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Abstract. Given a sequence of n real numbers A = a1, a2, . . . , an and a
positive integer k, the Sum Selection Problem is to find the segment
A(i, j) = ai, ai+1, . . . , aj such that the rank of the sum s(i, j) =

�j
t=i at

is k over all n(n−1)
2 segments. We present a deterministic algorithm for

this problem that runs in O(n log n) time. The previously best known
randomized algorithm for this problem runs in expected O(n log n) time.
Applying this algorithm we can obtain a deterministic algorithm for the
k Maximum Sums Problem, i.e., the problem of enumerating the k
largest sum segments, that runs in O(n log n + k) time. The previously
best known randomized and deterministic algorithms for the k Maxi-

mum Sums Problem run respectively in expected O(n log n + k) and
O(n log2 n + k) time in the worst case.

Keywords: k maximum sums problem, sum selection problem, maxi-
mum sum problem, maximum sum subarray problem.

1 Introduction

Given a sequence of n real numbers A = a1, a2, . . . , an, the Maximum Sum

Problem is to find the segment A(i, j) = ai, ai+1, . . . , aj whose sum s(i, j) =
∑j

t=i at is the maximum among all possible 1 ≤ i ≤ j ≤ n. This problem was
first introduced by Bentley [6,7] and can be easily solved in O(n) time [7,13].

Given an m×n matrix of real numbers (assuming that m ≤ n), the Maximum

Sum Subarray Problem is is to find the submatrix, the sum of whose entries
is the maximum among all O(m2n2) submatries. The problem can be solved
in O(m2n) time [7,13,18]. Tamaki and Tokuyama [19] gave the first sub-cubic
time algorithm for this problem and Takaoka [20] later gave a simplified algo-
rithm achieving sub-cubic time as well. Many parallel algorithms under different
parallel models of computation were also obtained [3,16,17,18].
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The Maximum Sum Problem can find many applications in pattern recog-
nition, image processing and data mining [1,12]. A natural generalization of the
above Maximum Sum Problem is the k Maximum Sums Problem which is
to find the k segments such that their sums are the k largest over all n(n−1)

2
segments. Bae and Takaoka [4] presented an O(kn) time algorithm for this prob-
lem. Bengtsson and Chen [5] gave an O(min{k +n log2 n, nk

1
2 }) time algorithm,

or O(n log2 n + k) time in the worst case. Cheng et al. [8] recently gave an
O(n + k log(min{n, k})) time algorithm for this problem which is superior to
Bengtsson and Chen’s when k is o(n log n), but it runs in O(n2 log n) time in
the worst case. Lin and Lee [14] recently gave an expected O(n log n + k) time
randomized algorithm based on a randomized algorithm which finds in expected
O(n log n) time the segment whose sum is the k-th smallest, for any given pos-
itive integer 1 ≤ k ≤ n(n−1)

2 . The latter problem is referred to as the Sum

Selection Problem. In this paper we will give a deterministic O(n log n + k)
time algorithm for the k Maximum Sums Problem based on a deterministic
O(n log n) time algorithm for the Sum Selection Problem as well.

The rest of the paper is organized as follows. Section 2 give a deterministic
algorithm for the Sum Selection Problem. Section 3 gives a deterministic
algorithm for the k Maximum Sums Problem. Section 4 gives some conclusion.

2 Algorithm for the Sum Selection Problem

We define the rank r(x, P ) of an element x in a set P ⊆ R of real numbers to
be the number of elements in P no greater than x, i.e. r(x, P ) = |{y|y ∈ P, y ≤
x}|. Given a sequence A of real numbers a1, a2, . . . , an, and a positive integer
1 ≤ k ≤ n(n−1)

2 , the Sum Selection Problem is to find the segment A(i∗, j∗)
over all n(n−1)

2 segments such that the rank of the sum s(i∗, j∗) =
∑j∗

t=i∗ at

in the set of possible subsequence sums is k. That is, we would like to find
s∗ = s(i∗, j∗) for some i∗ < j∗ such that r(s∗, P ) = k where P = {s(i, j) |
s(i, j) =

∑j
t=i at, 1 ≤ i ≤ j ≤ n}.

We will transform the Sum Selection Problem into a problem of arrange-
ments of lines in computational geometry in O(n) time as follows. We first define
the set S = {s0, s1, . . . , sn} according to the prefix sums of the sequence A, where
si =

∑i
t=1 at, i = 1, 2, . . . , n and s0 = 0. We then define two sets of lines H = {hi

| hi : y = −si, i = 0, 1, . . . , n} and V = {vi | vi : y = x − si, i = 0, 1, . . . , n} in
the plane respectively. For any two lines hi ∈ H and vj ∈ V with i < j, they
intersect at the point pij = (xij , yij) with abscissa xij = sj − si. It means that
the abscissa of the intersection point of any two lines hi ∈ H and vj ∈ V with
i < j is equal to the sum s(i + 1, j) of the segment A(i + 1, j). We say that an
intersection point of two lines hi ∈ H and vj ∈ V is feasible if i < j. Note that
there are totally n2 intersection points in the arrangements of lines A(H ∪ V )
and it contains n(n−1)

2 feasible intersection points and n(n+1)
2 non-feasible in-

tersection points. An example of the arrangements of lines A(H ∪ V ) is shown
in Figure 1. Let Xf = {xij | pij = (xij , yij) is a feasible intersection point of
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hσ(0) = h5

hσ(1) = h3

hσ(2) = h1

hσ(3) = h0

hσ(5) = h2

v5

v3

v1

v0

v4

v2

s

y

x
hσ(4) = h4

Fig. 1. Given A = a1, a2, a3, a4, a5 = 1, −3, 4, −3, 4, we have S =
{s0, s1, s2, s3, s4, s5, s6} = {0, 1, −2, 2, −1, 3}, H = {hi | hi : y = −si, i = 0, 1, . . . , 6}
and V = {vi | vi : y = x−si, i = 0, 1, . . . , 6} respectively. The intersection points shown
in dark solid dots are the feasible intersection points and others are the non-feasible
intersection points.

A(H ∪ V )}. The Sum Selection Problem now is equivalent to the following
problem.

Given a set of lines L = H ∪V = {h0, v0, h1, v1, . . . , hn, vn} in R2, where
hi : y = −si and vj : y = x − sj , find the feasible intersection point
pi∗j∗ = (xi∗j∗ , yi∗j∗) such that r(xi∗j∗ , Xf ) = k.

Given a set of n lines in the plane and an integer k, 1 ≤ k ≤ n(n−1)
2 , the well-

known dual problem of the Slope Selection Problem
1 in computational ge-

ometry is to find the intersection point whose x-coordinate is the k-th smallest
among all intersection points of these n lines. Cole et al. [10] develop an ap-
proximate counting scheme combining the AKS sorting network and parametric
search to obtain an optimal O(n log n) algorithm for this problem. Brönnimann
and Chazelle [9] modify their approximate counting scheme combining ε-net to
obtain another optimal algorithm for this problem. The Sum Selection Prob-

lem can be viewed as a variant of the Slope Selection Problem. Since we
don’t know how many non-feasible intersection points of A(L) are to the left of
the k-th feasible intersection point, and thus we don’t know the actual rank of

1 Given a set of n points in the plane and an integer k, 1 ≤ k ≤ n(n−1)
2 , the slope

selection problem is to select the pair of points determining the line with the k-th
smallest slope.



Efficient Algorithms for the Sum Selection Problem 463

the k-th feasible intersection point in the set of all intersection points of A(L).
The actual rank of the k-th feasible intersection point may lie between k and
k + n(n+1)

2 in the set of all intersection points of A(L). Therefore, we can not
solve the Sum Selection Problem by fixing some specific rank and apply-
ing the slope selection algorithms [9,10] directly. We will give a deterministic
algorithm for this problem that runs in O(n log n) time based on the ingenious
parametric search technique of Megiddo [15], AKS sorting network [2] and a
new approximate counting scheme. This new approximate counting scheme is a
generalization of the approximate counting schemes developed by Cole et al. [10]
and Brönnimann and Chazelle [9].

Given a vertical line x = s, the number of intersection points of A(L) on it
or to its left is denoted I(L, s) and the number of feasible intersection points of
A(L) on it or to its left is denoted If (L, s). The vertical order of the lines of L
at x = s defines a permutation π(s) of L at s with π(−∞) being the identity
permutation. An example of π(s) = (h5, h3, h1, v5, h0, v3, h4, v1, h2, v0, v4, v2) is
shown in Figure 1. An inversion of a permutation (p1, p2, . . . , pn) of {1, 2, . . . , n}
is a pair of indices i < j with pi > pj . It is easy to see that the number of
inversions, denoted by I(π(s)), of a permutation π(s) is exactly I(L, s). We
define the number of feasible inversions, denoted by If (π(s)), of π(s) to be
If (L, s). Therefore, the Sum Selection Problem is also equivalent to finding
some s∗ such that If (π(s∗)) = k.

The problem for finding s∗ can be viewed as an unusual sorting problem at-
tempting to sort the set of lines L at x = s∗ without knowing the value of s∗, i.e.
to sort h0(s∗), v0(s∗), h1(s∗), v1(s∗), . . . , hn(s∗), vn(s∗) in vertical order without
knowing the value of s∗. We know that this sort may be achieved in O(n log n)
comparisons. In particular, the questions of the forms ”hi(s∗) ≤ hj(s∗)” and
”vi(s∗) ≤ vj(s∗)” can be solved in O(n log n) time by any usual optimal sorting
algorithm, since the ordering of hi’s, which is identical to that of vj ’s, is inde-
pendent of s∗. However, the question, qij of the form ”hi(s∗) ≤ vj(s∗)”, can
be answered by a counting subroutine that given any vertical line x = s it can
quickly compute If (L, s), the number of feasible intersection points of A(L) that
lie on it or to its left. There is a simple way to perform this task in O(n log n)
time by Lemma 1 with s� = −∞ and sr = s. Even though we don’t know s∗, we
can answer the question qij by finding the xij , the x-coordinate of intersection
point of hi and vj in constant time and call the counting subroutine at x = xij .
If the return of the subroutine is less than or equal to k, we get hi(s∗) ≤ vj(s∗).
Otherwise we get hi(s∗) > vj(s∗). After solving the unusual sorting problem we
can obtain the permutation π(s∗) without knowing the value of s∗. Then, we
can obtain s∗ = max{xπ(s∗)[i]π(s∗)[i+1]}.

Lemma 1. ( [14], Lemma 2) Given a sequence A of n real numbers a1, a2, . . . , an

and two real numbers s�, sr with s� ≤ sr, it takes O(n) space and O(n log n) time
to count the total number of segments A(i, j), 1 ≤ i ≤ j ≤ n, among all n(n−1)

2
segments such that their sums s(i, j) satisfy s� ≤ s(i, j) ≤ sr.

How can we solve the unusual sorting problem? We will use the parametric
search approach running a sequential simulation of a generic parallel sorting
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algorithm, which attempts to sort the lines along the line x = s∗, where s∗ is
the x-coordinate of the desired k-th leftmost feasible intersection point, without
knowing the value of s∗. A naive algorithm is to use a parallel sorting algorithm
of depth O(log n) and O(n) processors developed by Ajtai, Komlós, and Sze-
merédi [2], and at each parallel step we may perform n

2 comparisons between
pairs of lines. Since each comparison can be solved in O(n log n) time and O(n)
space following Lemma 1, it takes O(n2 log n) time at each parallel step, and
O(n2 log2 n) time overall.

However, we can improve it by the following slightly complicated algorithm.
That is, we compute the median xm of the x-coordinates of all the intersection
points of these n

2 pairs of lines in each parallel step, and call the counting sub-
routine at xm, which can answer half of the questions in O(n log n) time. For
the n

4 unresolved questions at the same step, we again find the median among
the n

4 x-coordinates and call the counting subroutine at the median, which can
answer half of these n

4 unresolved questions in O(n log n) time. Repeating the
above binary search process O(log n) times we can answer all n

2 comparisons in
O(n log2 n) time in each parallel step. We thus obtain an algorithm that runs in
O(n log3 n) time.

We can further improve O(n log3 n) to O(n log2 n) by using a technique due
to Cole [11] as follows. Instead of invoking O(log n) counting subroutine calls at
each parallel step to resolve all comparisons at this step, we call the counting
subroutine only a constant number of times. This of course does not resolve all
comparisons of this parallel step, but it does resolve a large fraction of them.
All the unresolved comparisons at this step will be deferred to the next parallel
step. Suppose that each of the unresolved comparisons can affect only a constant
number of comparisons executed at the next parallel step. Each parallel step is
now a mixture of many parallel steps. Cole shows that if it is implemented
carefully by assigning an appropriate time-dependent weight to each unresolved
comparison and choosing the weighted median at each step of the binary search,
the number of the parallel steps of the algorithm increases only by an additive
O(log n) steps. Since each of these steps uses only a constant number of counting
subroutine calls, the whole running time improves to O(n log2 n).

The final step to improve the sum selection algorithm from O(n log2 n) to
O(n log n) is to develop an approximate counting scheme. Note that the expen-
sive counting subroutine, Lemma 1, can be used not only to find If (L, s) for each
point s given by the sorting network but also to determine the relative ordering
of s and s∗ in O(n log n) time. Instead of invoking the expensive counting sub-
routines O(log n) times, we shall develop an approximate counting scheme, that
counts the number of inversions of desired permutations only approximately,
with an error that gets smaller and smaller as we get closer to the desired s∗.
The idea of the approximate counting scheme is to use an approximation algo-
rithm in O(n) time for each point s chosen by the sorting network. If the error
for the approximation algorithm is small enough, then we can decide the relative
ordering of s and s∗ directly. Otherwise, we will refine the approximation until
we can decide the relative ordering of s and s∗. It turns out that an amortized
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O(n log n) extra time is sufficient to refine approximations throughout the entire
course of the algorithm.

We first define an m-block left-compatible (resp. right-compatible) permuta-
tion πl(s) (resp. πr(s)) of permutation π(s) such that it satisfies I(πl(s)) ≤
I(π(s)) ≤ I(πl(s)) + mn (resp. I(πr(s)) − mn ≤ I(π(s)) ≤ I(πr(s))). Let
(σ(0), σ(1), . . . , σ(n)) denote the permutation of {0, 1, . . . , n} such that hσ(0),
hσ(1), . . . , hσ(n) are in the ascending vertical order, i.e. −sσ(0) ≤ −sσ(1) ≤ . . . ≤
−sσ(n). Let G0, G1, . . . , G n

m
be an m-block of H for some fixed size m, where

group Gi = {hσ(i·m), hσ(i·m+1), . . . , hσ(i·m+m−1)}. For any i, j, we say that vi

is greater than group Gj at s, denoted by vi(s) � Gj , if vi(s) = x − si >
hσ(j·m+m−1)(s) = −sσ(j·m+m−1) where hσ(j·m+m−1) is the largest element in
group Gj , and we say that vi is in group Gj at s, denoted by vi(s) � Gj , if
hσ((j−1)·m+m−1)(s) < vi(s) ≤ hσ(j·m+m−1)(s).

We define a permutation πl(s) (resp. πr(s)) as an m-block left-compatible
(resp. right-compatible) permutation of π(s) as follows: Given hσ(0), hσ(1), . . . ,
hσ(n) sorted in ascending σ-order, πl(s) and πr(s) will be obtained by inserting
vσ(i), i = 0, 1, . . . , n, one by one in between hσ(qi) and hσ(qi+1) for some qi such
that vσ(i)’s, i = 0, 1, . . . , n, are also in ascending σ-order. For each vσ(i) ∈ V , if
vσ(i)(s) � Gj for some j then we insert vσ(i) in between hσ((j−1)·m+m−1) and
hσ(j·m), where hσ((j−1)·m+m−1) is the largest element in group Gj−1 and hσ(j·m)
is the smallest element in group Gj . (resp. For each vσ(i) ∈ V , if vσ(i)(s) � Gj

for some j then we insert vσ(i) in between hσ(j·m+m−1) and hσ((j+1)·m), where
hσ(j·m+m−1) is the largest element in group Gj and hσ((j+1)·m) is the smallest
element in group Gj+1.) For example, the 2-block left-compatible permutation
πl(s) = (h5, h3, v5, h1, h0, v3, v1, h4, h2, v0, v4, v2) and right-compatible permuta-
tion πr(s) = (h5, h3, h1, h0, v5, h4, h2, v3, v1, v0, v4, v2) in Figure 1. Therefore, we
have

I(πl(s)) ≤ I(π(s)) ≤ I(πl(s)) + mn, If (πl(s)) ≤ If (π(s)) ≤ If (πl(s)) + mn.

I(πr(s)) − mn ≤ I(π(s)) ≤ I(πr(s)), If (πr(s)) − mn ≤ If (π(s)) ≤ If (πr(s)).

Thus, we see that maintaining left-compatible (right-compatible) permuta-
tion with π(s) gives a good approximation on the number of inversions of the
permutation: the smaller the block size m, the finer the approximation.

We now give an O(n log n) algorithm for the Sum Selection Problem as
follows. We will first sketch the algorithm and then explain and analyze it in
detail in subsequent paragraphs. We assume, for simplicity, that n = 2g for
some integer g and the fractions in this algorithm are integers taken by floor or
ceiling functions. We define sign(s) to be 1 if s is a positive real number, 0 if s is
zero and −1 if s is a negative real number. The algorithm maintains an interval
(sl, sr) containing s∗, an ml-block left-compatible permutation πl(sl) at sl and
an mr-block right-compatible permutation πr(sr) at sr such that they satisfy
invariant conditions (I1) and (I2). An example of an interval (sl, sr) containing
s∗ is shown in Figure 2.
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(I1) If (πl(sl)) + mln ≤ If (π(s∗)) ≤ If (πr(sr)) − mrn.

(I2) If (πr(sr)) − 2mrn ≤ If (π(s∗)) ≤ If (πl(sl)) + 2mln.

(I1) means that s∗ lies within the interval (sl, sr). Since If (π(sl)) ≤ If (πl(sl))+
mln ≤ If (π(s∗)) ≤ If (πr(sr)) − mrn ≤ If (π(sr)), we have sl ≤ s∗ ≤ sr. (I2)
means that the left-compatible and right-compatible permutations are no finer
than needed.

If (πl(sl))
s∗sl sr

If (πr(sr))If (πr(sr)) − 2nmr If (πr(sr)) − nmr

If (πl(sl)) + nml If (πl(sl)) + 2nml

Fig. 2. The sum selection algorithm maintains an interval (sl, sr) containing s∗ satis-
fying invariant conditions (I1) and (I2)

If k < n, then we can solve the sum selection problem by using the al-
gorithm due to Cheng et al. [8]. Let us assume k ≥ n in the following. To
initialize the algorithm we set ml = k

n , sl = −∞, πl(sl) = (vσ(0), vσ(1), . . . ,

vσ(n), hσ(0), hσ(1), . . . , hσ(n)), If (πl(sl)) = 0, mr = (n−1)
4 − k

2n , sr = ∞, πr(sr) =
(hσ(0), hσ(1), . . . , hσ(n), vσ(0), vσ(1), . . . , vσ(n)), If (πr(sr)) = n(n−1)

2 and If (π(s∗))
= k. It is easy to check that this initial condition satisfies (I1) and (I2).

After coming in a new point s from AKS network combining Cole’s technique,
we will decide an interval, called winning interval, which contains s∗ between
(sl, s) and (s, sr) and maintain invariant conditions (I1) and (I2) for the win-
ning interval. In order to decide the winning interval and maintain (I1) and
(I2), we need the following four subroutines, each costing O(n) time. The left
reblocking subroutine allows us to construct an ml-block left-compatible per-
mutation πl(s) at s when If (πl(sl)) + 2mln ≥ If (πl(s)) holds. We will show
later that if If (πl(sl)) + 2mln < If (πl(s)) then (s, sr) can not be the win-
ning interval so we don’t need to construct πl(s). The right reblocking subrou-
tine allows us to construct an mr-block right-compatible permutation πr(s) at
s when If (πr(s)) ≥ If (πr(sr)) − 2mrn holds. We will also show later that if
If (πr(s)) < If (πr(sr)) − 2mrn then (sl, s) can not be the winning interval so
we don’t need to construct πr(s). The left halving subroutine is to construct a
ml

2 -block left-compatible permutation πl(s) at s. The right halving subroutine
is to construct a mr

2 -block right-compatible πr(s) at s.
After coming in a new point s, we first do left reblocking ml and right re-

blocking mr at s to construct πl(s) and πr(s) respectively. It divides into three
cases: For the case 1: If If (πl(sl)) + 2mln < If (πl(s)) then (sl, s) will be the
winning interval. But if the winning interval (sl, s) doesn’t satisfy (I1) and (I2),
then we will do the right halving mr

21 , mr

22 , . . . until mr

2t such that (I1) and (I2)
hold for (sl, s). For the case 2: If If (πr(s)) < If (πr(sr))− 2mrn then (s, sr) will
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be the winning interval. But if the winning interval (s, sr) doesn’t satisfy (I1)
and (I2), then we will do the left halving ml

21 , ml

22 , . . . until ml

2t such that (I1)
and (I2) hold for (s, sr). For the case 3: If If (πl(sl)) + 2mln ≥ If (πl(s)) and
If (πr(s)) ≥ If (πr(sr)) − 2mrn then we can not decide the winning interval yet.
We will do the left halving and the right halving interleavingly ml

21 , mr

21 , . . . until
ml

2t (mr

2t ) such that (I1) and (I2) hold, then (s, sr) ((sl, s)) will be the winning
interval and it satisfies (I1) and (I2) automatically.

After deciding the winning interval, we can decide the relative order of s and
s∗. Therefore, we can answer the comparison question at s and the relevant
si’s of which s was the weighted median such that sign(s − si) = sign(s∗ − s).
Then another new point will come in and repeat above procedure again. The
algorithm will continue above procedure to make approximations until ml <
10 and mr < 10. When ml < 10 and mr < 10, we know that the winning
interval (sl, sr) will contain s∗ and O(n) feasible intersection points. Let k

′
be

the total number of feasible intersection points in (−∞, sl] which can be obtained
by the counting subroutine in Lemma 1. Then, we can enumerate all feasible
intersection points in the winning interval (sl, sr) in O(n log n + n) = O(n log n)
time by the enumerating subroutine in Lemma 2, and select from those feasible
intersection points the (k − k

′
)-th feasible intersection point with sum s∗ by

using any standard selection algorithm in O(n) time. If after the algorithm ends
we have either ml ≥ 10 or mr ≥ 10, at this moment we have solved the unusual
sorting problem to obtain π(s∗) without knowing the value of s∗. Therefore, we
can obtain s∗ = max{xπ(s∗)[i]π(s∗)[i+1]}.

Lemma 2. ( [14], Lemma 1) Given a sequence A of n real numbers a1, a2, . . . , an

and two real numbers s�, sr with s� ≤ sr, it costs O(n) space and O(n log n + h)
time, where h is the output size, to find all segments A(i, j), 1 ≤ i ≤ j ≤ n, among
all n(n−1)

2 segments such that their sums s(i, j) satisfy s� ≤ s(i, j) ≤ sr.

We now develop the left reblocking, right reblocking, left halving and right
halving subroutines and then explain the algorithm and analyze its complex-
ity in detail. We develop left reblocking subroutine as an example since the
right reblocking subroutine can be done similarly. The left reblocking subrou-
tine will either construct an ml-block left-compatible permutation πl(s) when
If (πl(s)) − If (πl(sl)) ≤ 2mln holds or output ”fail” otherwise. Given an ml-
block left-compatible permutation πl(sl), the left reblocking subroutine is to
find the ml-block left-compatible permutation πl(s) at s for some s > sl only
if If (πl(s)) − If (πl(sl)) ≤ 2mln. At the beginning of the subroutine we just
know s > sl, but we don’t know whether If (πl(s)) − If (πl(sl)) is greater than
2mln or not. But once we found that If (πl(s)) − If (πl(sl)) > 2mln during run-
ning the left reblocking subroutine, we will halt the subroutine immediately and
output ”fail”. Assume that we have had an ml-block G1, G2, . . . , G n

ml
of H , an

ml-block left-compatible permutation πl(sl) and If (πl(sl)) and maintained an
array dl[i] = j at sl such that vi(sl) � Gj for each i, we want to find an ml-block
left-compatible permutation πl(s) and If (πl(s)) and maintain an array dl[i] = j
at s such that vi(s) � Gj for each i. Let us process the lines of L one by one
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according the order v0, h0, v1, h1, . . . , vn, hn to construct πl(s) at s. Initially we
set If (πl(s)) to be If (πl(sl)) and current size c[j] = 0 for each group Gj , where
c[j] denotes the total number of lines in Gj processed so far. While processing vi

we will do the following steps until vi(s) � Gdl[i]. If vi(s) � Gdl[i], then If (πl(s))
is increased by c[dl[i]] and dl[i] is increased by 1. While processing hi, if it is in
group Gj then the current size c[j] in group Gj is increased by 1. A detailed
description of the left reblocking subroutine is shown in the pseudo code. The
whole procedure can be done in O(n) time if If (πl(s)) − If (πl(sl)) ≤ 2mln.
This can be easily seen by the fact that the total processing time is proportional
to the number of times each vi steps up the groups. But doing so increases
rank ml, and we know that there are at most 2mln rank between I(πl(s)) and
I(πl(sl)). Therefore, going up the groups cannot happen more than O(n) times.
And once we have found that If (πl(s)) − If (πl(sl)) > 2mln, we will halt the
subroutine immediately and output ”fail”. Therefore, it also costs O(n) time if
If (πl(s)) − If (πl(sl)) > 2mln. Thus we have Lemma 3.

Lemma 3. (Reblocking) Given an ml-block left-compatible permutation πl(sl)
with approximation rank If (πl(sl)), we can compute in O(n) time an ml-block
left-compatible permutation πl(s) with approximation rank If (πl(s)) for any s >
sl when If (πl(s)) − If (πl(sl)) ≤ 2mln holds.

Subroutine LeftReblocking(s, sl, ml, dl[·]).
Input: An ml-block left-compatible permutation πl(sl)
Output: An ml-block left-compatible permutation πl(s)

1. for i = 0 to n do t[i] ← dl[i];
2. If (πl(s)) ← If (πl(sl)); g ← 0;
3. for i = 0 to n

ml
do c[i] ← 0;

4. for i = 0 to n do
5. while vi(s) � Gt[i]
6. If (πl(s)) ← If (πl(s)) + c[t[i]]; g = g + ml; t[i] ← t[i] + 1;
7. if g > 2mln then return fail;
8. if hi(s) is in group Gj then c[j] ← c[j] + 1;
9. for i = 0 to n

ml
do insert hσ(i·ml), hσ(i·ml+1), . . . , hσ(i·ml+ml−1) one by one

into list B[i];
10. for i = 0 to n do insert vσ(i) into list B[t[i] − 1];
11. Concatenate the lists B[0], B[1], . . . , B[ n

ml
] to obtain πl(s);

12. for i = 0 to n do dl[i] ← t[i];
13. return πl(s);

We develop the left halving subroutine as an example as follows. Given an ml-
block left-compatible permutation πl(s), the left halving subroutine is to find an
ml

2 -block left-compatible permutation πl(s). Assume that we have had an ml-
block G1, G2, . . . , G n

ml
of H , an ml-block left-compatible permutation πl(s) and

If (πl(s)) and maintained an array dl[i] = j at s such that vi(s) � Gj for each i,
we want to find a ml

2 -block left-compatible permutation πl(s) and If (πl(s)) and
maintain the array dl[i] at s for each i.
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Let G
′

1, G
′

2, . . . , G
′
2n
ml

be a ml

2 -block of H . Let us process the lines of L one by

one according the order v0, h0, v1, h1, . . . , vn, hn to construct an ml

2 -block left-
compatible permutation πl(s) at s. It is easy to see that vi is either in the group
G

′

2dl[i]
or G

′

2dl[i]+1. Initially we set dl[i] to be 2dl[i] for each i, and current size

c[j] = 0 for each group G
′

j , where c[j] denotes the total number of lines in G
′

j

processed so far. While processing vi, if vi(s) � G
′

dl[i], then If (πl(s)) is increased

by c[dl[i]] and dl[i] is increased by 1. While processing hi, if it is in group G
′

j

then the current size c[j] of group G
′

j is increased by 1. A detailed description
of the left halving subroutine is shown in the pseudo code. The whole procedure
can be done in O(n) time since each vi steps up at most one group. Thus we
have Lemma 4.

Lemma 4. (Halving) Given an ml-block left-compatible permutation πl(s) with
approximation rank If (πl(s)) for some s, we can compute in O(n) time a ml

2 -
block left-compatible permutation πl(s) with approximation rank If (πl(s)).

Subroutine LeftHalving(s, ml, dl[·]).
Input: An ml-block left-compatible permutation πl(s)
Output: A ml

2 -block left-compatible permutation πl(s)

1. m
′

l ← ml

2 ;
2. for i = 0 to n do dl[i] ← 2dl[i];
3. for i = 0 to n

m
′
l

do c[i] ← 0;
4. for i = 0 to n
5. if vi(s) � G

′

dl[i]
then If (πl(s)) ← If (πl(s)) + c[dl[i]]; dl[i] ← dl[i] + 1;

6. if hi is in group G
′

j then c[j] ← c[j] + 1;
7. for i = 0 to n

m
′
l

do insert hσ(i·m′
l)

, hσ(i·m′
l+1), . . . , hσ(i·m′

l+m
′
l−1) one by one

into list B[i];
8. for i = 0 to n do insert vσ(i) into list B[dl[i] − 1];
9. Concatenate the lists B[0], B[1], . . . , B[ n

m
′
l

] to obtain πl(s);

10. return πl(s);

We now explain the algorithm and analyze its complexity. After coming in a
new point s from sorting network, we first do left reblocking ml and right reblock-
ing mr at s. If left blocking fails, we have If (π(s)) > If (πl(s)) > If (πl(sl)) +
2mln > If (s∗). It implies s > s∗. Therefore, we can decide (sl, s) to be the win-
ning interval. But mr may not be small enough such that (sl, s) satisfies (I1) and
(I2). If so, we do right halving at s until both (I1) and (I2) hold. Similarly, if
right blocking fails, we have If (π(s)) < If (πr(s)) < If (πr(sr))−2mrn < If (s∗).
It implies s < s∗. Therefore, we can decide (s, sr) to be the winning interval.
But ml may not be small enough such that (s, sr) satisfies (I1) and (I2). If
so, we do left halving at s until both (I1) and (I2) hold. If both left blocking
and right blocking don’t fail then we have If (πl(sl)) + 2mln ≥ If (πl(s)) and
If (πr(s)) ≥ If (πr(sr)) − 2mrn. It means that both ml and mr are not fine
enough to decide the winning interval, so we can not decide the winning interval
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yet. We will do left halving and right halving at s interleavingly ml

21 , mr

21 , . . .
until ml

2t (mr

2t ) such that both (I1) and (I2) hold, then (s, sr) ((sl, s)) will be the
winning interval and it will satisfy (I1) and (I2) automatically. After deciding
the winning interval, we can decide the relative order of s and s∗. Therefore, we
can answer the comparison question at s and the relevant si’s of which s was
the weighted median such that sign(s − si) = sign(s∗ − s). Then another new
point will come in and repeat above procedure again.

Since our sorting network is an AKS sorting network combining Cole’s tech-
nique, the algorithm will invoke O(1) left blocking and right blocking subroutines
at each parallel step to resolve all comparisons at this step, each costing O(n),
it totally costs O(n) time at each step. The sorting network has depth O(log n),
each parallel step requires O(n), so the algorithm totally costs O(n log n) time
to do left blocking and right blocking. But during the execution of the algorithm
the approximation sometimes is not small enough to distinguish the relative or-
dering of s and s∗, we will refine the approximation until we can decide relative
ordering of s and s∗. The algorithm will at most invoke O(log n) left halving
and right halving subroutines, each costing O(n). It turns out that an amortized
O(n log n) extra time will be done to refine approximations throughout the en-
tire course of the algorithm. The correctness of this algorithm follows from the
above discussion. Thus, we conclude with the following theorem.

Theorem 1. The Sum Selection Problem can be solved in O(n) space and
O(n log n) time.

The complete pseudo code of the algorithm follows.

Algorithm Sum Selection Problem.
Input: A set of lines L = H ∪ V = {h0, v0, h1, v1, . . . , hn, vn} in R2, where
hi : y = −si and vj : y = x − sj .
Output: The feasible intersection pt. pi∗j∗ = (xi∗j∗ , yi∗j∗) s.t. r(xi∗j∗ , Xf ) = k.

1. ml ← k
n ; sl ← −∞; πl(sl) ← (vσ(0), vσ(1), . . . , vσ(n), hσ(0), hσ(1), . . . , hσ(n));

2. mr ← (n−1)
4 − k

2n ; sr ← ∞; πr(sr) ← (hσ(0), hσ(1), . . . , hσ(n), vσ(0),
vσ(1), . . . , vσ(n));

3. for i = 0 to n do dl[i] ← 0; dr[i] ← 0;
4. while ml > 10 or mr > 10
5. get next s from AKS network
6. if s is not in (sl, sr)
7. then resolve s and the relevant si’s such that sign(s−si) = sign(s∗−s);
8. else
9. for i = 0 to n do tl[i] ← dl[i]; tr[i] ← dr[i];

10. m
′

l ← ml; m
′

r ← mr;
11. πl(s) ← LeftBlocking(s, sl, m

′

l, tl[·]);
12. πr(s) ← RightBlocking(s, sr, m

′

r, tr[·]);
13. if LeftBlocking subroutine outputs ”fail”
14. then
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15. if (sl, s) doesn’t satisfy (I1) and (I2)

16. then do πr(s) ← RightHalving(s, m
′

r, tr[·]); m
′

r ← m
′
r

2 ; until
(I1), (I2) hold

17. if RightBlocking subroutine outputs ”fail”
18. then
19. if (s, sr) doesn’t satisfy (I1) and (I2)

20. then do πl(s) ← LeftHalving(s, m
′

l, tl[·]); m
′

l ← m
′
l

2 ; until (I1),
(I2) hold

21. if LeftBlocking and RightBlocking subroutines don’t output ”fail”
22. then do
23. πl(s) ← LeftHalving(s, m

′

l, tl[·]); m
′

l ← m
′
l

2 ;

24. πr(s) ← RightHalving(s, m
′

r, tr[·]); m
′

r ← m
′
r

2 ;
25. until (sl, s) satisfies (I1) and (I2) or (s, sr) satisfies (I1) and (I2)
26. if (s, sr) satisfies (I1) and (I2)
27. then sl ← s; ml ← m

′

l; dl[·] ← tl[·]; resolve s and the relevant si’s
such that sign(s − si) = sign(s∗ − s)

28. else sr ← s; mr ← m
′

r; dr[·] ← tr[·]; resolve s and the relevant si’s
such that sign(s − si) = sign(s∗ − s)

29. if ml ≤ 10 and mr ≤ 10
30. then
31. k

′ ← total number of feasible points in (−∞, sl] by Lemma 1
32. S ← the set of all feasible points in (sl, sr) by Lemma 2
33. return s∗ ← (k − k

′
)-th element in S by any optimal selection alg.

34. return s∗ ← max{xπ(s∗)[i]π(s∗)[i+1]}

3 Algorithm for k Maximum Sums Problem

After obtaining the algorithm for the Sum Selection Problem, we can use it
to obtain the algorithm for k Maximum Sums Problem directly. We have the
following result.

Theorem 2. The k Maximum Sums Problem can be solved in O(n) space
and O(n log n + k) time.

Proof. Let � = n(n−1)
2 − k + 1 and r = n(n−1)

2 . We can run the algorithm of
the Sum Selection Problem to obtain the �-th smallest segment s� and r-th
smallest segment sr respectively in O(n log n) time and then we can enumer-
ate them by the enumerating subroutine Lemma 2 in the interval [s�, sr] in
O(n log n + k) time.

4 Conclusion

In the paper we have presented an algorithm for the Sum Selection Problem

that runs in O(n log n) time. We then use it to give a more efficient algorithm
for the k Maximum Sums Problem that runs in O(n log n + k) time. It is
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better than the previously best known result for the problem, but whether or
not one can prove a Ω(n log n) lower bound for the Sum Selection Problem

is of great interest.
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