k-nearest-
neighbor Voronoi Diagram, abbreviated as k-NN Voronoi diagram and denoted
as Vi(9), is a subdivision of R? into regions, called k-NN Voronoi regions, each
of which is the locus of points closer to a subset H of k sites, H C S, called
a k-subset, than to any other k-subset of S, and is denoted as Vi (H,S). The
distance between a point p and a point set H is d(p, H) = max{d(p, q),Vq € H},
where d(p, q) denotes the distance between two points p and gq.

A k-NN Voronoi region Vi (H,S) is a polytope in R?. The common face
between two neighboring k-NN Voronoi regions, Vi (Hi,S) and Vi(Hs,S), is
portion of the bisector B(Hy, Hy) = {r | d(r,Hy) = d(r, Hs),r € R%}. In R?,
the boundary between two neighboring k-NN Voronoi regions is a k-NN Voronoi
edge, and the intersection point among more than two neighboring k-NN Voronoi
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regions is a k-NN Voronoi vertez. In the L,-metric the distance d(s,t) between
two points s,t is dp(s,t) = (|z1, —x1,|P + |22, — 22, |P + - + |Ta, — 24, |P)"/? for
1 <p<oo, and dy(s,t) = max(|x1, — x1, ], |z2, — 2,|,- -, |Ta, — x4,|)-

Lee [14] showed that the structural complexity, i.e., the size, of the k-NN
Voronoi diagram in the plane is O(k(n—k)), and proposed an iterative algorithm
to construct the diagram in O(k?nlogn) time and O(k?(n—k)) space. Agarwal et
al. [3] improved the time complexity to be O(nk?+nlogn). Based on the notions
of geometric duality and arrangements, Chazelle and Edelsbrunner [8] developed
two versions of an algorithm, which take O(n?logn + k(n — k)log® n) time and
O(k(n—Fk)) space, and O(n?+k(n—k)log? n) time and O(n?) space, respectively.
Clarkson [9], Mulmuley [16], and Agarwal et al. [2] developed randomized algo-
rithms, where the expected time complexity of O(k(n — k)logn 4+ nlog®n) in [2]
is the best. Boissonnat et al. [6] and Aurenhammer and Schwarzkopf [5] proposed
on-line randomized incremental algorithms: the former in expected O(nlogn +
nk?) time and O(nk?) space, and the latter in expected O(nk? log n + nklog® n)
time and O(k(n — k)) space. For higher dimensions, Edelsbrunner et al. [11]
devised an algorithm to compute all V;(S) in R? with the Euclidean metric for
1 < k < n, within optimal O(n?*!) time and space, and Clarkson and Shor [10]
showed the total size of all V4 (S) to be O(k(@+1)/21pl(d+1)/2])

All the above-mentioned algorithms [2, 5, 6, 8, 9, 14, 16] focus on the Euclidean
metric. However, the computationally simpler, piecewise linear, L1 and L., met-
rics are very well suited for practical applications. For example, L, higher-order
Voronoi diagrams have been shown to have several practical applications in VLSI
design e.g., [17-19]. Most existing algorithms compute k-NN Voronoi diagrams
using reductions to arrangements or geometric duality [2,5,8,9,16] which are
not directly applicable to the Ly, Lo, metrics. Furthermore, none of the existing
deterministic algorithms is output-sensitive, i.e., their time complexity does not
only depend on the actual size of the k&-NN Voronoi diagram. For example, the
iterative algorithm in [14] needs to generate Vi (S), Va(S), ..., Vi(S), and thus
has a lower bound of time complexity §2(nk?). The algorithm in [8] needs to
generate ©(n?) bisectors, while not all the bisectors appear in Vj,(S).

In this paper, we revisit the k-NN Voronoi diagram and propose the first
direct output-sensitive approach to compute the Lo, (equiv. L1) k-NN Voronoi
diagram. We first formulate the k-NN Delaunay graph (Section 2), which is
the graph-theoretic dual of the k-NN Voronoi diagram. Note that the k-NN
Delaunay graph is a graph-theoretic structure, different from the k-Delaunay
graph in [1, 12]. We then develop a traversal-based paradigm to directly compute
the k-NN Delaunay graph of point sites in the plane (Section 3). In the L
metric we implement our paradigm by applying segment-dragging techniques
(Section 4), resulting in an O((m + n)logn)-time algorithm for the L., planar
k-NN Delaunay graph of size m. As a by-product, we also derive a tighter bound
on the structural complexity m of the Lo, k-NN Voronoi diagram, which is shown
to be O(min{k(n — k), (n — k)?}). Since the L; metric is equivalent to L., under
rotation, these results are also applicable to the L; metric. Due to the limit of
space, we remove most proofs except Theorem 2.



2 The k-Nearest-Neighbor Delaunay Graph

Given a set S of n point sites in R?, we define the k-NN Delaunay graph following
the notion of the Delaunay Tessellation [4]. Let a sphere denote the boundary of
an L,-ball, and the interior of a sphere denote the interior of the corresponding
Ly-ball. A sphere is said to pass through a set H of sites, H C S, if and only if
its boundary passes through at least one site in H and it contains in its interior
all the remaining sites in H. A sphere contains a set H of sites if and only if its
interior contains all the sites in H. Given a sphere, sites located on its boundary,
in its interior, and in its exterior are called boundary sites, interior sites, and
exterior sites, respectively. A k-element subset of S is called a k-subset.

Definition 1 Given a set S of n point sites € R® and an L, metric, a k-subset
H, H C S, is called valid if there exists a sphere that contains H but does not
contain any other k-subset; H is called invalid, otherwise. A valid k-subset H is
represented as a graph-theoretic node, called a k-NN Delaunay node.

A Ek-NN Delaunay node H can be embedded in R? as a point in Vi (H, S) i.e.,
as the center of a sphere that contains H but no other k-subset. A k-NN Delaunay
node is a graph-theoretic node, however, it also has a geometric interpretation
as it corresponds to the k-subset of sites it uniquely represents.

Definition 2 Two k-Delaunay nodes, Hy and Hsy, are connected with a k-NN
Delaunay edge (Hy, Hs) if and only if there exists a sphere that passes through
both Hy and Hy but does not pass through any other k-subset. The graph G(V, E),
where V is the set of all the k-NN-Delaunay nodes, and E is the set of all k-NN
Delaunay edges, is called a k-NN Delaunay graph (under the corresponding L,
metric).

Lemma 1 Given a set S of point sites € R?, two k-NN Delaunay nodes H, and
H,, are joined by a k-NN Delaunay edge if and only if (1) |Hy N Ha| =k — 1,
and (2) There exists a sphere whose boundary passes through exactly two sites,
p € Hi\ Hy and q € Ho \ Hy, and whose interior contains Hy N Hy but does not
contain any site r € S\ (Hy U Ha).

Let Hi®Hy = H1\ HoUH>\ Hy. Following Lemma 1, a k-NN Delaunay edge
(Hy, Hs), corresponds to a collection of spheres each of which passes through
exactly two sites, p and q € H; ® Ho, and contains exactly k — 1 sites in H; N Ho
in its interior (Note that under the general position assumption, |Hy & Hy| = 2).

Theorem 1 Given a set S of point sites € R?, the k-NN Delaunay graph of S
is the graph-theoretic dual of the k-NN Voronoi diagram of S.

3 Paradigm for the k-NN Delaunay Graph in R2

In this section we present a paradigm to directly compute a k-NN Delaunay
graph for a set S of n point sites € R?. We make the general position assumption



that no more than three sites are located on the same circle, where a circle is a

sphere in R2. Under the general position assumption, the k-NN Delaunay graph

is a planar triangulated graph, in which any chordless cycle is a triangle, and we

call it a k-NN Delaunay triangulation. This assumption is removed in Section 3.2.
Our paradigm consists of the following two steps:

1. (Section 3.1) Compute the k-NN Delaunay hull and all the extreme k-NN
Delaunay circuits, defined in Section 3.1 (Definition 4).

2. (Section 3.2) For each extreme k-NN Delaunay circuit find a k-NN Delaunay
triangle of a k-NN Delaunay component, defined in Section 3.1 (Definition 4),
traverse from the k-NN Delaunay triangle to its adjacent k-NN Delaunay
triangles, and repeatedly perform the traversal operation until all triangles
of the k-NN Delaunay component have been traversed.

3.1 k-NN Delaunay Triangles, Circuits, Components and Hull

A k-NN Delaunay triangle, denoted as T'(Hy, Ha, H3), is a triangle connecting
three k-NN Delaunay nodes, H1, Hy, and Hs, by three k-NN Delaunay edges.
The circle passing through all the three k-subsets Hi, Hs, and Hj is called the
circumcircle of T(Hy, Ha, H3). Note that the circumcircle of T'(Hy, Hs, H3) is a
circle induced by three points p € Hy,q € Hy, and r € Hs.

Lemma 2 Given a set S of point sites in R?, three k-NN Delaunay nodes, Hy,
Hs,, and Hs, form a k-NN Delaunay triangle if and only if (1) |Hy N Ho N Hy|
=k—1ork—2, and (2) there exists a circle that passes through p € Hy \ Ha,
q € Ho\ Hs, and r € Hs \ Hy, contains Hy N Ho N Hy in its interior, but does
not contain any site t € S\ Hy U Ho U Hy in its interior or boundary. This circle
is exactly the unique circumcircle of T(Hy, Ha, H3).

Following Lemma 2, a k-NN Delaunay triangle T'(H, Ho, H3) is also denoted
as T'(p,q,r), where p € Hy \ Ha, ¢ € Hy\ Hs, and r € H3 \ H; are the boundary
sites of its circumcircle.

Definition 3 An unbounded circle is a circle of infinite radius. A k-NN Delau-
nay node H is called extreme if there exists an unbounded circle that contains
H but does not contain any other k-subset. A k-NN Delaunay edge is extreme
if it connects two extreme k-NN Delaunay nodes.

Definition 4 The k-NN Delaunay hull is a cycle connecting all the extreme
k-NN Delaunay nodes by the extreme k-NN Delaunay edges. An extreme k-NN
Delaunay circuit is a simple cycle consisting of extreme k-NN Delaunay nodes
and extreme k-NN Delaunay edges. A k-NN Delaunay component is a mazimal
collection of k-NN Delaunay triangles bounded by an extreme k-NN Delaunay
circust.

Remark 1 In the Ly, Lo metrics a k-NN Delaunay hull may consist of sev-
eral extreme k-NN Delaunay circuits. In addition, a k-NN Delaunay graph may
consist of several k-NN Delaunay components, and some k-NN Delaunay com-
ponents may share a k-NN Delaunay node, called k-NN Delaunay cut node.



A triangulated graph TG is triangularly connected if for each pair of triangles
Ts and T; € TG, there exists a sequence of triangles, Ts = T1,Ts,---, T} =T} €
TG, where T; and T;1; are adjacent to each other (i.e., they share a common
edge) for 1 <i <. A k-NN Delaunay component is triangularly connected.

To compute the k-NN Delaunay hull, we first find an extreme k-NN Delaunay
edge, then traverse from it to its adjacent k-NN Delaunay edge, and repeatedly
perform the traversal operation until all the extreme k-NN Delaunay edges have
been traversed. Lemma 3 implies that there must always exist at least one ex-
treme k-NN Delaunay edge.

Lemma 3 Consider a set S of point sites in R2. There exist two k-subsets, H;
and Hy and an unbounded circle that passes through Hi and Hy but does not
pass through any other k-subset.

Consider two adjacent extreme k-NN Delaunay edges (Hy,Hsz) and (Ha, Hs),
where Hy = HU{p,r}, Ho = HU{q,r}, and |H| = k—2. Since |HoNHs| = k—1,
by Lemma 1, Hj is either H U {r,t} or H U {q,t} for some site t ¢ H. If
Hs = H U {r,t}, there exists an unbounded circle that passes through ¢ and ¢
and contains HU{r} but does not contain any other site. If H3 = HU{q, ¢}, there
exists an unbounded circle that passes through r and ¢ and contains H U {q} but
does not contain any other site. For the former case, to identify Hs, it is enough
to compute a site ¢t ¢ Hy; U Hy such that the unbounded circle formed by ¢ and
t contains H; N Hs but does not contain any other site. For the latter case, we
compute a site r € H; N Hy and a site t ¢ Hs such that the unbounded circle
formed by r and t contains Hs \ {q} but does not contain any other site. The
details of the hull construction in the L., metric are discussed in Section 4.1.

3.2 Traversal-Based Operation among Triangles

Under the general position assumption, a k-NN Delaunay triangle is dual to a k-
NN Voronoi vertex (Theorem 1). A k-NN Delaunay triangle T' = T'(H;, Ha, H3)
is categorized as new or old according to the number of interior sites of its
circumcircle as follows: if |H1NHyNHs| = k—1, T is new, and if |HyNHyNH3| =
k —2, T is old. The terms new and old follow the corresponding terms for k-NN
Voronoi vertices in [14].

We propose a circular wave propagation to traverse from Ty = T(Hy, Ha,
H3) =T(p,q,7) to Ty = T(Hy, Hs, Hy) = T(p,q,t). As mentioned in Section 2,
a k-NN Delaunay edge (H;, Hs) corresponds to a collection of circles whose
boundary sites are exactly two sites, p and ¢, € H; & H5 and whose interior sites
are exactly k—1 sites € Hy N Hy. Therefore, traversal from T to 75 is like having
a specific circular wave propagation which begins as the circumcircle of 77, then
follows the collection of circles corresponding to Delaunay edge (Hy, Hz2) in a
continuous order, and ends as the circumcircle of 75. During the propagation,
the circular wave keeps touching p and ¢ and contains exactly the £ — 1 sites in
Hy N Hy in its interior, while moving its center along B(H1, Hs) = B(p, q).

If T} is new, the circular wave moves along the direction of B(p,q) that
excludes 7, and if T} is old, the circular wave moves along the opposite direction



of B(p, q) to include r. Otherwise, the circular wave would not contain k — 1 sites
in its interior, and thus it would not correspond to the common k-NN Delaunay
edge (Hy, H3). The circular wave terminates when it touches a site ¢t ¢ {p,q,r}.
If t € Hy N Hy N Hg, the resulting circle contains k — 2 sites in its interior and 75
is old; if ¢t ¢ Hy U Hy U Hj, the resulting circle contains k — 1 sites in its interior
and T is new.

Using the traversal operation and assuming that we can identify a k-NN De-
launay triangle in an extreme k-NN Delaunay circuit as a starting triangle, we
can compute the entire incident k-NN Delaunay component. Since we already
have all the extreme k-NN Delaunay edges after the k-NN Delaunay hull con-
struction, we can use an extreme k-NN Delaunay edge to compute its incident
k-NN Delaunay triangle and use it as a starting triangle.

If we remove the general position assumption, the dual of a k-NN Voronoi
vertex becomes a chordless cycle of the k-NN Delaunay graph, called a k-NN
Delaunay cycle, and Lemma 2 generalizes to Lemma 4.

Lemma 4 Given a set S of point sites € R?, | k-NN Delaunay nodes, Hy, Ha, - - - ,
and Hy, form a k-NN Delaunay cycle (Hy, Ha, - -+, Hy) if and only if (1) k+1-1 <
|[HiNHyN---NH)| <k—1and |H;\Hiy1| =1, for 1 <i <1, where Hy; = Hy,
(2) there exists a circle that passes through ¢y € Hy \ Ha, co € Hs \ Hs,

-, and ¢ € Hp \ Hy, and contains (), .,«; H; but does not contain any site
t € S\ Ujcic; Hi in its interior or boundary. This circle is the unique circum-
circle of the I k-NN Delaunay nodes.

We use Fig. 1 to illustrate Lemma 4. Fig. 1(a) shows a circle passing through
five sites and containing three sites. According to Lemma 4, the circle corre-
sponds to a k-NN Delaunay cycle, 4 < k < 7. Fig. 1(b) shows a 5-NN Delaunay
cycle. As shown in Fig. 1(c), in order to traverse from this 5-NN Delaunay cycle
to its adjacent 5-NN Delaunay cycle via the 5-NN Delaunay edge (Hy, H3), the
corresponding circular wave will follow B(H;, H2) = B(s1, s3) to exclude s4 and
s5 and to include so such that it contains k — 1 = 4 sites, s, Sg, S7, and sg.

82

Fig.1. (a) A circle passing through five sites (s1, s2, s3, s4, and s5) and
containing three sites (sg, s7, and sg). (b) A 5-NN Delaunay cycle as-
sociated with Hi={s1, s2, s¢, $7,58}, Ha={s2, s3, s6, 57,88}, Hsz={s3, sa, s¢, $7, S8},
Hi={s4, s5, s6, 7, 88}, and Hs={s1, ss, S¢, $7,Ss}. (¢) The circular wave touches two
sites (s1 and s3) and contains k — 1 = 4 sites (s2, ss, s7, and sg).



4 Planar k-NN Delaunay Graph in the L., Metric

We implement our paradigm in the Lo, metric such that the hull construc-
tion takes O(nlogn) time (Section 4.1) and each traversal operation between
two triangles takes O(logn) time (Section 4.2). Since the number of traversal
operations is bounded by the number m of k-NN Delaunay edges, we have an
O((n+m)logn)-time algorithm to directly compute the L., planar k-NN Delau-
nay graph. In the L., metric, general position is augmented with the assumption
that no two sites are located on the same axis-parallel line.

4.1 L k-NN Delaunay Hull Computation

To compute the k-NN Delaunay hull, we traverse from one extreme k-NN De-
launay edge to all the others. In the L., metric an unbounded circle passing
through two sites is an axis-parallel L-shaped curve. An L-shaped curve parti-
tions the plane into two portions, where one portion is a quarter-plane, illustrated
shaded in Fig. 2. Therefore, an extreme k-NN Delaunay edge (Hy, Hy) corre-
sponds to an L-shaped curve which passes through exactly two sites, p and q
€ Hi1 ® Hs, and whose quarter-plane exactly contains k — 1 sites € H; N Hy in
its interior. All the extreme k-NN Delaunay edges can be classified into four cat-
egories, {NE, SE, SW,NW}, according to the orientation of their corresponding
quarter-plane.
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Fig.2. e1 = (Hi1, H>) and ex = (Hz, H3), where ey is NE. (a) Hy = H U {p,r}, and
Hy; = HU{q,r}. (b)—(c) ez is NE. (b) H3 = HU{r,t}. (c) Hs = HU{q,t}. (d)—(e) ez
is SE. (d) Hs = HU{q,t}. (e) Hs = HU{p,q}. (f)—~(h) ez is SW. (f) Hs = H U {r, t}.
(g) Hs =HU {q,t} (h) e1 = eg.

Given an extreme k-NN Delaunay edge e; = (Hy, H2), we propose an ap-
proach to find its clockwise adjacent extreme k-NN Delaunay edge es = (Ha, H3).
We only discuss the cases where ey is NE, If Hy = HU{p,r} and Hy = HU{q, r},
where |H| = k—2, then Hs is either HU{r,t} or HU{q,t}, as shown in Fig. 2(b)
and Fig. 2(c). Below, we discuss the two cases of Hs assuming that ey is NE,
SE, SW, and NW, respectively. The coordinates of p, ¢, r, and ¢t are denoted
as (p, Yp)s (q.Yq), (@, yr), and (x4, y;), respectively. Moreover, ¢ is any value
between 0 and the minimum distance among the sites.



1. ez is NE (Fig. 2(b)—(c)): We first drag a vertical ray, [(zp,Yq), (€p, 00)], right
to touch a site v € H,. Then, we drag a horizontal ray, [(z,,yq), (00, yq)],
down to touch a site t ¢ Hy UHy. If v =q, H3 = HU{r,t}; otherwise, v =
and Hs = H U {q,t}.

2. ey is SE (Fig. 2(d)—(e)): If H3 is HU {r,t}, H3 cannot exist since there does
not exist an SE L-shaped curve which passes through ¢ and a site t ¢ Hy
and whose quarter half-plane contains H U {r}. Therefore, we first drag a
horizontal ray, [(z, + &, 00), (00, 00)], from infinity downward to touch a site
r. Then, we drag a vertical ray, [(x, + €,y4), (zp + €, 0)], right to touch a
site v. As last, we drag a vertical ray, [(,,yr), (zy, —00)], left to touch a site
t. In fact, ¢ is possibly p. Fig. 2(d)—(e) shows the two cases t # p and t = p.

3. ez is SW (Fig. 2(f)—(h)): We first drag a vertical ray, [(c0,yq,), (00, 00)], left
to touch a site v. Then, we drag a horizontal ray, [(z, + €, 00), (00, 0)],
from infinity downward to touch a site u. At last, we drag a horizontal ray,
[(zp, yu), (—00,yu)], up to touch a site ¢t. If v = g and ¢ # p, H3 = HU{r, t}.
Ifv#gq Ha=HU{g,r}. fv=gand t=p, ea = ey, i.e., €1 is also SW.

4. eg is NW: If e5 is not NE, SE, or SW, e; must also be SW, and we consider
this case as the case where e; is SW.

For each extreme k-NN Delaunay edge, this approach uses a constant number
of segment dragging queries to compute its adjacent one. Chazelle [7] proposed
an algorithmic technique to answer each orthogonal segment dragging query in
O(logn) time using O(nlogn)-time preprocessing and O(n) space.

A sequence of extreme k-NN Delaunay edges in the same category is called
monotonic. An Ly, k-NN Delaunay hull consists of at most four monotonic se-
quences of extreme k-NN Delaunay edges whose clockwise order follows {NE, SE,
SW,NW}. Therefore, the number of extreme k-NN Delaunay edges is O(n — k),
and it takes O(nlogn) time to compute the k-NN Delaunay hull. During the
traversal procedure, once an extreme k-NN Delaunay node has been traversed an
even number of times, an extreme k-NN Delaunay circuit has been constructed.

(b) (c)

Fig. 3. Square wave propagation along B(p, q). Solid segments are B(p, q), arrow heads
are moving directions, and c¢; and c2 are the centers of dot squares and dash squares,
respectively. (a) square contraction. (b) square movement. (c) square expansion.

4.2 Lo, k-NN Traversal Operation among Triangles

As mentioned in Section 3.2, a traversal operation between triangles corresponds
to a circular wave propagation whose center is located on the bisector B(p,q)



and which passes through p and ¢ and contains k& — 1 sites in its interior. Since
the circular wave propagation will terminate when it touches a site ¢, the prob-
lem reduces to computing the first site to be touched during the circular wave
propagation.

In the Lo, metric, a circle is an axis-parallel square, and a bisector between
two points may consist of three parts as shown in Fig. 3. Therefore, a square
wave propagation along an L., bisector would consist of three stages: square
contraction, square movement, and square expansion. As shown in Fig. 3, square
contraction occurs when the center of the square wave moves along ray towards
the vertical or horizontal segment, square movement occurs when the center
moves along the vertical or horizontal segment, and square expansion occurs
when the center moves along a 45° or 135° ray to infinity.

Below, we discuss the square wave propagation for k-NN Delaunay triangles.
Without loss of generality, we only discuss the case that the three boundary
sites are located on the left, bottom, and right sides of the corresponding square,
respectively. The remaining cases are symmetric.
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Fig. 4. Square wave propagation for T'(p,q,r). (a)—(e) T(p,q,7) is new. (a)—(c) p and
g are on adjacent sides. (d)—(e) p and g are on opposite sides. (f)-(h) T'(p, g, r) is old.
(f) p and ¢ are on adjacent sides. (g)—(h) p and ¢ are on opposite sides.

For a new Delaunay triangle T'(p, ¢, 7), the square wave propagation, travers-
ing from T'(p, g, r) to its neighbor T'(p, ¢, t), will move along B(p, ¢) to exclude r
until it touches ¢. If p and ¢ are located on adjacent sides, as shown in Fig. 4(a)—
(c), the corresponding portion of bisector B(p,q) may consist of three parts.
This square wave propagation will begin as square contraction, then become
square movement, and finally turn into square expansion until it first touches
a site ¢t. If p and ¢ are located on parallel sides, as shown in Fig. 4(d)—(e), the
corresponding portion of bisector B(p, ¢) may consist of two parts. This square
wave propagation will begin as square movement, and finally turn into square
expansion until it first touches a site ¢.



For an old Delaunay triangle T'(p, ¢, ), the square wave propagation, travers-
ing from T'(p, g, r) to its neighbor T'(p, q,t), will move along B(p, q) to include r
until it touches ¢. If p and ¢ are located on adjacent sides, as shown in Fig. 4(f),
the corresponding portion of bisector B(p, q), is just a 45° or 135° ray, and thus
this square wave propagation is just square expansion until it first touches a site
t. If p and ¢ are located on parallel sides, as shown in Fig. 4(g)—(h), the corre-
sponding portion of bisector B(p,q) may consist of two parts. This square wave
propagation will begin as square movement, and then turn into square expansion
until it first touches a site t.

Square contraction is equivalent to dragging two axis-parallel segments per-
pendicularly and then selecting the closer one of their first touched sites (see
Fig. 5(a)). Square movement is similar to square contraction, but the two dragged
segments are parallel to each other (see Fig. 5(b)). Since an orthogonal segment-
dragging query can be computed in O(logn) time after O(nlogn)-time pre-
processing [7], both square contraction and square movement can be answered
in O(logn) time. On the other hand, square expansion is equivalent to four
segment-dragging queries (see Fig. 5(c)). However, two of the four segment-
dragging queries fall into a new class, in which one endpoint is located on a fixed
vertical or horizontal ray, and the other endpoint is located on a fixed 45° or
135° ray. In [15], Mitchell stated that this class of segment dragging queries can
be transformed into a point location query in a specific linear-space subdivision
(see Fig. 5(d)), and thus this class of segment dragging queries can be answered
in O(log n) time using O(n logn)-time preprocessing and O(n) space. Therefore,
square expansion can also be answered in O(logn) time.
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Fig. 5. Square wave propagation and segment-dragging queries. (a) square contraction.
(b) square movement. (c) square expansion. (d) the second class of segment-dragging
query and the point location query.

To conclude, each traversal operation for any k-NN Delaunay triangle takes
at most one square contraction, one square movement, and one square expansion,
and thus it can be computed in O(logn) time.



4.3 Complexity of Lo, k-NN Voronoi diagram

In this section, we use the Hanan grid [13] to derive a tighter bound on the
structural complexity of the Lo, k-NN Voronoi diagram. Given a set S of n
point sites in the plane, the Hanan grid is derived by drawing the axis-parallel
lines through every point in S.

Given the Lo, k-NN Delaunay graph, the L, circumcircle of a k-NN De-
launay triangle is a unique square, called k-NN Delaunay square, that passes
through three sites (assuming general position i.e., no two points are on the
same axis parallel line) and contains k — 1 (in case of a new triangle) or k — 2
(in case of an old triangle) sites in its interior. The center of a k-NN Delaunay
square is exactly a k-NN Voronoi vertex.

Lemma 5 In the Lo, metric, a k-NN Delaunay square must have at least two
corners on the Hanan grid.

Theorem 2 The structural complezity of the Lo, k-NN Voronoi diagram is
O((n —k)?).

Proof. Let us number the rows and columns of the Hanan grid 1 to n from right
to left and from top to bottom respectively. Let us assume that points are in
general position i.e., no two points are on the same axis parallel line. Let p be
a point on the Hanan grid such that p is the NW corner of a k-NN Delaunay
square D. Square D must enclose exactly k + 1 or k 4 2 sites, including sites
on its boundary, and thus no point on the Hanan grid past column (n — k)
or below row (n — k) can serve as a NW corner to a k-NN Delaunay square.
Hence, there are at most (n — k)? Hanan grid points that can serve as NW
corners of a k-NN Delaunay square. Similarly for all four corner types of a k-NN
Delaunay square. In addition, point p can be the NW corner of at most two k-
NN Delaunay squares, one containing k + 1 sites and the other containing k + 2
sites. By Lemma 5, a k-NN Delaunay square must have at least two corners on
the Hanan grid. Thus, there can be at most O((n — k)?) distinct £&-NN Delaunay
squares, and O((n — k)?) distinct k&-NN Delaunay triangles.

As shown in [14], the size of the k&-NN Voronoi diagram is O(k(n—k)) and the
bound remains valid in the Lp metric. Thus, the following corollary is implied.

Corollary 1 The structural complexity of the Lo, k-NN Voronot diagram, equiv-
alently the k-NN Delaunay graph, is O(min{k(n — k), (n — k)?}).

5 Conclusion

Based on our proposed traversal-based paradigm, we develop an O((n+m)logn)-
time algorithm for the L., k-NN Voronoi diagram of size m using segment-
dragging queries. This bound is output-sensitive and it can be considerably
smaller than the time complexities of previous methods in the Euclidean metric,
O(nk?logn) of [14] and O(n?logn + k(n — k)log® n) or O(n? + k(n — k) log®n)
of [8]. Since the L, k-NN Voronoi diagram can be computed directly, it is likely
that the Lo k-NN Voronoi diagram can also be computed in a similar manner.
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