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Abstract We revisit the k-nearest-neighbor (k-NN) Voronoi diagram and present a
new paradigm for its construction. We introduce the k-NN Delaunay graph, which
is the graph-theoretic dual of the k-NN Voronoi diagram, and use it as a base to
directly compute this diagram in R2. We implemented our paradigm in the L1 and
L∞ metrics, using segment-dragging queries, resulting in the first output-sensitive,
O((n+m) logn)-time algorithm to compute the k-NN Voronoi diagram of n points in
the plane, where m is the structural complexity (size) of this diagram. We also show
that the structural complexity of the k-NN Voronoi diagram in the L∞ (equiv. L1)
metric is O(min{k(n − k), (n − k)2}). Efficient implementation of our paradigm in
the L2 (resp. Lp, 1 < p < ∞) metric remains an open problem.
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1 Introduction

Given a set S of n point sites ∈ Rd and an integer k, 1 ≤ k < n, the k-nearest-
neighbor Voronoi Diagram of S, abbreviated as k-NN Voronoi diagram, partitions
Rd into Voronoi regions such that all points in a Voronoi region share the same k

nearest sites.
In the Euclidean plane, the diagram was first introduced by Shamos and Hoey [30]

in order to deal with k nearest neighbor problem. Lee [21] showed that its structural
complexity is O(k(n − k)) and proposed an iterative algorithm to construct the di-
agram within O(k2n logn) time and O(k2(n − k)) space. Based on the notions of
arrangements and geometric duality, Chazelle and Edelsbrunner [13] developed two
versions of an algorithm, the first of which takes O(n2 logn + k(n − k) log2 n) time
and O(k(n − k)) space and the other of which takes O(n2 + k(n − k) log2 n) time
and (n2) space. Aurenhammer [6] proposed a new duality between k-NN Voronoi
diagrams in Ed and the convex hulls in Ed+1, which implies a reasonably simple
algorithm for computing the k-NN Voronoi diagram in E2 within O(k2n logn) time
and O(k(n − k)) space. Agarwal et al. [4] proposed an algorithm to compute the
Voronoi diagram in the plane within Θ(n) time when all the sites are in convex po-
sition, and claimed that using their linear procedure, the time complexity of Lee’s
approach [21] can be reduced to O(nk2 + n logn). In higher dimensions, Edelsbrun-
ner et al. [16] showed the relation between higher-order Voronoi diagrams in Ed and
arrangements of hyperplanes in Ed+1, and devised an algorithm to compute all Vk(S)

in Ed , for 1 ≤ k ≤ n− 1, within optimal O(nd+1) time and space. Clarkson and Shor
[15] showed that the size of the ≤ k-NN Voronoi diagrams, V1(S),V2(S), . . . , Vk(S),
is O(k�(d+1)/2�n�(d+1)/2�).

Aside from these deterministic algorithms, Clarkson [14] proposed a randomized
approach that takes O(kn1+ε) expected time and space, and Mulmuley [24] proposed
a randomized incremental algorithm of expected O(nk2 + n logn) time and O(nk2)

space. Agarwal et al. [2] developed a randomized incremental approach to compute
the k-level in an arrangement of n planes, which yields a randomized algorithm for
computing the k-NN Voronoi diagram of n sites in the plane within expected time
O(k(n − k) logn + n log3 n), which is very close to the asymptotic lower bound of
O(k(n − k) + n logn). Chan [11] and Ramos [28] later improved the expected time
complexity to O(n logn+nk logk) and O(n logn+nk2O(log∗ k)), respectively, which
is near optimal.

For on-line algorithms, Boissonnat et al. [9] developed an on-line randomized
incremental algorithm, which takes expected O(n logn + nk3) time and expected
O(nk2) space. After that, Aurenhammer and Schwarzkopf [8] proposed a simple
on-line randomized incremental algorithm for computing the k-NN Voronoi diagram
within expected O(nk2 logn + nk log3 n) time and optimal O(k(n − k)) space. They
also provided a more sophisticated version to compute the k-NN Voronoi diagram
within expected O(nk2 + nk log2 n) time. Furthermore, they proved that for any ran-
domized incremental construction of the k-NN Voronoi diagram, if all intermediate
k-NN Voronoi diagrams are maintained, the expected number of Voronoi vertices
that appear at some intermediate stage during the construction is Θ(nk2). This proof
implies that the lower bound of the expected time complexity of any on-line k-NN
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Voronoi diagram construction is Ω(nk2), and the time complexity of their algorithm
is very close to the optimal one.

All the above algorithms [2, 8, 9, 13, 14, 21, 24] focus on the Euclidean met-
ric. However, the computationally simpler, piecewise linear, L1 and L∞ metrics are
very well suited for practical applications. For example, L∞ higher-order Voronoi
diagrams have been shown to have practical applications in VLSI design, see e.g.,
[25–27]. Most existing algorithms compute k-NN Voronoi diagrams using reductions
to arrangements or geometric duality [2, 8, 13, 14, 24] which are not directly applica-
ble to the L1, L∞ metrics. Furthermore, none of the existing deterministic algorithms
is output-sensitive. Among them the O(k2n logn) time complexity of [6, 21] is best
for small k, and the O(n2 + k(n − k) log2 n)/O(n2 + k(n − k) log2 n) time com-
plexity of [13] is the best for large k. The algorithms in [6, 21] iteratively derive the
k-NN Voronoi diagram from the (k − 1)-NN Voronoi diagram, and thus those algo-
rithms will generate V1(S),V2(S), . . . , Vk(S), which leads to a lower bound of time
complexity Ω(nk2). The algorithm in [13] needs to generate Θ(n2) bisectors for the
n arrangements (each arrangement corresponds to a site and corresponds to n − 1
bisectors), while not all bisectors appear in Vk(S).

In this paper, we revisit the k-NN Voronoi diagram and propose an output-sensitive
approach to compute the L∞ (equiv. L1) k-NN Voronoi diagram. We first formulate
the k-NN Delaunay graph, which is the graph-theoretic dual of the k-NN Voronoi
diagram.1 We then develop a traversal-based paradigm to directly compute the k-NN
Delaunay graph of point sites in the plane. We implement our paradigm in the L∞
metric using segment-dragging techniques, and present an O((m + n) logn)-time al-
gorithm for the L∞ planar k-NN Delaunay graph of size m. Efficiently implementing
our paradigm in the L2 or the Lp , 1 < p < ∞, metric is left as an open problem.
We also prove that the structural complexity of the L∞ k-NN Voronoi diagram is
O(min{k(n − k), (n − k)2}), a tighter than O(k(n − k)) bound for the L∞ metric.
Note that the L∞ farthest-neighbor Voronoi diagram has size O(1). Since the L1
metric is equivalent to L∞ under rotation, these results are also applicable to the L1
metric

The organization of this paper is as follows. Section 3 formulates the k-NN De-
launay graph and derives its basic properties. Section 4 presents a traversal-based
paradigm to construct the planar k-NN Delaunay graph directly. Section 5 develops
an algorithm to compute the L∞ planar k-NN Delaunay graph. Section 6 analyzes
the structural complexity of the L∞ k-NN Voronoi diagram.

2 Problem Formulation

In the Lp-metric the distance d(s, t) between two points s, t is dp(s, t) =
(|x1s − x1t |p + |x2s − x2t |p + · · · + |xds − xdt |p)1/p for 1 ≤ p < ∞, and d∞(s, t) =
max(|x1s − x1t |, |x2s − x2t |, . . . , |xds − xdt |). For two points p,q ∈ Rd , the bisector
B(p,q) is {r ∈ R2 | dp(r,p) = dp(r, q)}. In this paper, the distance between a point
p and a set H of points is the farthest distance df (p,H) = max{dp(p,q),∀q ∈ H }.

1Note the k-NN Delaunay graph is different from the geometric k-Delaunay graph of [1, 18].
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The bisector between two sets of points H1 and H2 is B(H1,H2) = {r ∈ Rd |
df (r,H1) = df (r,H2)}.

Given a set S of n point sites ∈ Rd and an integer k, 1 ≤ k < n, the k-nearest-
neighbor Voronoi diagram of S, denoted as Vk(S), is a subdivision of Rd into re-
gions, called k-NN Voronoi regions, each of which is the locus of points closer to a
subset H ⊂ S of cardinality k than to any other subset H ′ ⊂ S of cardinality k, i.e.,
df (H,S) ≤ df (H ′, S), and is denoted as Vk(H,S). A subset of S of cardinality k is
called a k-subset.

A k-NN Voronoi region Vk(H,S) is a polytope in Rd . The common face between
two neighboring k-NN Voronoi regions, Vk(H1, S) and Vk(H2, S), is a portion of the
bisector B(H1,H2). In R2, the boundary between two neighboring k-NN Voronoi
regions is a k-NN Voronoi edge, and the intersection point among more than two
neighboring k-NN Voronoi regions is a k-NN Voronoi vertex.

3 The k-Nearest-Neighbor Delaunay Graph

Given a set S of n point sites in Rd , we define the k-NN Delaunay graph following
the notion of the Delaunay tessellation (see e.g., [7]). An Lp ball with center p and
radius r is the locus of points x satisfying dp(x,p) ≤ r . The boundary of an Lp-ball
is called a sphere for d > 2 or a circle for d = 2. A sphere is said to pass through a
set H of sites, H ⊂ S, if its boundary passes through at least one site in H and its
interior contains all the other sites in H . Note that if a sphere passes through a set
H of sites, its radius is exactly the farthest distance between its center and H . Given
a sphere, sites located on its boundary, in its interior, and in its exterior are called
boundary sites, interior sites, and exterior sites, respectively.

Definition 1 Given a set S of n point sites ∈ Rd , a k-subset H , H ⊂ S, is called
valid if there exists a sphere that contains H but does not contain any other k-subset;
H is called invalid, otherwise. A valid k-subset H is represented by a graph-theoretic
node, called a k-NN Delaunay node.

Definition 2 Two k-NN Delaunay nodes, H1 and H2, are connected with a k-NN
Delaunay edge (H1, H2) if there exists a sphere that passes through both H1 and H2
but does not pass through any other valid k-subset. The graph G(V,E), where V is
the set of all the k-NN-Delaunay nodes, and E is the set of all k-NN Delaunay edges,
is called a k-NN Delaunay graph (under the corresponding Lp metric).

A k-NN Delaunay node H is a graph-theoretic node, which can be interpreted
geometrically as a point within Vk(H,S). Note that the k-NN Delaunay graph is a
graph-theoretic structure, defined on k-NN Delaunay nodes, and it is different from
the order-k Delaunay graph in [1, 18], which is a geometric graph on the point set S.

Lemma 1 Given a set S of point sites ∈ Rd , two k-NN Delaunay nodes H1 and H2,
are joined by a k-NN Delaunay edge if and only if (1) |H1 ∩H2| = k−1, and (2) There
exists a sphere whose boundary passes through exactly two sites, p ∈ H1 \ H2 and
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q ∈ H2 \ H1, and whose interior contains H1 ∩ H2 but does not contain any site
r ∈ S \ (H1 ∪ H2).

Proof
Necessity: Let H1,H2 be two Delaunay nodes joined by a k-NN Delaunay edge.

Then |H1 ∩ H2| ≤ k − 1, as otherwise H1 and H2 cannot be two distinct k-subsets. If
|H1 ∩H2| = k′ < k−1, the sphere satisfying Definition 2 will contain 2k−k′ > k+1
sites in its interior and boundary, which must form at least one other valid k-subset,
contradicting Definition 2. Therefore, |H1 ∩H2| ≥ k −1, and thus |H1 ∩H2| = k −1.
If condition (1) holds, the sphere satisfying Definition 2 will also satisfy condition (2).

Sufficiency: Suppose both conditions (1) and (2) hold. It is clear that the sphere
satisfying condition 2 also satisfies Definition 2. �

Let H1 ⊕ H2 = H1 \ H2 ∪ H2 \ H1. Following Lemma 1, a k-NN Delaunay edge
(H1, H2) corresponds to a collection of spheres each of which passes through exactly
two sites, p ∈ H1 \ H2 and q ∈ H2 \ H1, where p,q ∈ H1 ⊕ H2, and contains exactly
k−1 sites in H1 ∩H2 in its interior. (Note that under the general position assumption,
|H1 ⊕ H2| = 2.)

Theorem 1 Given a set S of point sites ∈ Rd , the k-NN Delaunay graph of S is the
graph-theoretic dual of the k-NN Voronoi diagram of S.

Proof By the definitions so far it is clear that a k-NN Voronoi region Vk(H,S) is
non-empty if and only if the k-subset H is valid. Thus, it is enough to prove that
two Voronoi regions share a (d − 1)-dimensional face, called a facet, if and only if
their corresponding k-NN Delaunay nodes are joined by a k-NN Delaunay edge in
the k-NN Delaunay graph.

Let {a} ∪ H and {b} ∪ H , where |H | = k − 1, be two valid k-subsets. If their cor-
responding k-NN Voronoi regions share a facet then the elements of {a, b} ∪ H are
the k + 1 nearest neighbors of all vertices along this facet, and sites a, b are the kth
nearest neighbors of these vertices. Hence, there exists a sphere that passes through
{a} ∪ H and {b} ∪ H but does not contain any other valid k-subset, implying that the
two k-NN Delaunay nodes, {a}∪H and {b}∪H , share a k-NN Delaunay edge. Con-
versely, by Definition 2, if the two k-NN Delaunay nodes, {a}∪H and {b} ∪ H , share
a k-NN Delaunay edge, there exists a sphere that passes through {a} ∪ H and {b}∪H

but does not contain any other valid k-subsets. Therefore, the sites in {a, b, } ∪ H are
the k + 1 nearest neighbors of the center of the sphere, implying that the two Voronoi
regions associated respectively with {a} ∪ H and {b} ∪ H share a facet. �

4 Paradigm for the k-NN Delaunay Graph in R2

In this section we present a paradigm to directly compute a k-NN Delaunay graph for
a set S of n point sites ∈ R2. For simplicity, we make the general position assumption
that no more than three sites are located on the same circle. Under the general position
assumption, since the degree of each Voronoi vertex of Vk(S) is exactly 3, the k-NN
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Fig. 1 A 3-NN Delaunay triangle T (H1,H2,H3), where H1 = {s1, s4, s5}, H2 = {s2, s4, s5}, and
H3 = {s3, s4, s5}. (a) 3-NN Delaunay node H1. (b) 3-NN Delaunay edge (H1,H2). (c) T (H1,H2,H3)

and its circumcircle

Delaunay graph, the graph-theoretic dual of Vk(S), is a planar triangulated graph,
in which any chordless cycle is a triangle, called a k-NN Delaunay triangulation.
Note that the unbounded face is not triangulated. The general position assumption is
removed in Sect. 4.5.

Our paradigm consists of two steps as follows; definitions and details are given in
the sections to follow.

1. Compute the k-NN Delaunay hull and all the extreme k-NN Delaunay circuits. For
definitions and algorithms see Sects. 4.2 and 4.3, respectively.

2. For each extreme k-NN Delaunay circuit, determine a k-NN Delaunay triangle
of a k-NN Delaunay component, defined in Sect. 4.1, traverse from the k-NN
Delaunay triangle to its adjacent k-NN Delaunay triangles, and repeatedly perform
the traversal operation until all triangles of the k-NN Delaunay component have
been traversed. See Sect. 4.4.

The remaining of this section is organized as follows. Section 4.1 defines a k-NN
Delaunay triangle and describes its properties. Section 4.2 defines a k-NN Delau-
nay hull, an extreme k-NN Delaunay circuit, and a k-NN Delaunay component. Sec-
tion 4.3 presents a mechanism to construct a k-NN Delaunay hull and all extreme
k-NN Delaunay circuits. Section 4.4 illustrates a traversal-based operation that com-
putes all the k-NN Delaunay triangles of a k-NN Delaunay component for an extreme
k-NN Delaunay circuit. Finally, Sect. 4.5 discusses degenerate cases removing the
general position assumption.

4.1 k-NN Delaunay Triangles

Definition 3 Given a set S of point sites ∈ R2, a k-NN Delaunay triangle, de-
noted as T (H1,H2,H3), is a triangle connecting three k-NN Delaunay nodes, H1,
H2, and H3, by three k-NN Delaunay edges. The circle passing through all three
k-subsets H1, H2, and H3 is called the circumcircle of T (H1,H2,H3).

Definition 3 is illustrated in Fig. 1. In Fig. 1(a) there exists a circle that contains
H1 = {s1, s4, s5} but does not contain any other valid 3-subset, thus H1 is valid and
induces a 3-NN Delaunay node. Similarly, there exist two 3-NN Delaunay nodes,
H2 and H3. In Fig. 1(b), there exists a circle that passes through H1 and H2 but does
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not pass through or contain any other valid 3-subset, thus there exists a 3-NN Delau-
nay edge (H1,H2). Similarly, there exist two other 3-NN Delaunay edges, (H2, H3)
and (H1, H3). Figure 1(c) illustrates T (H1,H2,H3) and its circumcircle. The bound-
ary sites, interior sites, and exterior sites of T (H1,H2,H3) are exactly the boundary,
interior, and exterior sites of the circumcircle.

Lemma 2 Given a set S of point sites in R2, three k-NN Delaunay nodes, H1, H2,
and H3, form a k-NN Delaunay triangle if and only if (1) |H1 ∩ H2 ∩ H3| = k − 1
or k − 2, and (2) there exists a circle that passes through p ∈ H1 \ H2, q ∈ H2 \ H3,
and r ∈ H3 \ H1, contains H1 ∩ H2 ∩ H3 in its interior, but does not contain any site
t ∈ S \ H1 ∪ H2 ∪ H3 in its interior or boundary. This circle is exactly the unique
circumcircle of T (H1,H2,H3).

Proof
Necessity: Let T (H1,H2,H3) be a k-NN Delaunay triangle. Then by Lemma 1,

|H1 ∩ H2| = k − 1, |H2 ∩ H3| = k − 1, and |H3 ∩ H1| = k − 1. Thus, either H1 =
H ∪ {p}, H2 = H ∪ {q}, and H3 = H ∪ {p}, where |H | = k − 1, or H1 = H ∪ {p,q},
H2 = H ∪ {q, r}, and H3 = H ∪ {p, r}, where |H | = k − 2, implying that |H1 ∩
H2 ∩ H3| = k − 1 or k − 2. (As it will be defined later in Sect. 4.1, T (H1,H2,H3)

is called new in the former case and old in the latter case.) By Lemma 1, there exists
one circle which exactly passes through p,q and exactly contains H1 ∩H2, one circle
which exactly passes through q , r and exactly contains H2 ∩H3, and one circle which
exactly passes through p, r and exactly contains H3 ∩ H1, implying that there exists
a unique circle that passes through p, q , and r and contains H1 ∩ H2 ∩ H3.

Sufficiency: Suppose that conditions (1) and (2) hold. Let’s first assume that |H1 ∩
H2 ∩ H3| = k − 2. Then H1 = {p, r} ∪ H , H2 = {q, r} ∪ H , and H3 = {p,q} ∪ H ,
where |H | = k − 2. Moving the unique circle along B(p,q) to include r will form a
circle which exactly passes through p and q and exactly contains H1 ∩ H2, implying
that H1 and H2 must be joined by a k-NN Delaunay edge. For the same reason,
there exists a k-NN Delaunay edge between H2 and H3 and a k-NN Delaunay edge
between H1 and H3, respectively.

Let’s now assume that |H1 ∩H2 ∩H3| = k−1. Then H1 = {p}∪H , H2 = {q}∪H ,
and H3 = {p}∪H , where |H | = k−1. Moving the unique circumcircle along B(p,q)

to exclude r induces a circle that passes through p and q and contains H1 ∩ H2,
implying that H1 and H2 must be joined by a k-NN Delaunay edge. For the same
reason, there exists a k-NN Delaunay edge between H2 and H3 and a k-NN Delaunay
edge between H1 and H3, respectively. �

Following Lemma 2, a k-NN Delaunay triangle T (H1,H2,H3) is also denoted as
T (p,q, r), where p ∈ H1 \ H2, q ∈ H2 \ H3, and r ∈ H3 \ H1 are the boundary sites
of its circumcircle.

4.2 k-NN Delaunay Circuits, Components and Hull

Definition 4 An unbounded circle is a circle of infinite radius. A k-NN Delaunay
node H is called extreme if there exists an unbounded circle that contains H but does
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Fig. 2 (a) V4(S) (solid segments). (b) 4-NN Delaunay triangulation, the graph-theoretic dual
of (a), where H1 = {s1, s2, s3, s4}, H2 = {s1, s2, s4, s5}, H3 = {s2, s3, s4, s5}, H4 = {s2, s3, s5, s6},
H5 = {s2, s3, s6, s7}, H6 = {s3, s5, s6, s7}, H7 = {s3, s4, s5, s6}, and H8 = {s4, s5, s6, s7}. The
dashed curve and the dotted curve represent two unbounded circles which both exactly contain
H3 = {s2, s3, s4, s5}

not contain any other k-subset. A k-NN Delaunay edge is called extreme if it connects
two extreme k-NN Delaunay nodes.

In the Lp metric, 1 < p < ∞, an unbounded circle is a straight line, and its interior
is one of the two open half-planes separated by the straight line [20]. A k-subset H of
S that can be separated from S by a straight line is called a k-set [17, 29]. Since a k-set
must be fully contained in one of the two open half-planes separated by the defining
straight line, by Definition 4, a k-set always corresponds to an extreme k-NN Delau-
nay node in the Lp metric, 1 < p < ∞. Therefore, the number of k-sets is equivalent
to the number of extreme k-NN Delaunay nodes in the Lp metric, 1 < p < ∞.

In the L1 and L∞ metrics, an unbounded circle is an L-shaped curve, and its inte-
rior is a quarter plane as defined by the two rays of the L-shaped curve. For example,
both the dashed curve and the dotted curve in Fig. 2(a) are an unbounded circle.
Since the dashed curve (or the dotted curve) exactly contains H3 = {s2, s3, s4, s5} in
Fig. 2(a), H3 is a 4-NN extreme Delaunay node in Fig. 2(b).

Consider a planar embedding of the k-NN Delaunay graph obtained by mapping
a k-NN Delaunay node to a point within Vk(H,S). Then an extreme k-NN Delaunay
vertex and an extreme k-NN Delaunay edge must be incident to the outer face of the
embedded k-NN Delaunay graph. We define a k-NN Delaunay hull to represent the
outer boundary of a planar k-NN Delaunay graph.

Definition 5 A k-NN Delaunay hull is a cycle connecting all the extreme k-NN De-
launay nodes by all the extreme k-NN Delaunay edges. An extreme k-NN Delaunay
circuit is a simple cycle of the k-NN Delaunay hull. A k-NN Delaunay component
is a maximal collection of k-NN Delaunay triangles bounded by an extreme k-NN
Delaunay circuit. A k-NN Delaunay node shared by more than one k-NN Delaunay
components is called a k-NN Delaunay cut node.

Remark 1 In the Lp metric, 1 < p < ∞, a k-NN Delaunay hull is always a sim-
ple cycle, the k-NN Delaunay graph consists of only one component, and no k-NN
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Delaunay cut node exists (see Lemma 3). In contrast, in the L1,L∞ metric a k-NN
Delaunay hull may consist of several extreme k-NN Delaunay circuits. In addition,
a k-NN Delaunay graph may contain several k-NN Delaunay components, and some
k-NN Delaunay components may share a common k-NN Delaunay cut node.

If H is a k-NN Delaunay cut node, two different unbounded circles must exist
whose interiors both exactly contain H and whose intersection is bounded. For ex-
ample, since both the dashed curve and the dotted curve in Fig. 2(a) exactly contain
H3 = {s2, s3, s4.s5} and their intersection is bounded, in Fig. 2(b), H3 is a 4-NN cut
node. This is because if the intersection is unbounded, the two unbounded circles
can be transformed into each other by rotating and translating without hitting any
other sites, and if each pair of two unbounded circles which exactly contain H can
be transformed into each other, H has at most two extreme k-NN Delaunay edge,
contradicting the fact that H is a k-NN Delaunay cut node.

Lemma 3 Given a set S of sites ∈ R2, the k-NN Delaunay graph in the Lp metric,
1 < p < ∞, contains exactly one extreme k-NN Delaunay component.

Proof In the Lp metric, 1 < p < ∞, the interior of an unbounded circle is an
open half-plane. Since the intersection of two half-planes is unbounded, for any
k-subset H , there cannot exist two unbounded circles whose interiors contain H and
whose intersection is bounded. Therefore, there can be no k-NN Delaunay cut node,
and thus the k-NN Delaunay graph contains exactly one k-NN Delaunay compo-
nent. �

Corollary 1 Given a set S of sites ∈ R2, the k-NN Delaunay graph in the Lp metric,
1 < p < ∞, contains no cut node, i.e., no multiple k-NN Delaunay components.

A graph is called a triangulated graph if any chordless cycle in the graph is a
triangle. A triangulated graph is said to be triangularly connected if for every pair
of triangles Ts and Tt , there exists a sequence of triangles, Ts = T1, T2, . . . , Tl = Tt ,
such that for every i, 1 ≤ i < l −1, Ti and Ti+1 are adjacent to each other (i.e., Ti and
Ti+1 share a common edge).

Lemma 4 An extreme k-NN Delaunay component is triangularly connected.

Proof If a triangulated subgraph is not triangularly connected, then there must exist
a cut node. However, by Definition 5, there exits no cut node within an extreme k-NN
Delaunay component. �

By Lemma 4, if one can find an interior k-NN Delaunay triangle of a k-NN Delau-
nay component, it is possible to traverse from it to all the other triangles by moving
always from one triangle to an adjacent triangle.

4.3 Hull Construction

To compute the k-NN Delaunay hull, we first find an extreme k-NN Delaunay edge,
then traverse from it to its adjacent extreme k-NN Delaunay edge, and repeatedly



438 Algorithmica (2015) 71:429–449

Fig. 3 Two adjacent extreme k-NN Delaunay edges, (H1, H2) and (H2, H3), in the Euclidean metric.
An unbounded circle is a straight line in the Euclidean metric, and in this figure, the interior of each
unbounded circle is the upper half-plane. (a) H1 = H ∪ {p, r}, H2 = H ∪ {q, r}, and H3 = H ∪ {q, t}.
(b) H1 = H ∪ {p, r}, H2 = H ∪ {q, r}, and H3 = H ∪ {r, t}

perform the traversal operation until all the extreme k-NN Delaunay edges have been
traversed. Lemma 5 implies that there must always exist at least one extreme k-NN
Delaunay edge.

Lemma 5 Consider a set S of point sites in R2. There exist at least two valid
k-subsets, H1 and H2, and an unbounded circle that passes through H1 and H2 but
does not pass through any other valid k-subset.

Proof An unbounded circle passing through two sites is a straight line in the Lp

metric, 1 < p < ∞, and an L-shaped curve in the L1 and the L∞ metrics. Let H1 be
the first k sites as we scan sites from left to right. We first consider 1 < p < ∞. Let
CH(H1) and CH(S \H1) be the convex hulls of H1 and S \H1, respectively. Let L be
an internal common tangent line between CH(H1) and CH(S \ H1), passing trough
points p ∈ CH(H1) and q ∈ CH(S \ H1). Let H2 be (H1 ∪ {q}) \ {p}. Then L is an
unbounded circle that passes through H1 and H2 but does not pass through any other
valid k-subset.

For the L∞ metric, let q be the leftmost site of S \ H1; let p be the topmost site
of H1, if it is higher than q , otherwise, let p be the bottommost site of H1. Let H2 be
(H1 ∪ {q}) \ {p}. Then p and q define an axis-parallel L-shaped curve which passes
through H1 and H2 but does not pass through any other valid k-subset. Equivalently
for L1. �

We describe a relation between two adjacent extreme k-NN Delaunay edges,
which will lead to a k-NN hull construction in Sect. 5.1. Consider two adjacent
extreme k-NN Delaunay edges (H1, H2) and (H2,H3), where H1 = H ∪ {p, r},
H2 = H ∪{q, r}, and |H | = k−2, where p,q, r ∈ S \H . Since |H2 ∩H3| = k−1, by
Lemma 1, H3 is either H ∪{r, t} or H ∪{q, t} for some site t ∈ S \ (H ∪{q, r}). In the
former case, |H1 ∩ H2 ∩ H3| = k − 1, and in the latter case, |H1 ∩ H2 ∩ H3| = k − 2.
For example, in Fig. 3, the solid line corresponds to the extreme k-NN Delaunay edge
between H1 and H2, and the dashed line corresponds to the extreme k-NN Delaunay
edge between H2 and H3. If H3 = H ∪ {r, t}, then there exists an unbounded circle
that passes through q and t and contains H ∪ {r} but does not contain any other site.
For example, in Fig. 3(a), the dashed line passes through q and t , and its upper half-
plane only contains H ∪{r}. If H3 = H ∪{q, t}, then there exists an unbounded circle
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that passes through r and t and contains H ∪ {q} but does not contain any other site.
For example, in Fig. 3(b) the dashed line passes through r and t , and its upper half-
plane only contains H ∪ {q}. To identify H3 in the first case, it is enough to compute
a site t /∈ H1 ∪H2 such that the unbounded circle formed by q and t contains H1 ∩H2
but does not contain any other site. In the latter case, we compute a site r ∈ H1 ∩ H2
and a site t /∈ H2 such that the unbounded circle formed by r and t contains H2 \ {q}
but does not contain any other site.

Since an extreme k-NN Delaunay node in Lp,1 < p < ∞, corresponds to a k-set,
an Lp,1 < p < ∞, k-NN hull corresponds to an ordered sequence of k-sets. In [17],
the authors used geometric duality to transform all k-sets into a k-belt, and developed
an O(b log2 n) algorithm to compute the k-belt, where b is the size of the k-belt.
Thus, we can use the algorithm of [17] to compute the k-NN hull in the Euclidean
or more generally in the Lp,1 < p < ∞, metric. In addition, Brodal and Jacob [10]
proposed a dynamic data structure for planar convex hulls in which a query takes
O(logn) time and an insertion and a deletion take O(logn) amortized time. With
the new dynamic data structure, the time complexity of the algorithm in [17] can
improve to O(b logn). Therefore, the k-NN hull in the Lp metric, 1 < p < ∞, can
be computed in O(b logn) time.

The k-NN hull construction in the L∞ metric will be given in Sect. 5.1.

4.4 Traversal-Based Operation Among Triangles

Under the general position assumption, a k-NN Delaunay triangle is dual to a k-NN
Voronoi vertex (Theorem 1). A k-NN Delaunay triangle T = T (H1,H2,H3) is cate-
gorized as new or old according to the number of interior sites of its circumcircle as
follows: if |H1 ∩H2 ∩H3| = k −1, T is new, and if |H1 ∩H2 ∩H3| = k −2, T is old.
The terms new and old follow the corresponding terms for k-NN Voronoi vertices
in [21].

We propose a circular wave propagation to traverse from T1 = T (H1,H2,H3) =
T (p,q, r) to T2 = T (H1,H2,H4) = T (p,q, t). As mentioned in Sect. 3, a k-NN
Delaunay edge (H1, H2) corresponds to a collection of circles whose boundary sites
are exactly two sites, p and q , in H1 ⊕ H2 and whose interior sites are exactly k − 1
sites in H1 ∩ H2. Therefore, traversal from T1 to T2 is like having a specific circular
wave propagation which begins as the circumcircle of T1, then follows the collection
of circles corresponding to Delaunay edge (H1,H2) in a continuous order, and ends
as the circumcircle of T2. During the propagation, the circular wave keeps touching
p and q and contains exactly the k − 1 sites in H1 ∩ H2 in its interior, while moving
its center along B(H1,H2) = B(p,q).

If T1 is new, the circular wave moves along the direction of B(p,q) that ex-
cludes r , and if T1 is old, the circular wave moves along the opposite direction of
B(p,q) to include r . The reason is that if otherwise, the circular wave would not
contain k − 1 sites in its interior, and thus it would not correspond to the common
k-NN Delaunay edge (H1, H2). The circular wave terminates when it touches a site
t /∈ {p,q, r}. If t ∈ H1 ∩ H2 ∩ H3, the resulting circle contains k − 2 sites in its inte-
rior, and thus T2 is old; if t /∈ H1 ∪ H2 ∪ H3, the resulting circle contains k − 1 sites
in its interior, and thus T2 is new.
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Using the traversal operation and assuming that we can identify a k-NN Delaunay
triangle in an extreme k-NN Delaunay circuit as a starting triangle, we can compute
the entire incident k-NN Delaunay component. Since the extreme k-NN Delaunay
edges are available after the k-NN Delaunay hull construction, we can use any ex-
treme k-NN Delaunay edge to compute its incident k-NN Delaunay triangle and use
it as a starting triangle.

To conclude, according to Sects. 4.3, 4.4, the time complexity of our paradigm
is O(HC+m ∗ TO), where HC is the time to compute the k-NN Delaunay hull, TO
is the time complexity of one traverse operation, and m is the number of all k-NN
Delaunay edges, i.e., the structural complexity of the k-NN Delaunay graph.

In Sect. 5, we will implement our traversal-based paradigm in the L∞ metric,
resulting in an output-sensitive algorithm that directly computes the planar L∞ k-NN
Delaunay graph in O((n + m) logn) time.

In the Euclidean metric, such a traversal-based operation, i.e., the circular wave
movement which touches two sites and stops when hitting another site, can trans-
formed into a ray-shooting query in three dimensions. For a point p = (σ1, σ2) ∈ R2,
let h(p) be a hyperplane x3 = 2σ1x1 + 2σ2x2 − (σ 2

1 + σ 2
2 ) in R3, and let h(S) be

{h(p) | ∀p ∈ S}. Now if a circle touches three sites, p, q , and r , in R2, its center cor-
responds to the intersection vertex among h(p), h(q), and h(r) in R3, i.e., its center is
the vertical projection of the intersection onto the plane x3 = 0. Let l be the common
line between h(p) and h(q), p,q ∈ S. Then the vertical projection of l onto x3 = 0 is
actually the bisector between p and q in R2. Let c be the center of a circle touching
p and q , and let c′ be the vertical projection of c onto l. Under these circumstances,
a circular wave movement whose center begins at c and which touches p and q first
hits a site r ∈ S \ {p,q} if and only if a ray shooting from c′ along the corresponding
direction of l first hits h(r) ∈ h(S) \ {h(p),h(q)}.

Agarwal and Matoušek [3] proposed a data structure that can answer such a
ray shooting query in O(nε) time after O(n logn)-time preprocessing. As noted in
Sect. 4.3, the k-NN hull construction in the Euclidean metric takes O(b logn) time,
where b is the number of extreme k-NN Delaunay edges. Since there are O(k(n−k))

Voronoi edges in Vk(S), b is trivially O(k(n − k)), implying that the hull construc-
tion takes O(k(n − k) logn) time. Thus, using the data structure of Agarwal and Ma-
toušek, our paradigm can be implemented in the Euclidean metric in O(k(n − k)nε)

time.

4.5 Degenerate Cases

Definition 6 Given a set S of sites in R2, a k-NN Delaunay cycle, denoted as
DC(H1,H2, . . . ,Hl), where 3 ≤ l ≤ n, is a chordless cycle of the k-NN Delaunay
graph, which connects the l k-NN Delaunay nodes, H1,H2, . . . , and Hl , using k-NN
Delaunay edges, where Hi and Hi+1 form a k-NN Delaunay edge for 1 ≤ i ≤ l and
Hl+1 = H1. A k-NN Delaunay cycle is associated with H1,H2, . . . , and Hl .

If we remove the general position assumption, the dual of a k-NN Voronoi ver-
tex becomes a k-NN Delaunay cycle, and Lemma 2 generalizes to Lemma 6 in a
straightforward way.
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Fig. 4 (a) A circle passing through five sites (s1, s2, s3, s4, and s5) and containing three sites (s6, s7,
and s8). (b) A 5-NN Delaunay cycle associated with H1 = {s1, s2, s6, s7, s8}, H2 = {s2, s3, s6, s7, s8},
H3 = {s3, s4, s6, s7, s8}, H4 = {s4, s5, s6, s7, s8}, and H5 = {s1, s5, s6, s7, s8}. (c) The circular wave
touches two sites (s1 and s3) and contains k − 1 = 4 sites (s2, s6, s7, and s8)

Lemma 6 Given a set S of point sites ∈ R2, l k-NN Delaunay nodes, H1,H2, . . . ,
and Hl , form a k-NN Delaunay cycle (H1,H2, . . . ,Hl) if and only if (1) k + 1 − l ≤
|H1 ∩ H2 ∩ · · · ∩ Hl | ≤ k − 1 and |Hi \ Hi+1| = 1, for 1 ≤ i ≤ l, where Hl+1 = H1,
(2) there exists a circle that passes through c1 ∈ H1 \ H2, c2 ∈ H2 \ H3, . . . , and cl ∈
Hl \ H1, and contains

⋂
1≤i≤l Hi but does not contain any site t ∈ S \ ⋃

1≤i≤l Hi in
its interior or boundary. This circle is the unique circumcircle of the l k-NN Delaunay
nodes.

Figure 4 illustrates Lemma 6. Figure 4(a) shows a circle passing through five sites
and containing three sites. According to Lemma 6, the circle corresponds to a k-NN
Delaunay cycle, 4 ≤ k ≤ 7. Figure 4(b) shows a 5-NN Delaunay cycle. As illustrated
in Fig. 4(c), in order to traverse from this 5-NN Delaunay cycle to its adjacent 5-NN
Delaunay cycle via the 5-NN Delaunay edge (H1,H2), the corresponding circular
wave will follow B(H1,H2) = B(s1, s3) to exclude s4 and s5 and to include s2 such
that it contains k − 1 = 4 sites, s2, s6, s7, and s8.

5 Planar Algorithm in the L∞ Metric

We implement our paradigm in the L∞ metric such that the hull construction takes
O(n logn) time (Sect. 5.1) and each traversal operation between two triangles takes
O(logn) time (Sect. 5.2). Since the number of traversal operations is bounded by the
number m of k-NN Delaunay edges, we have an O((n + m) logn)-time algorithm to
directly compute the L∞ planar k-NN Delaunay graph. In the L∞ metric, general
position is augmented with the assumption that no two sites are located on the same
axis-parallel line.

5.1 L∞ k-NN Delaunay Hull Computation

To compute the k-NN Delaunay hull, we traverse from one extreme k-NN Delaunay
edge to all the others. In the L∞ metric an unbounded circle passing through two
sites is an axis-parallel L-shaped curve. An L-shaped curve partitions the plane into
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Fig. 5 e1 = (H1,H2) and e2 = (H2,H3), where e1 is NE. (a) H1 = H ∪ {p, r}, and H2 = H ∪ {q, r}.
(b)–(c) e2 is NE. (b) H3 = H ∪ {r, t}. (c) H3 = H ∪ {q, t}. (d)–(e) e2 is SE. (d) H3 = H ∪ {q, t}.
(e) H3 = H ∪ {p,q}. (f)–(h) e2 is SW. (f) H3 = H ∪ {r, t}. (g) H3 = H ∪ {q, t}. (h) e1 = e2

two portions, where one portion is a quarter-plane, illustrated shaded in Fig. 5. Thus,
an extreme k-NN Delaunay edge (H1,H2) corresponds to an L-shaped curve, which
passes through exactly two sites, p, q ∈ H1 ⊕ H2, and whose quarter-plane exactly
contains in its interior the k − 1 sites in H1 ∩ H2. All the extreme k-NN Delaunay
edges can be classified into four categories, {NE,SE,SW,NW}, according to the
orientation of their corresponding quarter-plane.

Given an extreme k-NN Delaunay edge e1 = (H1,H2), we propose an approach
to find its clockwise adjacent extreme k-NN Delaunay edge e2 = (H2,H3). We only
discuss the cases where e1 is NE. If H1 = H ∪ {p, r} and H2 = H ∪ {q, r}, where
|H | = k−2, then H3 is either H ∪{r, t} or H ∪{q, t}, as shown in Figs. 5(b) and 5(c).
Actually, these two cases correspond to |H1 ∩H2 ∩H3| = k−1 and |H1 ∩H2 ∩H3| =
k − 2, respectively, and r is implicit for the former case. Below, we discuss the two
cases of H3 assuming that e2 is NE, SE, SW, and NW, respectively. The coordinates
of p, q , r , and t are denoted as (xp, yp), (xq, yq), (xr , yr), and (xt , yt ), respectively.
Moreover, ε is any small positive value, less than the minimum distance among the
given sites. For each case of e2, we first analyze the situation, and then explain the
operation.

1. e2 is NE (Fig. 5(b)–(c)):
If H3 is H ∪ {r, t}, the corresponding NE L-shaped curve of e2 passes through

q in its north ray and t in its east ray. Under these circumstances, for each site v ∈
H1 ∩H2, xv > xq , and yv > yt . If H3 is H ∪{q, t}, the corresponding NE L-shaped
curve of e2 passes through r in its north ray and t in its east ray, where xr ≤ xv ,
v ∈ H1 ∩ H2. Under these circumstances, for each site v ∈ H2 \ {r}, xv > xr , and
yv > yt .

In order to compute e2, we first drag a vertical ray, [(xp, yq), (xp,∞)], right
to touch a site v ∈ H2. Then, we drag a horizontal ray, [(xv, yq), (∞, yq)], down
to touch a site t /∈ H1 ∪ H2. If v = q , H3 = H ∪ {r, t}; otherwise, v = r and
H3 = H ∪ {q, t}.

2. e2 is SE (Fig. 5(d)–(e)):
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If H3 is H ∪ {r, t}, H3 cannot exist since there does not exist an SE L-shaped
curve which passes through q and a site t /∈ H2 and whose quarter half-plane
contains H ∪ {r}. If H3 is H ∪ {q, t}, the corresponding SE L-shaped curve of e2
passes through r in its east ray and t in its south ray, where yr ≥ yv, v ∈ H1 ∩ H2.
Under these circumstances, for each site v ∈ H1 ∩ H2, xv > xt , and yv < yr .

Therefore, we first drag a horizontal ray, [(xp + ε,∞), (∞,∞)], from infinity
downward to touch a site r . Then, we drag a vertical ray, [(xp + ε, yq), (xp + ε,

∞)], right to touch a site v.
At last, we drag a vertical ray, [(xv, yr ), (xv,−∞)], left to touch a site t . In

fact, t is possibly p. Figure 5(d)–(e) shows the two cases t �= p and t = p.
3. e2 is SW (Fig. 5(f)–(h)):

If H3 is H ∪ {r, t}, the corresponding SW L-shaped curve of e2 passes through
q in its south ray and t in its west ray. Under these circumstances, for each site v ∈
H1 ∩H2, xv < xq , and yv < yt . If H3 is H ∪{q, t}, the corresponding NE L-shaped
curve of e2 passes through r in its south ray and t in its west ray, where xr ≥ xv ,
v ∈ H1 ∩ H2. Under these circumstances, for each site v ∈ H2 \ {r}, xv < xr , and
yv < yt .

As a result, we first drag a vertical ray, [(∞, yq), (∞,∞)], left to touch a site v.
Then, we drag a horizontal ray, [(xp +ε,∞), (∞,∞)], from infinity downward to
touch a site u. At last, we drag a horizontal ray, [(xp, yu), (−∞, yu)], up to touch
a site t . If v = q and t �= p, H3 = H ∪ {r, t}. If v �= q , H3 = H ∪ {q, r}. If v = q

and t = p, e2 = e1, i.e., e1 is also SW.
4. e2 is NW:

If e2 is not NE, SE, or SW, e1 must also be SW, and we consider this case as
the case where e1 is SW.

For each extreme k-NN Delaunay edge, this approach uses a constant number
of segment dragging queries to compute its adjacent one. Chazelle [12] proposed an
algorithmic technique to answer each orthogonal segment dragging query in O(logn)

time using O(n logn)-time preprocessing and O(n) space.
A sequence of extreme k-NN Delaunay edges in the same category is called mono-

tonic. An L∞ k-NN Delaunay hull consists of at most four monotonic sequences of
extreme k-NN Delaunay edges whose clockwise order follows {NE,SE,SW,NW}.
Therefore, the number of extreme k-NN Delaunay edges is O(n − k), and it takes
O(n logn) time to compute the k-NN Delaunay hull. During the traversal procedure,
once an extreme k-NN Delaunay node has been traversed an even number of times,
an extreme k-NN Delaunay circuit has been constructed.

5.2 L∞ k-NN Traversal Operation among Triangles

As mentioned in Sect. 4.4, a traversal operation between triangles corresponds to a
circular wave propagation whose center is located on the bisector B(p,q) and which
passes through p and q and contains k − 1 sites in its interior. Since the circular wave
propagation will terminate when it touches a site t , the problem reduces to computing
the first site to be touched during the circular wave propagation.

In the L∞ metric, a circle is an axis-parallel square, and a bisector between two
points may consist of three parts as shown in Fig. 6. Therefore, a square wave propa-
gation along an L∞ bisector would consist of three stages: square contraction, square
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Fig. 6 Square wave propagation along B(p,q). Solid segments are B(p,q), arrow heads are moving
directions, and c1 and c2 are the centers of dotted squares and dashed squares, respectively. (a) square
contraction. (b) square movement. (c) square expansion

Fig. 7 Square wave propagation for T (p,q, r). (a)–(e) T (p,q, r) is new. (a)–(c) p and q are on adjacent
sides. (d)–(e) p and q are on opposite sides. (f)–(h) T (p,q, r) is old. (f) p and q are on adjacent sides.
(g)–(h) p and q are on opposite sides

movement, and square expansion. As shown in Fig. 6, square contraction occurs when
the center of the square wave moves along the ray towards the vertical or horizontal
segment, square movement occurs when the center moves along the vertical or hori-
zontal segment, and square expansion occurs when the center moves along a 45◦ or
135◦ ray to infinity.

Below, we discuss the square wave propagation for k-NN Delaunay triangles.
Without loss of generality, we only discuss the case that the three boundary sites are
located on the left, bottom, and right sides of the corresponding square, respectively.
The remaining cases are symmetric.

For a new Delaunay triangle T (p,q, r), the square wave propagation traversing
from T (p,q, r) to its neighbor T (p,q, t), will move along B(p,q) to exclude r until
it touches t . If p and q are located on adjacent sides, as shown in Fig. 7(a)–(c), the
corresponding portion of bisector B(p,q) may consist of three parts. This square
wave propagation will begin as square contraction, then become square movement,
and finally turn into square expansion until it first touches a site t . If p and q are
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Fig. 8 Square wave propagation and segment-dragging queries. (a) square contraction. (b) square move-
ment. (c) square expansion. (d) the second class of segment-dragging query and the point location query

located on parallel sides, as shown in Fig. 7(d)–(e), the corresponding portion of
bisector B(p,q) may consist of two parts. This square wave propagation will begin
as square movement, and finally turn into square expansion until it first touches a
site t .

For an old Delaunay triangle T (p,q, r), the square wave propagation, traversing
from T (p,q, r) to its neighbor T (p,q, t), will move along B(p,q) to include r until
it touches t . If p and q are located on adjacent sides, as shown in Fig. 7(f), the
corresponding portion of bisector B(p,q), is just a 45◦ or 135◦ ray, and thus this
square wave propagation is just square expansion until it first touches a site t . If p and
q are located on parallel sides, as shown in Fig. 7(g)–(h), the corresponding portion of
bisector B(p,q) may consist of two parts. This square wave propagation will begin
as square movement, and then turn into square expansion until it first touches a site t .

Square contraction is equivalent to dragging two axis-parallel segments perpen-
dicularly and then selecting the closer one of their first touched sites (see Fig. 8(a)).
Square movement is similar to square contraction, but the two dragged segments are
parallel to each other (see Fig. 8(b)). Since an orthogonal segment-dragging query
can be computed in O(logn) time after O(n logn)-time preprocessing [12], both
square contraction and square movement can be answered in O(logn) time. On the
other hand, square expansion is equivalent to four segment-dragging queries (see
Fig. 8(c)). However, two of the four segment-dragging queries fall into a new class,
in which one endpoint is located on a fixed vertical or horizontal ray, and the other
endpoint is located on a fixed 45◦ or 135◦ ray. In [23], Mitchell stated that this class
of segment dragging queries can be transformed into a point location query in a spe-
cific linear-space subdivision (see Fig. 8(d)), and thus this class of segment dragging
queries can be answered in O(logn) time using O(n logn)-time preprocessing and
O(n) space. Therefore, square expansion can also be answered in O(logn) time.

To conclude, each traversal operation for any k-NN Delaunay triangle takes at
most one square contraction, one square movement, and one square expansion, and
thus it can be computed in O(logn) time.
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6 Structural Complexity of the L∞ k-NN Voronoi Diagram

Lee [21] derived a formula for the number Nk of Voronoi regions of Vk(S) in the L2
metric, which is valid in the general Lp metric, 1 ≤ p ≤ ∞,

Nk = (2k − 1)n − (
k2 − 1

) −
k−1∑

i=1

Si ,

where Si is the number of unbounded regions of Vi(S).
For k < �n

2 �, this formula directly leads to an O(k(n − k)) upper bound on the
structural complexity of Vk(S), which is valid in the general Lp metric, 1 ≤ p ≤ ∞.
For k ≥ �n

2 �, however, the upper bound depends on
∑k

i=1 Si−1. In the Euclidean

metric,
∑k

i=1 Si ≤ kn for k < �n
2 �, as shown in [5],

∑n−1
i=1 Si = n(n−1), as shown in

[30], and Si = Sn−i , as a straight line (an unbounded circle) which partitions S into
i sites and n − i sites corresponds to both a valid i-subset and a valid (n − i)-subset.
These equations are identical in the Lp metric for 1 < p < ∞, as an unbounded
circle is always a straight line in this case [20]. Combining these equations, we derive∑k

i=1 Si ≥ kn for �n
2 � ≤ k ≤ n−1. Thus, the formula of [21] leads to an O(k(n−k))

upper bound for the k-NN Voronoi diagram in the Lp metric, 1 < p < ∞.
However, there is no existing result for the value of

∑k
i=1 Si in the L∞ or L1 met-

ric, and thus the structural complexity of the L∞ (resp. L1) k-NN Voronoi diagram
is not directly derived by the formula in [21], except for k < �n

2 �. Furthermore, the
bound O(k(n− k)) is not tight for large k in these metrics, e.g., the complexity of the
(n−1)-NN L∞ Voronoi diagram is only O(1). In this section, we use the Hanan grid
[19] to bound the structural complexity of the L∞ k-NN Voronoi diagram. Given a set
S of n point sites in the plane, the Hanan grid is derived by drawing the axis-parallel
lines through every point in S.

Given the L∞ k-NN Delaunay graph, under the general position assumption, the
L∞ circumcircle of a k-NN Delaunay triangle is a unique square, called k-NN De-
launay square, that passes through three sites and contains either k − 1 (in case of a
new triangle) or k − 2 (in case of an old triangle) sites in its interior. The center of a
k-NN Delaunay square is exactly a k-NN Voronoi vertex.

Lemma 7 In the L∞ metric, a k-NN Delaunay square must have at least two corners
on the Hanan grid.

Proof Given a k-NN Delaunay triangle, its k-NN Delaunay square may be derived in
four possible ways as shown in Fig. 9. In Fig. 9(a), the bottom-left and bottom-right

Fig. 9 Four classes of k-NN Delaunay square
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corners are (xp, yq) and (xr , yq), respectively, which are both vertices of the Hanan
gird for S. Similarly for each of the remaining three cases of Fig. 9. �

Theorem 2 The structural complexity of the L∞ k-NN Voronoi diagram is
O((n − k)2).

Proof Let us number the rows and columns of the Hanan grid 1 to n from right to
left and from top to bottom respectively. Let us assume that points are in general
position i.e., no two points are on the same axis parallel line. Let p be a point on the
Hanan grid such that p is the NW corner of a k-NN Delaunay square D. Square D

must enclose exactly k + 1 or k + 2 sites, including sites on its boundary, and thus
no point on the Hanan grid past column (n − k) or below row (n − k) can serve as
a NW corner to a k-NN Delaunay square. Hence, there are at most (n − k)2 Hanan
grid points that can serve as NW corners of a k-NN Delaunay square. Similarly for
all four corner types of a k-NN Delaunay square. In addition, point p can be the NW
corner of at most two k-NN Delaunay squares, one containing k + 1 sites and the
other containing k + 2 sites. By Lemma 7, a k-NN Delaunay square must have at
least two corners on the Hanan grid. Thus, there can be at most O((n − k)2) distinct
k-NN Delaunay squares, and O((n − k)2) distinct k-NN Delaunay triangles. �

Since Lee’s formula [21] directly leads to an upper bound O(k(n − k)) in the
general Lp metric, 1 ≤ p ≤ ∞, for k ≤ n/2, and Theorem 2 leads to a bound
O((n − k)2) in the L∞ metric for k > n/2, we have

{
O(k(n − k)), if k ≤ n/2

O((n − k)2), if k > n/2.

Since (n − k)2 < k(n − k) for k > n/2, we conclude.

Corollary 2 The structural complexity of the L∞ k-NN Voronoi diagram, equiva-
lently the k-NN Delaunay graph, is O(min{k(n − k), (n − k)2}).

7 Conclusion

We introduced a new traversal-based paradigm for the direct construction of the
k-NN-Voronoi diagram in the plane, which led to an O((n + m) logn)-time algo-
rithm for the L∞ k-NN Voronoi diagram, where m is the size of the diagram, us-
ing segment-dragging queries. This bound is output-sensitive and it considerably im-
proves the time complexities of previous methods valid in the Euclidean plane, such
as O(nk2 logn) [21] and O(n2 logn + k(n − k) log2 n) or O(n2 + k(n − k) log2 n)

[13]. Besides, the efficient randomized approaches of [2, 11, 28] in the Euclidean
metric are not directly applicable to the L∞ metric. The efficient implementation of
our paradigm in the L2 metric remains an open problem.
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