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Abstract—Next-generation sequencing (NGS) data are a
rapidly growing example of big data and a source of new knowl-
edge in science. However, sequencing errors remain unavoidable
and reduce the quality of NGS data. Error correction, therefore, is
a critical step in the successful utilization of NGS data, including
de novo genome assembly and DNA resequencing. Since NGS
throughput doubles approximately every five months and the
length of NGS records (i.e., reads) is increasing, improvements
in efficiency and effectiveness of computational strategies are
needed. In this study, we aim to improve the performance of
CloudRS, an open-source MapReduce application designed to
correct sequencing errors in NGS data. We introduce the read-
message (RM) diagram to represent the set of messages, i.e.,
the key-value pairs generated on each read. We also present
the Gradient-number Votes (GNV) scheme in order to trim off
portions of the RM diagram, thereby reducing the total size of
messages associated with each read. Experimental results show
that the GNV scheme successfully reduce execution time and
improve the quality of the de novo genome assembly.

Keywords—big data; error correction; geometric structure;
mapreduce; next-generation sequencing

I. INTRODUCTION

Next-generation sequencing (NGS) has improved the qual-
ity of DNA sequencing [1] and has become one of the
core technologies in genetics and computational biology. NGS
technology is constantly advancing, as its throughput doubles
approximately every five months. In contrast, the throughput
of semiconductor technology doubles approximately every two
years according to Moore’s law [2]. It is estimated that 15
petabytes of compressed genetics data are produced per year by
roughly 2000 sequencers [3]. In addition to the huge quantity
of sequencing data produced in one year, the lengths of NGS
reads are increasing as NGS technology advances. Broad
coverage of sequencing data has resulted in a large amount of
data for analysis, leading to various computational problems in
conventional NGS applications, such as insufficient computing
resources and unexpectedly long execution time [4]. However,
sequencing errors still occur unavoidably and frequently [5].

The correction of sequencing errors is a crucial preprocess-
ing step for the success of NGS applications such as de novo
genome assembly and genome resequencing. The general idea
for correcting errors at a specific genomic position is based
on utilizing the nucleotide that are highly represented over

others in the sequences [6]. Various approaches are used for
accomplishing the error correction problem. Examples include
k-mer-spectrum-based approaches [7]–[11], suffix-tree/array-
based approaches [12], [13], and multiple-sequence-alignment
(MSA)-based approaches [14]–[16]. In the k-mer-spectrum
and suffix-tree/array-based approaches, k-mers or variable-
length sub-reads with low frequencies are treated as untrusted.
The untrusted k-mers/sub-reads are then converted to trusted
ones with high frequencies using minimal changes (as mea-
sured by Hamming distance or edit distance, for example)
to their reads. The MSA-based approaches derive a multiple
sequence alignment for reads with common k-mers and then
find the consensus of the alignment to correct errors in the
mismatched sections.

Current challenges of the error correction problem include
the growing data size and the increasingly longer reads in
NGS. Larger data size leads to longer execution time. In
some cases, this can be dealt with by increasing the size of
physical memory. Long reads enlarge the search space for
finding sequencing errors and thus increase the time required to
fix sequencing errors. Big data technology, which is useful in
processing NGS data [2], can also be employed to expedite the
correction of sequencing errors. Example includes CloudRS
[16], an MSA-based error correction application for NGS big
data based on the MapReduce framework [17].

MapReduce is a prominent big data framework. It provides
a number of features for handling distributed computation
in the cloud. The MapReduce programming model consists
of mapper and reducer functions, where data is encapsulated
into messages containing a key-value pair for computation and
transmission. Thus, the execution time of a MapReduce job
is related to the total size of the messages passed among
the mapper and reducer functions. Therefore, by reducing
the number of messages, we have a means of reducing disk
and network I/O overhead in the execution of MapReduce
applications.

In this paper, we examine strategies for improving the effi-
ciency and effectiveness of CloudRS, an open-source MapRe-
duce application designed to correct sequencing errors in NGS
data. We introduce a geometric model, the read-message (RM)
diagram, to represent the messages generated on each read.
We then propose the Gradient-number Votes (GNV) scheme
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to trim the RM diagram in order to reduce its size and thereby
reduce the size of each message accordingly. The GNV scheme
is implemented in CloudRS and is further integrated into a de
novo genome assembly pipeline. Experimental results show
that our proposed scheme successfully reduces the execution
time of CloudRS. The scheme also improves the quality of de
novo genome assembly produced by Velvet [18], as shown by
an evaluation based on the GAGE benchmark [19].

II. BACKGROUND

A. Terminology

DNA sequencing aims at determining the precise order
of the DNA bases, which contain adenine (A), thymine (T),
cytosine (C), and guanine (G). A pair of A and T or a pair
of G and C is known as a base pair (the Watson-Crick base
pair; denoted as bp). The output of DNA sequencer is a
set of sequences, which is also denoted as reads. A long
read represents its sequence length is longer than 50 base
pairs. A read of the sequencer output is composed of four
elements including the sequence, quality information of each
base, sequence identifier, and optional descriptions. Thus, a
read with sequence S of size n and quality information Q can
be written as ({S1, S2, . . . , Sn}, {Q1, Q2, . . . , Qn}).

In this paper, a set of reads is said to be aligned on a
given pattern if every read of the set has the given pattern as
its substring. A ReadStack refers to a set of reads aligned by
the same pattern. Moreover, the k-mer spectrum refers to the
empirical frequencies of the all the possible patterns of length
k.

B. The CloudRS algorithm

The CloudRS algorithm is designed to correct sequencing
errors and thus to improve the quality of the subsequent de
novo assembly. It emulates the concept of the error correction
algorithm of ALLPATHS-LG [20] on the MapReduce frame-
work, and applies a two-stage majority voting mechanism for
correcting errors in each ReadStack.

The CloudRS algorithm is implemented with several mod-
ules each consisting of MapReduce runs with at least one
mapper and/or reducer task. There are two core modules for
correcting errors, including PreCorrect and ErrorCorrect. Fig.
1(a) shows the function of the PreCorrect module. The reads
are aligned by a (k+1)-mer pattern, which contains a wildcard
genomic base at the central position. The central position
also represents the correcting area of the ReadStack. Fig. 1(b)
shows the function of the ErrorCorrect module of CloudRS.
The ReadStack is formed by aligning the k-mer pattern of
the reads. There are two areas for correcting errors before
reaching the branch points defined by a specific threshold.
After forming the ReadStack, the algorithm then collects the
quality information of each position in the correcting area to
make a correction recommendation.

The first stage of majority voting applied on each Read-
Stack is shown in Fig. 2. Quality information at each position
in the correcting area of the ReadStack is collected and
analyzed to check if a consensus may be identified. Then,
the consensus is used to make correction recommendation for
each member of the ReadStack at the specific position, namely

(a) PreCorrect module

(b) ErrorCorrect module

Fig. 1. An illustration of ReadStack construction and the range for correcting
errors (shaded area) in each CloudRS module.

Fig. 2. The majority voting mechanism for correcting errors at the ReadStack
level. There are three steps in making a correction recommendation of either
to Preserve (P) or to Replace (R) bases of each member of the ReadStack.

to Preserve or to Replace it. A Preserve recommendation is
suggested for a member that matches the consensus but has
a quality score lower than a specified threshold. A Replace
recommendation is suggested for a member that differs from
the consensus. The second majority voting stage is issued at
each position on each read. The recommendations made on the
ReadStack level are collected and analyzed for each position of
a read. A correction is issued if all the recommendations are in
agreement to Replace, that is, to replace the base of the position
by another base. Otherwise, a Preserve recommendation is
made to maintain the current base of the read position.
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C. The bottleneck of CloudRS

The CloudRS algorithm is based on the multiple sequence
alignment (MSA) approaches. Reads are aligned by the same
k-mer pattern, and the quality information of each base is used
to correct possible errors. Given a dataset of D reads, each read
having length L, the algorithm will produce messages with a
magnitude of O(D×(L−K+1)), where K is the length of the
k-mer pattern. Note that the messages should be at least twice
of the magnitude, since it incorporates the DNA sequence and
its accompanying quality information.

Due to the increasing data size, the computing and trans-
mitting steps become bottlenecks in improving CloudRS. In
the mapper function, the size of the messages can be 10
times larger than the input data size. Moreover, the size of
messages transmitted from mappers to reducers may be larger
than the size produced in the mappers, due to the nature
of distribution and replication in the MapReduce framework.
Therefore, reducing the number of messages in execution may
also reduce execution time in CloudRS; it will also be effective
when processing NGS big data and with long reads. However,
reducing the number of messages may lead to data loss or
incomplete information in an MSA-based error correction
algorithm. It may also affect the result of the following de
novo assembly. Therefore, to reduce the execution time of
CloudRS without affecting the accuracy of assemblies becomes
our primary goal.

III. METHODOLOGY

In this section, we present the read-message (RM) diagram
to portray the messages composed of key-value pairs generated
on each read of NGS data. We hypothesize that the area
of the RM diagram is proportional to the execution time
of CloudRS, a MapReduce application for correcting NGS
sequencing errors. Here we present the basis scheme used in
CloudRS. We then introduce our editing scheme to tailor the
total area of the RM diagram by controlling the number of
votes at each position of the read.

A. The RM diagram

Given a read of length L and an integer K , where 0 <=
K <= L, we define the RM diagram as follows: In the RM
diagram, there are R = L − K + 1 records. Each record i
consists of a left-side arm, a center kernel, and a right-side arm,
denoted as Arml(i), Kernel(i), and Armr(i), respectively,
and are defined as follows:

Arml(i) = [posl(i), i)
Kernel(i) = [i, i+K)
Armr(i) = [i+K, posr(i))

(1)

where posl(i) is the start index of Arml and posr(i) is the end
index of Armr on the ith record, 0 ≤ i ≤ R− 1. Fig. 3 gives
an example of an RM diagram. The diagonally shaded area
represents the accumulated votes participating from different
alignments of k-mer patterns. Note that each mer of the read
is said to possess v votes if it appears exactly v times in Arml

or Armr of the RM diagram. Thus, we define the number of
votes vp at read position p as

vp = |{x = p | x ∈ Arml(i) or x ∈ Armr(i), ri ∈ R}| (2)

(a) The Full-length Arm scheme

(b) The Gradient-number Votes scheme

Fig. 3. Example diagrams showing geometric structures representing our
proposed schemes. The diagonally shaded area represents the total number of
votes, the lattice area is generated by the constant k-mer patterns, and the
white area enclosed by dotted lines represents the reduction in data compared
with the original RM diagram.

where 0 ≤ p ≤ L − 1. We also use î(vp) to estimate the key
index of a specific record in order to construct vp votes at
position p.

B. CloudRS: the Full-length Arm scheme

We first present the fundamental model, the Full-length
Arm (FLA) scheme, as shown in Fig. 3(a). FLA applies full
read length around the kernel as its arms. The boundary of
FLA can be obtained as follows:

posl(i) = 0
posr(i) = L

Note that the FLA scheme is used in the current release of
CloudRS and is our basis for benchmarking.

C. The Gradient-number Votes scheme

Fig. 3(b) illustrates another treatment for the distribution
of votes, called the Gradient-number Votes (GNV) scheme.
In GNV, the distribution of votes is a gradient function. The
gradient can be controlled by the numbers of votes at the start
and end positions. The key positions and their respective votes
are:

v0 = A+ h

vK = A+ ⌈R(V0−A)
L

⌉

vL−K = A+ ⌈K(V0−A)
L

⌉
vL−1 = A
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TABLE I. DATASETS

Dataset
SRA accession

number

Reference genome

(accession number)

Genome length

(M bp)

Read length

(bp)

# Reads*

(M)

Genome

coverage

Original

data size

(GB)

Compressed

data size*+

(GB)

D1 SRX100885
S. cerevisiae

(PRJNA128)
12.07 76 50.61 319x 13.0 7.7

D2 SRR022866
S. aureus

(NC 003923)
2.82 76 24.13 651x 7.1 3.7

D3 SRR034509
E. coli

(NC 000913)
4.64 101 17.49 381x 6.4 3.5

D4 -
E. coli

(NC 000913)
4.64 151 12.06 393x 3.9 3.6

* Reads containing one or more N symbol are removed before evaluation.
+ Optional descriptions of the FASTQ format are removed.

where A is the base number of votes, 0 ≤ A ≤ R, and h is
a value for fine-tuning the votes. In addition, the record index
of the key positions is obtained as follows:

î(v0) = v0 + 1

î(vK) = K + vK
î(vL−K) = R− (K + vL−K)

î(vL−1) = R− vL−1 − 1

Thus, the geometric boundaries of GNV are described as
follows:

posl(i) =























0, i < i(v0)

0 +
⌊

(i−î(v0)+1)(K−1)

î(vK)−î(v0)

⌋

, î(v0) ≤ i

i < î(vK)

K +
⌊

(i−î(vK)+1)(L−2K−1)

R−î(vK)+1

⌋

, otherwise

posr(i) =























K +
⌊

(i+1)(L−2K−1)

î(vL−K)

⌋

, i < î(vL−K)

R− 1 +
⌊

(i−î(vL−K)+1)(K−1)

î(vL−1)−î(vL−K)

⌋

, î(vL−K) ≤ i

i < î(vL−1)

L, otherwise

IV. EVALUATION

A. Dataset

We evaluated our proposed scheme with long read datasets
sequenced by Illumina sequencers, as shown in Table I.
Datasets D1, D2, and D3 were downloaded from the se-
quence read archive (SRA) in NCBI. These datasets are
generated from resequencing experiments of a priori genome
sequences and therefore are often used for evaluation purposes
in NGS. Dataset D4 is from Illumina and includes the well-
characterized E. coli strain K-12 MG1655 library sequenced
on the Illumina MiSeq platform.

B. Criteria and setup

We designed two criteria for scheme evaluation: efficiency
and effectiveness. To assess the efficiency of our proposed
scheme, we used the number of votes and the corresponding
execution time of CloudRS. To evaluate the effectiveness, we
followed the experiments in the CloudRS paper [16]. We used
Velvet [18] followed by the GAGE [19] benchmark to evaluate
the quality of genome assemblies. The major assembly quality
index used in the GAGE benchmark is the value of corrected

TABLE II. COMPARISON WITH SIMILAR METHODS

Dataset Method* # Votes+ Execution

time (s)+
Corrected

N50 (bp)

D1

RawData N/A N/A 3016

CloudRS 2756 12027 3153

ErrorCorrectReads N/A 13104 3197

Present study 1534 9209 3163

D2

RawData N/A N/A 16665

CloudRS 2756 5524 18310

ErrorCorrectReads N/A 4788 20266

Present study 972 3807 20266

D3

RawData N/A N/A 30833

CloudRS 6006 5743 53748

ErrorCorrectReads N/A 5940 82554

Present study 1317 3392 59809

D4

RawData N/A N/A 87096

CloudRS 16256 17751 93798

ErrorCorrectReads N/A 10584 87096

Present study 1317 5389 112425

* RawData is the uncorrected reads. CloudRS is the latest development release

obtained from developer teams. ErrorCorrectReads is the error correction program

provided by ALLPATHS-LG.
+ N/A means that the information is not available from the program.

N50 in the N50 statistic. A larger corrected N50 value indicates
that the assembled sequences, i.e., contigs, are longer and may
be free from assembly errors. Since CloudRS is a variation
of the error correction algorithm of ALLPATHS-LG [20],
ALLPATHS-LG was also included in the evaluation. Note that
the kernel length is fixed at K = 24. The hash value used in
Velvet was specified as follows: 39 for datasets D1 and, 51 for
dataset D3, and 97 for dataset D4.

Our evaluation environment contains a set of machines for
Hadoop and a high memory machine for ALLPATHS-LG. The
Hadoop cluster consists of 10 nodes; each node has two Intel
2.33-GHz Xeon E5410 processors, 16 GB of RAM, a gigabit
Ethernet port, and a 500 GB disk. The Hadoop cluster has been
set with maximum 70 mappers and 70 reducers, each having
950 MB of RAM for processing. The computer designated for
running ALLPATHS-LG has two Intel 2.33-GHz Xeon E5410
processors and 64 GB of RAM.
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C. Results

Table II lists the comparison with similar methods, includ-
ing the raw data (uncorrected read; denoted as RawData), the
latest development version of CloudRS, the error correction
program of ALLPATHS-LG (ErrorCorrectReads), and the
Gradient-number Votes scheme (denoted as Present study).

All methods outperformed the assembly results from the
RawData. Comparing with CloudRS, our method improved
10% of corrected N50 length in dataset D2 and D3, and 20%
of corrected N50 length in datasets D4. We then compared
our results with ErrorCorrectReads. In dataset D1, our method
obtained comparable results with ErrorCorrectReads, which
produced the best result of corrected N50 length. In dataset
D2, our method had the same corrected N50 length as that of
ErrorCorrectReads. In dataset D3, ErrorCorrectReads obtained
the best corrected N50 length, about 38% higher than with
our method. Finally, in dataset D4, our method had the best
corrected N50 length, and our method improved the corrected
N50 length of ErrorCorrectReads by 29%.

We also compared the execution time of these methods.
Our method successfully improved the efficiency by obtaining
the shortest execution time among all methods. For dataset D4
with a read length of 151 base pairs, our method was able to
reduce the execution time of CloudRS by nearly 70%, and
outperformed ErrorCorrectReads by nearly 49%.

V. RELATED WORK

Document indexing and similarity detection are related
research topics. Sequence alignment and matching techniques
are applied to measure document similarity [21], [22]. These
techniques can also be extended to detect plagiarism, copying,
or duplicate text/near-sentences in text mining [23]–[25].

While MapReduce is a state-of-the-art big data processing
model, there are numerous strategies to be considered for
improving the MapReduce framework. One example is to
include a grouping of the key-value pair using a sub-key to
reduce the amount of intermediate data [26]. Another example
is to develop a distributed indexing storage system to improve
the performance of document indexing in the MapReduce
framework [27].

VI. CONCLUSION

In this study, we addressed the important issue of error
correction in NGS big data including long reads. To improve
efficiency and reduce execution time, we introduced the RM
diagram for designing a proper computational structure for
analysis. The key idea is to generate a minimal set of data and
thereby reduce the number of data transmission and execution
operations.

We proposed the Gradient-number Votes scheme adapted
using the RM diagram for use with CloudRS. Our evaluation
results show that the proposed scheme successfully reduces
the amount of data and the execution time as well as improve
the effectiveness. In our comparison with the error correction
algorithm in ALLPATHS-LG, the results show that our pro-
posed scheme attains a level of performance equal to that of
existing methods. Moreover, our proposed scheme performed
remarkably even in long reads.

We plan to probe the relationship between the RM diagram
and the error profiles of NGS data in detail. Since a proper
computational structure improves the performance of analyses,
our proposed method is applicable in other areas as well.
In addition, we would like to investigate the feasibility of
applying the RM diagram to the de novo assembly.
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