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Abstract
We consider the problem of online dynamic power management that provides hard real-time
guarantees for multi-processor systems. In this problem, a set of jobs, each associated with an
arrival time, a deadline, and an execution time, arrives to the system in an online fashion. The
objective is to compute a non-migrative preemptive schedule of the jobs and a sequence of power
on/off operations of the processors so as to minimize the total energy consumption while ensuring
that all the deadlines of the jobs are met. We assume that we can use as many processors as
necessary. In this paper we examine the complexity of this problem and provide online strategies
that lead to practical energy-efficient solutions for real-time multi-processor systems.

First, we consider the case for which we know in advance that the set of jobs can be scheduled
feasibly on a single processor. We show that, even in this case, the competitive factor of any
online algorithm is at least 2.06. On the other hand, we give a 4-competitive online algorithm
that uses at most two processors. For jobs with unit execution times, the competitive factor of
this algorithm improves to 3.59.

Second, we relax our assumption by considering as input multiple streams of jobs, each of
which can be scheduled feasibly on a single processor. We present a trade-off between the energy-
efficiency of the schedule and the number of processors to be used. More specifically, for k given
job streams and h processors with h > k, we give a scheduling strategy such that the energy
usage is at most 4 ·

⌈
k

h−k
⌉
times that used by any schedule which schedules each of the k streams

on a separate processor. Finally, we drop the assumptions on the input set of jobs. We show
that the competitive factor of any online algorithm is at least 2.28, even for the case of unit job
execution times for which we further derive an O(1)-competitive algorithm.
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1 Introduction

Reducing power consumption and improving energy efficiency have become important
design requirements in computing systems. For mobile devices, effective power management
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can considerably extend the standby period and prolong battery lifetime. For large-scale
computing clusters, appropriately powering down the idling processing units can considerably
reduce the electricity bill.

In order to increase the energy efficiency, two different mechanisms have been introduced
to reduce the energy consumption. (1) Power-down Mechanism: When a processor is idling,
it can be put into a low-power state, e.g., sleep or power-off. While the processor consumes
less power in these states, a fixed amount of energy is required to switch the system back to
work. In the literature, the problem of deciding the sequence of state transitions is referred to
as dynamic power management (DPM). (2) Dynamic Speed Scaling: The concept of dynamic
speed scaling refers to the flexibility provided by a processor to adjust its processing speed
dynamically. The rate of energy consumption is typically described by a convex function of
the processing speed. This feature is also referred to as dynamic voltage frequency scaling
(DVFS), following its practical implementation scheme.

The majority of previous work regarding energy-efficient scheduling focuses mainly on uni-
processor systems. For systems that support power-down mechanism, Baptiste [5] considered
hard real-time jobs, i.e., deadline misses of jobs are not allowed, with unit execution times
and proposed the first polynomial-time algorithm that computes an optimal strategy for
turning on and powering off a processor. In a follow-up paper, Baptiste et al. [6] further
extended the result to jobs with arbitrary execution times and reduced the time complexity.
When considering workload-conserving scheduling, i.e., the system is not allowed to enter
low-power states when the ready queue is not empty, Augustine et al. [4] considered systems
with multiple low-power states and provided online algorithms.

Dynamic speed scaling was introduced to allow computing systems to reach a balance
between high performance and low power consumption dynamically. Hence, scheduling
algorithms that assume dynamic speed scaling, e.g., Yao et al. [30], usually execute jobs as
slowly as possible while ensuring that timing constraints are met. When the energy required
to keep the processor active is not negligible, however, executing jobs too slowly may result
in more energy consumption. For most realistic power-consumption functions, there exist a
critical speed, which is the most energy-efficient for job execution [12,22].

Irani et al. [22] initiated the study of combining both mechanisms. For offline energy-
minimization, they presented a 2-approximation. For the online version, they introduced a
greedy procrastinating principle, which enables online algorithms that have certain properties
and that are designed for speed scaling without power-down mechanism to additionally
support the power-down mechanism. The idea behind this principle is to postpone job
execution as much as possible in order to bundle workload for batch execution. The usage of
job procrastination with dynamic speed scaling for periodic tasks has later been explored
extensively in a series of studies [11,12,26].

The combination of the power-down mechanism with dynamic speed scaling suggests the
philosophy of racing-to-idle: Execute jobs at higher speeds and gain longer quality sleeping
intervals. Albers and Antoniadis [1] showed that the problem of minimizing the energy
consumption for speed scaling with a sleep state is NP-hard and provided a 4

3 -approximation.
All of the aforementioned work mainly focuses on uni-processor systems. By contrast, for

multi-processor systems, relatively fewer results are known. Demaine et al. [17] considered
unit jobs and presented a polynomial-time algorithm based on dynamic programming for
power-down mechanism. Approximations for several variations were also presented. In a
follow-up paper, Demaine and Zadimoghaddam [18] presented logarithmic approximations for
general formulations of scheduling problems with submodular objective functions, including
energy consumption. Albers et al. [2] considered dynamic speed scaling with job migration
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and presented polynomial-time algorithms based on maximum flow problems.
As scheduling to meet deadline constraints is a long-standing difficult problem [14–16,20],

additional augmentation on the hardware level, e.g., speed of the processors or number of the
machines, has been considered to provide practical solutions. See, for example, [3, 8, 10,28].
In practice, machine augmentation follows the trends in multi-core systems, while speed
augmentation has been shown its limits as overclocking is difficult to achieve due to the
dramatic increase of power consumption and thermal dissipation.

Our Focus and Contribution. In this paper, we examine the problem of online dynamic
power management that provides hard real-time guarantees, i.e., each job must finish its
execution before its deadline, for multi-processor systems. We assume a system equipped
with multiple processors that are identical and that operate independently from each other,
and we can use as many processors as necessary. Job executions can be preempted but
can not be migrated, i.e., the execution of a job must be done on the same processor. The
objective is to compute a schedule of the jobs and a sequence of switch on/off operations
of the processors so as to minimize the total energy consumption. For this problem model
we give an elaborate study that leads to practical energy-efficient solutions for real-time
multi-processor systems.

First, we consider the case for which we know in advance that the set of jobs can be
scheduled feasibly on one processor. We show that the competitive factor of any online
algorithm is at least 2.06, even for this restricted case. Then we propose the idea of energy-
efficient anchors, which are defined for each of the jobs, to indicate a proper moment for
which the online scheduler should no longer postpone the execution of the jobs. We show
that this idea leads to a 4-competitive online algorithm which uses at most two processors.
For jobs with unit execution times, we show that the competitive factor improves to 3.59.

Second, we relax the conditions of our assumption by considering as input multiple
streams of jobs, each of which can be scheduled feasibly on one processor. We present a
simple strategy, as a byproduct of our first algorithm, to allow a trade-off between the number
of processors we have and the energy-efficiency of the resulting schedule. More specifically,
for k given job streams and h processors with h > k, we give a scheduling strategy such that
the energy usage is at most 4 ·

⌈
k

h−k

⌉
times that used by any schedule which schedules each

of the k streams on a separate processor.
The above algorithms lead to practical energy-efficient solutions in real-time systems

for which partitioned scheduling with recurrent real-time task model is adopted [7, 9]. The
recurrent task models, such as the sporadic real-time task model [27] or the arrival curve model
in Real-Time Calculus (RTC) [29], describe an infinite sequence of job arrivals, generated by
the tasks. Under such a model, the worst-case characteristics of job arrivals are specified.
For example, a sporadic real-time task defines the minimum inter-arrival time of any two
consecutive jobs. With the partitioned scheduling scheme, it is required that all the jobs
generated by a recurrent task be executed on a single processor. In many cases, however, the
real-time system needs to provide hard deadline guarantees and verifying the system could
be very costly, and the goal is to make the schedule more efficient by using more processors
without going through the costly verification steps. Therefore, even though the partitioned
scheduling scheme is more restricted in the sense that the jobs are partitioned in advance,
it has been widely adopted in practical real-time systems [7, 9] as it incurs no additional
overhead for ensuring the feasibility of the resulting online schedule. Our algorithms provide
an online energy-efficient solution with a reasonable trade-off for this situation.

Finally we drop the assumptions on the schedulability as well as the number of job
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streams and consider general set of jobs with unit execution times.
We show that the competitive factor of any online algorithm is at least 2.28. For the

positive side, we present a O(1)-competitive algorithm, which combines ideas from different
results and is interesting in its own right.

2 Notations and Problem Definition

In this section, we formally define the scheduling problem we consider and introduce notations
that will be used throughout this paper. Each job, say, j, is associated with three non-negative
integral parameters, namely, the arrival time aj , the execution time cj , and the deadline
dj . The arrival time of a job is the time it arrives to the system. The execution time is the
amount of CPU time it requires to finish its execution, and the deadline is the latest moment
at which the job must be completed. We assume that cj and dj are known at the moment
when j arrives to the system.

For notational brevity, we use a triple j = (aj , dj , cj) to denote the corresponding
parameters for any job j. We say a job j is a unit job if cj = 1 and we write j = (aj , dj). In
addition, a job j is said to be urgent if cj = dj − aj .

We make the following assumptions on the processors. When a processor is off, it cannot
execute any job and consumes no power. Switching on, or, alternatively, turning on, a
processor requires Ew units of energy. When a processor is on, it can execute jobs at a fixed
speed. We say that a processor is in the busy state if it is executing a job. If a processor is on
but not executing any job, then it is said to be in the standby state. The energy consumed
by a processor per unit of time, i.e., the power consumption, is ψb when it is busy and ψσ
when it is in standby, respectively. We assume that ψσ ≤ ψb. Initially all processors are off.

The break-even time, denoted by B, is defined to be Ew/ψσ. Intuitively, this corresponds
to the amount of time a processor has to stay in standby in order to have the same energy
consumption for switching on a processor. The break-even time is an important concept that
has been widely used for ski-rental-related problems [25] and dynamic power management
algorithms in the literature, e.g., [21–23].

Below we define the concept of job scheduling. LetM = {M1,M2, . . . ,Mm} be the set
of processors and J be a set of jobs.

I Definition 1 (A Schedule for a Set of Jobs). A schedule S for J on M is a set of pairs
(I1, job1), (I2, job2), . . . , (Im, jobm), where for each 1 ≤ i ≤ m,
Ii denotes the set of time intervals during which processor Mi is on, and
jobi : R+ −→ J ∪ {∅} is a function of time t that indicates the job to be executed on
processor Mi at time t. If Mi is not executing any job or is off at time t, then jobi(t) = ∅.

The schedule S is said to be feasible for J on M if for each job j ∈ J , there exists a
processor Mi ∈M such that∑

I∈Ii

∫
I∩[aj ,dj ]

δ(jobi(t), j) · dt = cj ,

where δ(x, y) is defined to be 1 if x = y and 0 otherwise. In other words, the schedule S is
feasible if for each job j, there exists a processor Mi such that the amount of time Mi is
executing j during the time interval [aj , dj ] is cj . We remark that, it is implicitly implied in
the definition that a feasible schedule is also a preemptive schedule and the jobs can only be
executed without migration.
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The number of processors the schedule S uses is defined to be |{i : 1 ≤ i ≤ m, Ii 6= ∅}|,
i.e., the number of processors that have been switched on at least once in S. The energy
consumption of the schedule S, denoted E(S), is defined as

E(S) =
∑

1≤i≤m

(
Ew · |Ii|+

∑
I∈Ii

|I| · ψσ

)
+
∑
j∈J

cj · (ψb − ψσ),

where |Ii| denotes cardinality of Ii, i.e., the number of time intervals it contains, and |I|
denotes the length of the time interval I.

I Definition 2 (DPM Job Scheduling). Given a set J of jobs and a setM = {M1,M2, . . . ,

Mm} of processors, the DPM Job Scheduling Problem is to find a feasible schedule S for J
onM such that E(S) is minimized.

In this paper, we consider the online version of the DPM job scheduling problem in
which the jobs arrive to the system dynamically in an online manner, i.e., at any time t,
the algorithm only sees the jobs whose arrival times are less than or equal to t, and the
scheduling decisions have to be made without prior knowledge on future job arrivals. To be
more precise, let J be the input job set and J (t) = {j : j ∈ J , aj ≤ t} be the subset of J
that contains the jobs whose arrival times are no greater than t. At any time t, the algorithm
sees the job set J (t) and is able to decide the assignment of the jobs to the processors as
well as the state transitions of the processors, i.e., turning on or switching off, at that time.
The objective is to compute a feasible schedule for J such that the energy consumed is
minimized.

An online algorithm Π is said to be η-competitive for the online DPM job scheduling
problem if for any job set J , we have E(Π(J )) ≤ η · E(Opt(J )) + x, where Π(J ) is the
schedule computed by algorithm Π, Opt(J ) is an optimal schedule for J , i.e., the one that
results in the minimum energy consumption, and x is a constant.

3 Preliminary Results

In this section, we present preliminary results that are related to our assumptions for the
problem models we addressed. We begin with the characterization of the job sets that
are packable on one processor. For any job set J and any 0 ≤ ` < r, let Υ(J , `, r) =
{j : j ∈ J , ` ≤ aj , dj ≤ r} be the set of jobs that arrive and have to be done within the
time interval [`, r]. Let Υ#(J , `, r) =

∑
j∈Υ(J ,`,r) cj denote the total amount of workload in

Υ(J , `, r).
Chetto et al. [13] studied the schedulability of any given set of jobs using the earliest-

deadline-first (EDF) principle, which always selects the job with the earliest deadline for
execution at any moment, and proved the following lemma.

I Lemma 3 (Chetto et al. [13]). For any set J of jobs, J can be scheduled on one processor
using the EDF principle if and only if the following condition holds:

For any time interval [`, r], Υ#(J , `, r) ≤ r − `. (1)

It is well-known that, for any job set J , if there exists a feasible schedule that uses
only one processor for J , then the EDF principle is also guaranteed to produce a feasible
schedule [19]. Hence, Condition (1) gives a necessary and sufficient condition for any set of
jobs to be able to be packable on a processor.
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However, even when the set of jobs is known in advance to be packable on a processor,
we still need multiple processors in order to achieve energy-efficiency in an online setting.
This is illustrated by the following lemma.

I Lemma 4. Let Π be an online algorithm that produces feasible schedules using only one
processor for any job set that can be packed feasibly on one processor. For any α > 0, there
exists a job set Jα that can be packed feasibly on one processor such that the competitive
factor of Π on Jα is at least α.

Hence it is essential to use additional processors in order to give an energy-efficient
scheduling scheme for the online DPM job scheduling problem. This dilemma is further
extended in §4.1 to obtain a lower bound on the competitive factor of any online algorithm.

Below we introduce notions related to the number of processors required by a set of unit
jobs. For any job set J and any 0 ≤ ` < r, let

ρ(J , `, r) = Υ#(J , `, r)
r − `

denote the density of workload of J with respect to the time interval [`, r]. Let %̂(J ) =
max0≤`<r ρ(J , `, r) denote the maximum density of J . Let P#(J ) denote the minimum
number of processors required by any feasible schedule for J . The following lemma gives an
alternative characterization of P#(J ) when J is composed merely by unit jobs.

I Lemma 5 ( [24]). For any set J of unit jobs, we have P#(J ) = d%̂(J )e.

However, for jobs with arbitrary execution times, packing the jobs using a minimum
number of processors is a long-standing difficult problem even for the offline case [14–16,20],
and for the online version only very special cases were studied [16,24].

4 Online Scheduling for Job Sets Packable on One Processor

In this section, we consider the case for which we know in advance that the input set of jobs
can be scheduled feasibly on one processor, i.e., Condition (1) from Lemma 3 holds for the
input set of jobs. First we prove a lower bound of 2.06 on the competitive factor of any online
algorithm by designing an online adversary A that observes the behavior of the scheduling
algorithm and that determines the forthcoming job sequence. In §4.2 we present an online
strategy that gives a 4-competitive schedule using at most two processors. In §4.3 we show
that this strategy leads to a 3.59-competitive schedule when the jobs have unit execution
times.

4.1 Lower Bound on the Competitive Factor
Let Π be an online scheduling algorithm for this problem. We set ψb = ψσ = ψ = 1 and
Ew = k, where k is an integer chosen to be sufficiently large. Hence the break-even time B is
also k. We define a monitor operation of the adversary A as follows.

I Definition 6. When A monitors Π during time interval [t0, t1], it checks if Π keeps at
least one processor on between time t0 and t1. If Π turns off all the processors at some point
t between t0 and t1, then A releases an urgent unit job (t+ 1, t+ 2), forcing Π to turn on at
least one processor to process it. If Π keeps at least one processor on during the monitored
period, then A does nothing.
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Let x, η, and χ, where 0 ≤ x ≤ 2
5 , be three non-negative parameters to be chosen. The

online adversary works as follows. At time 0, A releases a unit job (0,B) and observes the
behavior of Π. Let t be the moment at which Π schedules this job to execute. Since Π
produces a feasible schedule, we know that 0 ≤ t ≤ B − 1. We have the following two cases.
Case(1): If 0 ≤ t ≤

( 1
2 − x

)
B, then A monitors Π from time t to 3

2B.
Case(2): If j is not executed till

( 1
2 − x

)
B, the adversary A releases

( 1
2 + x

)
B − 1 unit jobs

with deadline B at time
( 1

2 − x
)
B + 1. As a result, the online algorithm is forced to switch

on at least two processors to execute these jobs. The adversary continues to monitor Π until
time

( 3
2 + η

)
B. If no urgent unit job has been released till time

( 3
2 + η

)
B, the adversary A

terminates. Otherwise, A monitors Π for another χB units of time until
( 3

2 + η + χ
)
B.

Let E(Π) and E(O) denote the energy consumed by algorithm Π and an offline optimal
schedule on the input sequence generated by A, respectively. By deriving a lower bound on
E(Π) and an upper bound on E(O), we obtain the following theorem.

I Theorem 7. The competitive factor of any online algorithm for the online DPM job
scheduling problem is at least 2.06, even for the case of unit jobs that are known in advance
to be packable on one processor.

4.2 4-Competitive Online Scheduling
In order to design an online algorithm that produces an energy-efficient schedule, we have to
deal with two questions. (1) To what extent should we bundle the execution of the jobs in
order to achieve energy-efficiency? (2) Provided that the job execution may be delayed, how
do we guarantee the feasibility of the resulting schedule?

For the former question, we introduce the concept of energy-efficient anchors for the
jobs to determine the appropriate timing to begin their execution. For the latter question,
the feasibility is guaranteed by suitably partitioning the job set such that the jobs that are
delayed still satisfy Condition (1) from Lemma 3. Below we describe our algorithm in more
detail. Let J be the input set of jobs, and recall that J (t) is the subset of jobs whose arrival
times are smaller than or equal to t.

For any t, t† with 0 ≤ t ≤ t†, let Q(t) be the subset of J (t) that contains the jobs that have
not yet finished their execution up to time t, and let Q(t, t†) be the subset of Q(t) containing
those jobs whose deadlines are smaller than or equal to t†. Note that, by definition, we have
Q(t, t†) ⊆ Q(t) ⊆ J (t) ⊆ J . For notational brevity, let c′j(t) denote the remaining execution
time of job j at time t, and let W (t) =

∑
j∈Q(t) c

′
j(t) and W (t, t†) =

∑
j∈Q(t,t†) c

′
j(t) denote

the total remaining execution time of the jobs in Q(t) and Q(t, t†), respectively. Furthermore,
we divide Q(t) into two subsets according to the arrival times of the jobs. For any t, t∗ with
0 ≤ t∗ ≤ t, let Qt∗

proc(t) be the subset of Q(t) containing the jobs whose arrival times are less
than t∗, and let Qt∗

forth(t) = Q(t)\Qt∗

proc(t).
Let λ, 0 ≤ λ ≤ 1, be a constant to be determined later. For each job j ∈ J , we define

a parameter hj to be max {aj , dj − λB}. The value hj is referred to as the energy-efficient
anchor for job j.

Let M1 and M2 denote the two processors which our algorithm S will manage. We say
that the system is busy, if at least one processor is executing a job. The system is said to be
off if both processors are turned off. Otherwise, the system is said to be in standby. During
the process of job scheduling, our algorithm S maintains an urgency flag, which is initialized
to be false. The description of the algorithm S is provided in Table 1.
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Table 1 A description of the online scheduling algorithm S.

At any time t, S proceeds as follows.
(A) Conditions for turning on
the processors:

(B) Handling the job schedul-
ing:

(C) Conditions for turning off
the processors:

1. If the system is off and
there exists some j ∈ Q(t)
such that hj ≤ t, then
turn on processor M1.

2. If the urgency flag is false
and there exists some t†

with t† > t such that
W (t, t†) > t† − t, then

turn on M1 if it is off,
turn on M2, set t∗ to be
t, and set the urgency
flag to be true.

1. If the urgency flag is true,
then use the EDF prin-
ciple to schedule jobs from
Qt∗

proc(t) on M1 and jobs
from Qt∗

forth(t) on M2.
2. If the urgency flag is false

and the system is not off,
then use the EDF prin-
ciple to schedule jobs from
Q(t) on the processor that
is on.

1. If the urgency flag is true
and Qt∗

proc(t) empty, then
turn off M1 and set the ur-
gency flag to be false.

2. If the urgency flag is false,
the system is standby, and
t − t1 ≥ B, where t1 is
the time processor M1 was
turned on, then turn off
all processors.

Note that, M1 and M2 can both be on only when the urgency flag is true. To prove
the claimed competitive factor, we analyze the relative positions between the time intervals
during which an optimal offline schedule keeps the system off and our online algorithm is
executing jobs. Then we charge the energy consumed by our schedule to that consumed by
the optimal offline schedule to obtain the claimed bound.

I Theorem 8. By setting λ = 1, the algorithm S computes a 4-competitive schedule that
uses at most two processors for any set of jobs satisfying Condition (1) for the online DPM
job scheduling problem.

4.3 3.59-Competitive Scheduling for Unit Jobs
When the jobs have unit execution times, we show that we can benefit even more from a
properly chosen parameter λ = 4 −

√
10. The major difference is that, when the system

is in urgency while Qt∗

forth(t) is empty, i.e, processor M2 is in standby, we use a global
earliest-deadline-first scheduling by executing two jobs on M1 and M2 instead of keeping
one processor in standby, which in turn improves resource utilization. Let S† denote the
modified algorithm. We have the following theorem.

I Theorem 9. By setting λ = 4−
√

10, the algorithm S† computes a 3.59-competitive schedule
that uses at most two processors for any set of unit jobs satisfying Condition (1) for the
online DPM job scheduling problem.

5 Online Multi-Processor Scheduling

In this section we present results derived for online dynamic power management in multi-
processor systems. In §5.1 we generalize the algorithm S presented in §4.2 for a given
set of job streams, each of which delivers a set of jobs that can be scheduled feasibly on
one processor. This allows a trade-off between the number of processors we have and the
energy-efficiency of the resulting schedule.

Then we consider online dynamic power management for general sets of unit jobs. In §5.2
we prove a lower bound of 2.28 on the competitive factor of any online algorithm. Finally in
§5.3 we present an online algorithm that gives a O(1)-competitive schedule.
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234 Online Dynamic Power Management with Hard Real-Time Guarantees

5.1 Trading the Energy-Efficiency with the Number of Processors
In §4.2 we have shown how a stream of jobs satisfying Condition (1) can be scheduled
by the algorithm S to obtain a 4-competitive schedule which uses at most two processors.
In this section, we show that, by suitably delaying and bundling the workload, we can
generalize the algorithm S for a given set of job streams, each of which delivers a job set
satisfying Condition (1), to allow a trade-off between the number of processors we have and
the energy-efficiency of the resulting schedule.

Let J1,J2, . . . ,Jk be the given set of job streams, where Ji satisfies Condition (1) for
all 1 ≤ i ≤ k. Below we present a strategy that leads to a schedule that uses at most h
processors for any h > k and whose energy usage is at most 4 ·

⌈
k

h−k

⌉
times that used by

any schedule which schedules each of the k streams on a separate processor.
First, if h ≥ 2k, then we apply the algorithm S on every pair of the streams, i.e., on

J2i and J2i+1, for all 1 ≤ i ≤ k
2 , and we get a schedule with a factor of 4. For the case

k < h < 2k, we divide J1,J2, . . . ,Jk into h− k subsets such that each subset gets at most
dk/(h− k)e streams. The h processors are allocated in the following way. Each stream of
jobs, i.e., Ji for all 1 ≤ i ≤ k, gets one processor, and each of the remaining h− k processors
are allocated to each of the h− k subsets such that no two processors are allocated to the
same subset. Therefore, the problem is reduced to the remaining case, h = k + 1.

Below we describe how the case h = k + 1 is handled. Let M0,M1, . . . ,Mk denote the
k + 1 processors to be managed, and let Qi, 1 ≤ i ≤ k, be the corresponding ready queue
for processor Mi. We use the parameter λ = 1 to set the energy-efficient anchor for each
job that arrives. Recall that c′j(t) is the remaining execution time of job j at time t. For
any t ≥ 0 and any t† with t† ≥ t, we use W0(t, t†) =

∑
j∈Q0,dj≤t† c

′
j(t) to denote the total

remaining execution time of the jobs in Q0 whose deadlines are less than or equal to t†.
The algorithm works as follows. When a job j ∈ Ji, 1 ≤ i ≤ k, arrives to the system, we

check whether or not processor Mi is on. If Mi is on, then we add j to Qi. Otherwise, we
further check whether W0(t, t†) + cj ≤ t† − t holds for all t† ≥ dj . If it does, then j is added
to Q0. Otherwise, we add j to Qi and turn on the processors Mi and M0 (if M0 is off). At
any time t, we have the following further conditions to consider.
(a) Conditions for turning on M0: If the energy-efficient anchor of some job in Q0 is met

or if ∃ t† ≥ t such that W0(t, t†) ≥ t† − t, then we turn on M0 if it is off.
(b) Job scheduling: For each 0 ≤ i ≤ k such that Mi is on, we use the EDF principle to

schedule the jobs of Qi on Mi.
(c) Conditions for turning off the processors: If Q0 becomes empty and M0 has been

turned on for at least B amount of time, then we turn off M0 immediately. For 1 ≤ i ≤ k,
if Mi is on, Qi becomes empty, and M0 is off, then we turn off Mi.

Let Smulti denote the algorithm. We have the following theorem.

I Theorem 10. Given a set of k job streams, each of which can be scheduled feasibly on
one processor, algorithm Smulti computes a schedule that uses at most h processors, for any
h > k, such that the energy usage is at most 4 ·

⌈
k

h−k

⌉
times that used in any schedule which

schedules each of the k streams on a separate processor, for the online DPM job scheduling
problem.

5.2 Lower Bound on the Competitive Factor
In this section we prove a lower bound of 2.28 on the competitive factor of any online
algorithm for the online DPM scheduling problem with unit jobs. Let Π be an online
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scheduling algorithm for this problem. More specifically, we present an online adversary A,
which observes the behavior of Π and which decides the set of forthcoming jobs such that
the competitive ratio of Π on the input sequence generated by A is at least 2.28.

We set ψb = ψσ = ψ = 1 and Ew = k, where k � 1 is an integer chosen to be sufficiently
large. Hence the break-even time, B, is also k. The adversary A works in two stages. In the
first stage, A uses the gadget designed in [24] for the machine-minimizing job scheduling
problem to force Π to use more processors than necessary. As a result, at the time when
the first stage ends, the number of processors Π uses is at least 2.09 times that required
by any optimal schedule for J ∗ in terms of number of processors. In the second stage, A
monitors the number of active processors Π keeps and makes sure that Π does not turn off
the processors too fast. Below we describe the second stage in more detail.

Stage II. Let η be a non-negative real number to be decided later. We define the real-valued
function fη(t) : [0, 1] → R to be fη(t) = η + et · (3.09− 2η), where e is the base of natural
logarithm, i.e., the Euler’s number.

The adversary A works as follows. At each time t with qα2 ≤ t < qα2 + B, the
adversary checks if the number of processors algorithm Π keeps in the state of on is at
least %̂(J ∗) · fη

(
t−qα2

B

)
. If it is, then A does nothing. Otherwise, A punishes the aggressive

behavior of Π by releasing d%̂(J ∗)e urgent jobs with deadline t+ 1 and terminates.

I Lemma 11. If the algorithm Π gets punished by A, then the competitive factor of the
resulting schedule is at least η.

Lemma 11 gives a bound when the algorithm Π turns off the processors in an aggressive
way. On the other hand, if Π does not behave aggressively, then the resulting competitive
factor will decrease as η increases. By setting η to be 2.28, we get the following theorem.

I Theorem 12. The competitive factor of any online algorithm for the online DPM job
scheduling problem is at least 2.28, even for unit jobs.

5.3 O(1)-Competitive Online Scheduling for Unit Jobs
In this section we consider the case for which the jobs have unit execution times. The lower
bound result provided in §5.2 gives a rough idea on the difficulty of this problem, which
includes the following. (a) First, how many processors should be used when we have no prior
knowledge on future job arrivals? (b) Second, how can we turn the standby processors off so
that we do not suffer much when we have to turn them on again later?

We incorporate the results of [24] as a partial solution to question (a) mentioned above and
give a O(1)-competitive online algorithm, denoted S†multi, for this problem. The algorithm
works as follows. At each moment, S†multi computes the density of the workload that has
arrived to the system “recently” and makes its scheduling decisions accordingly. If the density
is low, then S†multi adopts the strategy presented in §4.2 and §4.3 to bundle the execution of
the jobs on two processors. Otherwise, S†multi uses the approach suggested in [24] to estimate
the number of processors required by future job arrivals for multi-processor scheduling. For
question (b), we let each processor stay on for an additional amount of time before it is
turned off.

The approach we use combines ideas from different results. Although the idea is conceiv-
able, bounding the energy efficiency is tricky and requires further non-trivial observations on
the connections between online schedules and optimal schedules.

STACS’14
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Below we describe the algorithm S†multi in more detail. Let J denote the input set of jobs
and Q denote the ready queue which contains the set of jobs that arrive and that are not
yet scheduled. The algorithm S†multi maintains a variable t∗, initialized to be −1, to denote
the last time when Q becomes empty. Let J ∗ = J \J (t∗) be the set of jobs that arrive after
time t∗. In addition, the algorithm S†multi maintains another variable t∗h to denote the first
time for which the workload density becomes greater than or equal to 1 since time t∗, i.e., t∗h
is the smallest integer such that t∗h > t∗ and %̂(J ∗(t∗h)) ≥ 1. For notational brevity, t∗h is set
to be ∞ if there is no such moment.

At each time t, the algorithm S†multi computes the workload density %̂(J ∗(t)) and updates
the value of t∗h if necessary. Depending on the value of t∗h, the jobs that arrive are handled
differently. If t∗h > t, then the jobs that have just arrived are added to the lightly-loaded
ready queue Q`. Otherwise, they are added to the heavily-loaded ready queue Qh.

For the jobs that are added to Q`, we use the algorithm S† proposed in §4.3 to schedule
them. To help describe the algorithm, in the following we use M1 and M2 to denote the two
specific processors that are used by S†. In addition, we use #i, where i ≥ 1, to denote the
remaining processors that will be used to handle the jobs that are added to Qh.

Handling the heavily-loaded ready queue Qh. Let γ2 be a constant chosen to be 5.2. If
t∗h > t, then Qh(t) is empty and there is nothing to process. If t∗h ≤ t, then the algorithm
S†multi makes sure that at least dγ2 · %̂(J ∗(t))e processors, excluding M1 and M2, have been
turned on for job execution. Let #(t) be the number of processors that are on, excluding M1
and M2, and let χ = min {#(t), |Qh(t)|}. We remark that, as %̂(J ∗(t)) changes over time, it
is possible that #(t) > dγ2 · %̂(J ∗(t))e.

The algorithm S†multi fetches χ jobs with earliest deadlines from Qh(t) and assigns them
for execution on #1,#2, . . . ,#χ. If |Qh(t)| < #(t), then S†multi continues to fetch jobs from
Q`(t), if there exists any, using the first-fit principle, i.e., the processor with smaller index
has higher priority for job execution, such that either all of the #(t) processors are occupied
or Q`(t) becomes empty.

Turning off the processors. After the scheduling decisions on the ready queues, i.e., Q`

and Qh, are made, the algorithm S†multi checks the following conditions. For all i with
1 ≤ i ≤ #(t), if processor #i has stayed in standby for B amount of time since turned on,
then S†multi switches processor #i off immediately.

At any time t, if the ready queue Q becomes empty after the scheduling decisions on Q`

and Qh are made, then t∗ is set to t and t∗h is set to be ∞. We conclude the result with the
following theorem.

I Theorem 13. The algorithm S†multi computes a (γ1 + 52 · γ2 + 1)-competitive schedule for
the online DPM job scheduling problem with unit jobs, where γ1 = 3.59 is the competitive
factor of S† and γ2 = 5.2 is a constant.
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