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Abstract. We consider the capacitated domination problem, which mod-
els a service-requirement assigning scenario and which is also a general-
ization of the dominating set problem. In this problem, we are given a
graph with three parameters defined on the vertex set, which are cost,
capacity, and demand. The objective of this problem is to compute a
demand assignment of least cost, such that the demand of each vertex
is fully-assigned to some of its closed neighbours without exceeding the
amount of capacity they provide. In this paper, we provide the first con-
stant factor approximation for this problem on planar graphs, based on a
new perspective on the hierarchical structure of outer-planar graphs. We
believe that this new perspective and technique can be applied to other
capacitated covering problems to help tackle vertices of large degrees.

1 Introduction

For decades, Dominating Set problem has been one of the most fundamental
and well-known problems in both graph theory and combinatorial optimization.
Given a graph G = (V, E) and an integer k, Dominating Set asks for a subset
D ⊆ V whose cardinality does not exceed k such that every vertex in the graph
either belongs to this set or has a neighbour which does. As this problem is
known to be NP-hard, approximation algorithms have been proposed in the
literature [1,10,11].

A series of study on capacitated covering problem was initiated by Guha et
al., [9], which addressed the capacitated vertex cover problem from a scenario of
Glycomolecule ID (GMID) placement. Several follow-up papers have appeared
since then, studying both this topic and related variations [4,7,8]. These problems
are also closely related to work on the capacitated facility location problem,
which has drawn a lot of attention since 1990s. See [3,16].
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Motivated by a general service-requirement assignment scenario, Kao et al.,
[12,14] considered a generalization of the dominating set problem called Capac-
itated Domination, which is defined as follows. Let G = (V, E) be a graph with
three non-negative parameters defined on each vertex u ∈ V , referred to as the
cost, the capacity, and the demand, further denoted by w(u), c(u), and d(u),
respectively. The demand of a vertex stands for the amount of service it requires
from its adjacent vertices, including the vertex itself, while the capacity of a
vertex represents the amount of service each multiplicity (copy) of that vertex
can provide.

By a demand assignment function f we mean a function which maps pairs of
vertices to non-negative real numbers. Intuitively, f(u, v) denotes the amount of
demand of u that is assigned to v. We use NG(v) to denote the set of neighbours
of a vertex v ∈ V .

Definition 1 (feasible demand assignment function). A demand assign-
ment function f is said to be feasible if

∑
u∈NG[v] f(v, u) ≥ d(v), for each v ∈ V ,

where NG[v] = NG(v) ∪ {v} denotes the neighbours of v unions v itself.

Given a demand assignment function f , the corresponding capacitated dominat-
ing multi-set D(f) is defined as follows. For each vertex v ∈ V , the multiplicity of

v in D(f) is defined to be xf (v) =
⌈∑

u∈NG[v] f(u,v)

c(v)

⌉
. The cost of the assignment

function f , denoted w(f), is defined to be w(f) =
∑

u∈V w(u) · xf (u).

Definition 2 (Capacitated Domination Problem). Given a graph G =
(V, E) with cost, capacity, and demand defined on each vertex, the capacitated
domination problem asks for a feasible demand assignment function f such that
w(f) is minimized.

For this problem, Kao et al., [14], presented a (Δ+1)-approximation for general
graphs, where Δ is the maximum vertex degree of the graph, and a polynomial
time approximation scheme for trees, which they proved to be NP-hard. In a fol-
lowing work [12], they provided more approximation algorithms and complexity
results for this problem. On the other hand, Dom et al., [6] considered a varia-
tion of this problem where the number of multiplicities available at each vertex
is limited and proved the W[1]-hardness when parameterized by treewidth and
solution size. Cygan et al., [5], made an attempt toward the exact solution and
presented an O(1.89n) algorithm when each vertex has unit demand. This result
was further improved by Liedloff et al., [15].

Our Contributions. We provide the first constant factor approximation algo-
rithms for the capacitated domination problem on planar graphs. This result
can be considered a break-through with respect to the pseudo-polynomial time
approximations given in [12], which is based on a dynamic programming on
graphs of bounded treewidth. The approach used in [12] stems from the fact
that vertices of large degrees will fail most of the techniques that transform a
pseudo-polynomial time dynamic programming algorithm into approximations,
i.e., the error accumulated at vertices of large degrees could not be bounded.
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In this work, we tackle this problem using a new approach. Specifically, we
give a new perspective toward the hierarchical structure of outer-planar graphs,
which enables us to further tackle vertices of large degrees. Then we analyse both
the primal and the dual linear programs of this problem to obtain the claimed
result. We believe that the approach we provided in this paper can be applied
to other capacitated covering problems to help tackle vertices of large degrees
as well. Due to the space limit, the proofs as well as certain technical details are
omitted. Please refer to our full article [13] for further reference.

2 Preliminary

We assume that all the graphs considered in this paper are simple and undirected.
Let G = (V, E) be a graph. We denote the number of vertices, |V |, by n. The
set of neighbors of a vertex v ∈ V is denoted by NG(v) = {u : (u, v) ∈ E}.
The closed neighborhood of v ∈ V is denoted by NG[v] = NG(v) ∪ {v}. We use
degG(v) and degG[v] to denote the cardinality of NG(v) and NG[v], respectively.
The subscript G in NG[v] and degG[v] will be omitted when there is no confusion.

A planar embedding of a graph G is a drawing of G in the plane such that
the edges intersect only at their endpoints. A graph is said to be planar if it has
a planar embedding. An outer-planar graph is a graph which adopts a planar
embedding such that all the vertices lie on a fixed circle, and all the edges are
straight lines drawn inside the circle. For k ≥ 1, k-outerplanar graphs are defined
as follows. A graph is 1-outerplanar if and only if it is outer-planar. For k > 1, a
graph is called k-outerplanar if it has a planar embedding such that the removal
of the vertices on the unbounded face results in a (k − 1)-outerplanar graph.

Minimize
∑

u∈V

w(u)x(u) (1)

subject to
∑

v∈N[u]

f(u, v) − d(u) ≥ 0, u ∈ V

c(u)x(u) −
∑

v∈N[u]

f(v, u) ≥ 0, u ∈ V

d(v)x(u) − f(v, u) ≥ 0, v ∈ N [u], u ∈ V

f(u, v) ≥ 0, x(u) ∈ Z
+ ∪ {0}, u, v ∈ V

An integer linear program (ILP)
for capacitated domination is given in
(1). The first inequality ensures the
feasibility of the demand assignment
function f required in Definition 1. In
the second inequality, we model the
multiplicity function x as defined. The
third constraint, d(v)x(u) − f(v, u) ≥
0, which seems unnecessary in the
problem formulation, is required to
bound the integrality gap between the
optimal solution of this ILP and that of its relaxation. To see that this addi-
tional constraint does not alter the optimality of any optimal solution, we have
the following lemma.

Lemma 1. Let f be an arbitrary optimal demand assignment function. We have
d(v) · xf (u) − f(v, u) ≥ 0 for all u ∈ V and v ∈ N [u].

However, without this constraint, the integrality gap can be arbitrarily large.
This is illustrated by the following example. Let α > 1 be an arbitrary constant,
and T (α) be an n-vertex star, where each vertex has unit demand and unit cost.
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The capacity of the central vertex is set to be n, which is sufficient to cover the
demand of the entire graph, while the capacity of each of remaining n− 1 petal
vertices is set to be αn.

Lemma 2. Without the additional constraint d(v)x(u) − f(v, u) ≥ 0, the inte-
grality gap of the ILP (1) on T (α) is α, where α > 1 is an arbitrary constant.

Indeed, with the additional constraint applied, we can refrain from unreasonably
assigning a small amount of demand to any vertex in any fractional solution.
Take a petal vertex, say v, from T (α) as example, given that d(v) = 1 and
f(v, v) = 1, this constraint would force x(v) to be at least 1, which prevents the
aforementioned situation from being optimal.

For the rest of this paper, for any graph G, we denote the optimal values to
the integer linear program (1) and to its relaxation by OPT (G) and OPTf (G),
respectively. Note that OPTf (G) ≤ OPT (G).

3 Constant Approximation for Outer-Planar Graphs

Without loss of generality, we assume that the graphs are connected. Otherwise
we simply apply the algorithm to each of the connected component separately. In
the following, we first classify the outer-planar graphs into a class of graphs called
general-ladders and show how the corresponding general-ladder representation
can be extracted in O(n log3 n) time in §3.1. Then we consider in §3.2 and §3.3
both the primal and the dual programs of the relaxation of (1) to further reduce
a given general-ladder and obtain a constant factor approximation. We analyse
the algorithm in §3.4 and extend our result to planar graphs in §3.5.

c

u

vπ1

vπ2

vπdeg(u)

vπ3

S0

S1

S2

S3

Sdeg(u)

Fig. 1. (a) A general-ladder with anchor c. (b) A 2-outerplanar graph which fails to be a
general-ladder. (c) The subdivision formed by a vertex u in an outer-planar embedding.

3.1 The Structure

First we define the notation which we will use later on. By a total order of a set
we mean that each pair of elements in the set can be compared, and therefore
an ascending order of the elements is well-defined. Let P = (v1, v2, . . . , vk) be a
path. We say that P is an ordered path if a total order v1 ≺ v2 ≺ . . . ≺ vk or
vk ≺ vk−1 ≺ . . . ≺ v1 is defined on the set of vertices.

Definition 3 (General-Ladder). A graph G = (V, E) is said to be a general-
ladder if a total order on the set of vertices is defined, and G is composed of
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a set of layers {L1,L2, . . . ,Lk}, where each layer is a collection of subpaths of
an ordered path such that the following holds. The top layer, L1, consists of
a single vertex, which is referred to as the anchor, and for each 1 < j < k
and u, v ∈ Lj, we have (1) N [u] ⊆ Lj−1 ∪ Lj ∪ Lj+1, and (2) u ≺ v implies
maxp∈N [u]∩Lj+1 p � minq∈N [v]∩Lj+1 q.

Note that each layer in a general-ladder consists of a set of ordered paths which
are possibly connected only to vertices in the neighbouring layers. See Fig. 1 (a).
Although the definition of general-ladders captures the essence and simplicity of
an ordered hierarchical structure, there are planar graphs which fall outside this
framework. See also Fig. 1 (b).

In the following, we state and argue that every outerplanar graph meets the
requirements of a general-ladder. We assume that an outer-planar embedding
for any outer-planar graph is given as well. Otherwise we apply the O(n log3 n)
algorithm provided by Bose [2] to compute such an embedding.

Let G = (V, E) be an outer-planar graph, u ∈ V be an arbitrary vertex, and
E be an outer-planar embedding of G. We fix u to be the smallest element and
define a total order on the vertices of G according to their orders of appearances
on the outer face of E in a counter-clockwise order. For convenience, we label
the vertices such that u = v1 and v1 ≺ v2 ≺ v3 ≺ . . . ≺ vn.

Let N(u) =
{
vπ1 , vπ2 , . . . , vπdeg(u)

}
denote the neighbours of u such that vπ1 ≺

vπ2 ≺ . . . ≺ vπdeg(u) . N(u) divides the set of vertices except u into deg(u) + 1
subsets, namely, S0 = {v2, v3, . . . , vπ1}, Si = {vπi , vπi+1, . . . , vπi+1} for 1 ≤
i < deg(u), and Sdeg(u) = {vπdeg(u) , vπdeg(u)+1, . . . , vn}. See Fig. 1 (c) for an
illustration. For 1 ≤ i < deg(u), we partition Si into two sets Li and Ri as
follows. Let dSi denote the distance function defined on the induced subgraph
of Si. Let Li =

{
v : v ∈ Si, dSi (vπi , v) ≤ dSi

(
v, vπi+1

)}
and Ri = Si\Li.

p

vπi

vπi+1

q

Li

Ri

maxa∈Li
a minb∈Ri

b

Fig. 2. Partition of Si into Li and Ri

Denote �(v) ≡ dG(u, v). Now consider
the set of the edges connecting Li and
Ri. Note that, this is exactly the set of
edges connecting vertices on the shortest
path between vπi and maxa∈Li a and ver-
tices on the shortest path between vπi+1

and minb∈Ri b. See also Fig. 2. Below
we present our structural lemma, which
states that, when the vertices are classi-
fied by their distances to u, these edges
can only connect vertices between neigh-
bouring sets and do not form any crossing.

Lemma 3. Any outer-planar graph G = (V, E) together with an arbitrary vertex
u ∈ V is a general-ladder anchored at u, where the set of vertices in each layer
are classified by their distances to the anchor u.

Extracting the General-ladder. Let G = (V, E) be the input outer-planar graph
and u ∈ V be an arbitrary vertex. We can extract the corresponding general-
ladder as stated below.
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Theorem 1. Given an outer-planar graph G and its outer-planar embedding,
we can compute in linear time a general-ladder representation for G.

For the rest of this paper we will denote the layers of this particular general-
ladder representation by L0,L1, . . . ,LM . The following additional structural
property comes from the outer-planarity of G and our construction scheme.

Lemma 4. For any 0 < i ≤ M and v ∈ Li, we have |N(v) ∩ Li−1| ≤ 2.
Moreover, if v has two neighbours in Li, say, v1 and v2 with v1 ≺ v ≺ v2, then
there is an edge joining v1 (and v2, respectively) and each neighbouring vertex
of v in Li−1 that is smaller (larger) than v.

The Decomposition. The idea behind this decomposition is to help reduce the
dependency between vertices of large degrees and their neighbours such that
further techniques can be applied. To this end, we tackle the demands of vertices
from every three layers separately.

For each 0 ≤ i < 3, let Ri =
⋃

j≥0 L3j+i. Let Gi = (Vi, Ei) consist of the
induced subgraph of Ri and the set of edges connecting vertices in Ri to their
neighbours. Formally, Vi =

⋃
v∈Ri

N [v] and Ei =
⋃

v∈Ri

⋃
u∈N [v] e(u, v). In ad-

dition, we set d(v) = 0 for all v ∈ Gi\Ri. Other parameters remain unchanged.

Lemma 5. Let fi, 0 ≤ i < 3, be an optimal demand assignment function for
Gi. The assignment function f =

∑
0≤i<3 fi is a 3-approximation of G.

3.2 Removing More Edges

We describe an approach to further simplifying the graphs Gi, for 0 ≤ i <
3. Given any feasible demand assignment for Gi, we can properly reassign the
demand of a vertex to a constant number of neighbours while the increase in
terms of fractional cost remains bounded.

For each v ∈ Ri, we sort the closed neighbours of v according to their cost in
ascending order such that w (πv(1)) ≤ w (πv(2)) ≤ . . . ≤ w (πv(deg[v])), where
πv : {1, 2, . . . , deg[v]} → N [v] is an injective function. For convenience, we set
πv(deg[v]+ 1) = φ. Suppose that v ∈ L�. We identify the following four vertices.

– Let jv, 1 ≤ jv ≤ deg[v], be the smallest integer such that c (πv(jv)) > d(v).
If c (πv(jv)) ≤ d(v) for all 1 ≤ j ≤ deg[v], then we let jv = deg[v] + 1.

– Let kv, 1 ≤ kv < jv, be the integer such that and w (πv(kv)) /c (πv(kv)) is
minimized. kv is defined only when jv > 1.

– Let pv = maxu∈N [v]∩L�−1 u and
qv = maxu∈N [v]∩L�+1 u.

jv

v

kv maxu∈N [v]∩L�+1
u

maxu∈N [v]∩L�−1
upv =

qv =

Fig. 3. Incident edges of a ver-
tex v ∈ L� to be kept

Intuitively, πv(jv) is the first vertex in the sorted
list whose capacity is greater than d(v), and
πv(kv) is the vertex with best cost-capacity ra-
tio among the first jv − 1 vertices. pv and qv are
the rightmost neighbour of v in layer L�−1 and
L�+1, respectively.
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We will omit the function πv and use jv, kv to denote πv(jv), πv(kv) without
confusion. The reduced graph Hi is defined as follows. Denote the set of neigh-
bours to be disconnected from v by R(v) = N [v]\ (L� ∪ {jv ∪ kv ∪ pv ∪ qv}), and
let Hi = Gi\

⋃
v∈Ri

⋃
u∈R(v) {e(u, v)}. Roughly speaking, in graph Hi we remove

the edges which connect vertices in Ri, say v, to vertices not in Ri, except
possibly for jv, kv, pv, and qv. See Fig. 3. Note that, although our reassigning
argument applies to arbitrary graphs, only when two vertices are unimportant
to each other can we remove the edge between them.

Lemma 6. In the subgraph Hi, we have

– For each v /∈ Ri, at most one incident edge of v which was previously in Gi

will be removed.
– For each v ∈ Ri, the degree of v in Hi is upper-bounded by 6.
– OPTf (Hi) ≤ 2 · OPTf (Gi).

We also remark that, although OPTf (Hi) is bounded in terms of OPTf (Gi), an
α-approximation for Hi is not necessarily a 2α-approximation for Gi. That is,
having an approximation A with OPT (A) ≤ α · OPT (Hi) does not imply that
OPT (A) ≤ 2α ·OPT (Gi), for OPT (Hi) could be strictly larger than OPTf (Hi).
Instead, to obtain our claimed result, an approximation with a stronger bound,
in terms of OPTf (Hi), is desired.

3.3 Greedy Charging Scheme

We show how we can further approximate the optimal solution for the reduced
graph Hi by a primal-dual charging argument. We apply a technique from [14]
to obtain a feasible solution for the dual program of the relaxation of (1), which
is given in (2). By Lemma 4, we can further tighten the approximation ratio.

Maximize
∑

u∈V

d(u)yu (2)

subject to

c(u)zu +
∑

v∈N[u]

d(v)gu,v ≤ w(u), u ∈ V

yu ≤ zv + gv,u, v ∈ N [u], u ∈ V

yu ≥ 0, zu ≥ 0, gv,u ≥ 0,v ∈ N [u], u ∈ V

We first describe an approach
to obtaining a feasible solution to
(2) and how a corresponding fea-
sible demand assignment can be
found. Note that any feasible so-
lution to (2) will serve as a lower
bound to any feasible solution of
(1) by the linear program duality.

During the process, we will
maintain a vertex subset, V φ, which contains the set of vertices with non-zero
unassigned demand. For each u ∈ V , let dφ(u) =

∑
v∈N [u]∩V φ d(v) denote the

amount of unassigned demand from the closed neighbours of u. We distinguish
between two cases. If c(u) < dφ(u), then we say that u is heavily-loaded. Other-
wise, u is lightly-loaded. During the process, some heavily-loaded vertices might
turn into lightly-loaded due to the demand assignments of its closed neighbours.
For each of these vertices, say v, we will maintain a vertex subset D∗(v), which
contains the set of unassigned vertices in N [v] ∩ V φ when v is about to fall into
lightly-loaded. For other vertices, D∗(v) is defined to be an empty set.
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Initially, V φ ≡ {u : u ∈ Li, d(u) �= 0} and all the dual variables are set to
be zero. We increase the dual variable yu simultaneously, for each u ∈ V φ. To
maintain the dual feasibility, as we increase yu, we have to raise either zv or gv,u,
for each v ∈ N [u]. If v is heavily-loaded, then we raise zv. Otherwise, we raise
gv,u. Note that, during this process, for each vertex u that has a closed neighbour
in V φ, the left-hand side of the inequality c(u)zu +

∑
v∈N [u] d(v)gu,v ≤ w(u) is

constantly raising. As soon as one of the inequalities c(u)zu+
∑

v∈N [u] d(v)gu,v ≤
w(u) is met with equality (saturated) for some vertex u ∈ V , we perform the
following operations.

If u is lightly-loaded, we assign all the unassigned demand from N [u] ∩ V φ

to u. In this case, there are still c(u) − dφ(u) units of capacity free at u. We
assign the unassigned demand from D∗(u), if there is any, to u until either all
the demand from D∗(u) is assigned or all the free capacity in u is used. On the
other hand, if u is heavily-loaded, we mark it as heavy and delay the demand
assignment from its closed neighbours.

u

u1

u2

pu

ju
ku

qu

u

u1

u2

pu

ju
ku

qu

u

u1 u2

pu
ju

ku qu

Fig. 4. Situations when
a unit demand of u is
fully-charged

Then we set Qu ≡ N [u] ∩ V φ and remove N [u] from
V φ. Note that, due to the definition of dφ, even when
u is heavily-loaded, we still update dφ(p) for each p ∈
V with N [p] ∩ N [u] �= φ, if needed, as if the demand
was assigned. During the above operation, some heavily-
loaded vertices might turn into lightly-loaded due to the
demand assignments (or simply due to the update of
dφ). For each of these vertices, say v, we set D∗(v) ≡
N [v]∩ (V φ ∪Qu). Intuitively, D∗(v) contains the set of
unassigned vertices from N [v] ∩ V φ when v is about to
fall into lightly-loaded.

This process is continued until V φ = φ. For those ver-
tices which are marked as heavy, we iterate over them
according to their chronological order of being saturated
and assign at this moment all the remaining unassigned
demand from their closed neighbours to them.

Let f∗ : V × V → R+ ∪ {0} denote the resulting de-
mand assignment function, and x∗ : V → Z+ ∪ {0} de-
notes the corresponding multiplicity function. The fol-
lowing lemma bounds the cost of the solution produced
by our algorithm.

Lemma 7. For any Hi obtained from a general-ladder Gi, we have w(f∗) ≤
7 · OPTf (Hi).

Thanks to the structural property provided in Lemma 4, given the fact that the
input graph is outer-planar, we can modify the algorithm slightly and further
improve the bound given in the previous lemma. To this end, we consider the
situations when a unit demand from a vertex u with deg[u] = 7 and argue that,
either it is not fully-charged by all its closed neighbours, or we can modify the
demand assignment, without raising the cost, to make it so.
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Lemma 8. Given the fact that Hi comes from an outerplanar graph, we can
modify the algorithm to obtain a demand assignment function f∗ such that
w(f∗) ≤ 6 · OPTf (Hi).

3.4 Overall Analysis

We summarize the whole algorithm and our main theorem. Given an outer-planar
graph G = (V, E), we use the algorithm described in §3.1 to compute a general-
ladder representation of G, followed by applying the decomposition to obtain
three subproblems, G0, G1, and G2. For each Gi, we use the approach described
in §3.2 to further remove more edges and obtain the reduced subgraph Hi, for
which we apply the algorithm described in §3.3 to obtain an approximation,
which is a demand assignment function fi for Hi. The overall approximation,
e.g., the demand assignment function f , for G is defined as f =

∑
0≤i<3 fi.

Theorem 2. Given an outerplanar graph G as an instance of capacitated dom-
ination, we can compute a constant factor approximation for G in O(n2) time.

3.5 Extension to Planar Graphs

v

kv

pv

L0

L2

qv

L0L1

L2

jv

Fig. 5. (a) 3-outerplanar graph.
(b) Local connections w.r.t. a ver-
tex v. Bold edges represent links in
the ladder extracted from L1. Thin
edges represent links between L1

and L0, L2.

In this section we extend our outer-planar re-
sult to a constant factor approximation for
planar graphs under a general framework due
to [1]. As our algorithm is designed mainly
for outerplanar graphs, to meet the minimum
requirement of this framework, which is the
ability to deal with planar graphs of at least
three levels, we have to modify our algorithm
to undertake this difference.

In the following, we assume that the input
graph, G, is 3-outerplanar and sketch only the
key changes we made on our algorithm. Let
L0, L1, and L2 be the sets of vertices from
the three levels of G. In addition, we also have
d(v) = 0 for each v /∈ L1. See Fig. 5 (a).

Obtaining the General Ladders. For each level Li, 0 ≤ i < 3, we define a total
order according to the counter-clockwise order of appearances of the vertices.
The general-ladder is extracted from L1 as we did before. Furthermore, for each
vertex in the ladder, its incident edges to vertices in L0 and L2 are also included.

Removing Redundant Edges. In addition to the four vertices we identified for
each vertex v with non-zero demand, we identify two more vertices, which lit-
erally corresponds to the rightmost neighbours of v in levels L0 and L2, respec-
tively. See also Fig. 5 (b).

Theorem 3. Given a planar graph G as an instance of capacitated domination,
we can compute a constant factor approximation for the G in polynomial time.
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4 Conclusion

Due to the flexibility of the ways the demand can be assigned, the results we
provided here seem to have room for further improvements. However, when the
demand cannot be split, it is not difficult to prove a constant approximation
threshold. Therefore, it would be very interesting to investigate the problem
complexity on planar graphs.

Second, as we have shown in §3.1, the concept of general-ladders does not
extend directly to k-outerplanar graphs for k ≥ 2. It would be interesting to
formalize and extend this concept to k-outerplanar graphs, for it seems helpful
not only to our problem, but also to most capacitated covering problems as well.

Acknowledgements. The author would like to thank the anonymous referees
for their very helpful comments on the layout of this work.
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