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Abstract. In this paper we consider bi-criteria geometric optimization
problems, in particular, the minimum diameter minimum cost spanning
tree problem and the minimum radius minimum cost spanning tree prob-
lem for a set of points in the plane. The former problem is to construct
a minimum diameter spanning tree among all possible minimum cost
spanning trees, while the latter is to construct a minimum radius span-
ning tree among all possible minimum cost spanning trees. The graph-
theoretic minimum diameter minimum cost spanning tree (MDMCST)
problem and the minimum radius minimum cost spanning tree (MRM-
CST) problem have been shown to be NP-hard. We will show that
the geometric version of these two problems, GMDMCST problem and
GMRMCST problem are also NP-hard. We also give two heuristic algo-
rithms, one MCST-based and the other MDST-based for the GMDMCST
problem and present some experimental results.

1 Introduction

Given a connected, undirected and weighted graph G = (V, E) where each edge
is associated with a nonnegative real number, referred to as the cost, a spanning
tree of G whose total cost is minimum among all possible spanning trees is called
a minimum cost spanning tree (MCST) of G or simply minimum spanning tree
(MST). There are two algorithms commonly used, Prim’s algorithm [8] and
Kruskal’s algorithm [7] for constructing a minimum spanning tree. Note that
the MST may not be unique if two or more edges have the same cost. Given
a tree T in which each edge has a cost representing the length of the edge,
the eccentricity of a vertex v in T is defined to be the total length of the path
from v to the farthest vertex uv in T , denoted by ecc(v). The longest path from
vertex v to uv in T whose ecc(v) is the maximum among all v in T is referred
to as the diameter of T , and the total cost of the diameter of T is denoted
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D(T ). Note that there exist at least two extreme vertices in T such that their
eccentricity is the maximum. The vertex v that attains the minimum ecc(v) for
all v in T is called the center of T , and the minimum ecc(v) is referred to as the
radius of T , denoted R(T ). If the costs of edges of T are positive, then either we
have a unique center vertex or at most two vertices for which the eccentricity is
the minimum.

A spanning tree of a graph G(V, E) that minimizes its diameter is called
the minimum diameter spanning tree. The geometric version of this problem
(GMDST) is defined as follows. Given a set P of n points in the plane in which
the cost of an edge connecting any two points is the Euclidean distance between
them, find a spanning tree of P such that its diameter is the minimum among
all possible spanning trees. Given a graph G(V, E) and a source vertex or center
v ∈ V , the spanning tree that minimizes ecc(v) is called the minimum radius
spanning tree. The geometric version of this problem (GMRST) is defined sim-
ilarly. In [5], Ho, et al. described an algorithm for finding the GMDST of a set
of n points in O(n3) time. They proved that there always exists a GMDST such
that it either has a center point, called monopole, and the rest of points are
directly connected to the center point, or has a center edge with two points,
called dipole, and the rest of the points are connected to one of the endpoints of
the center edge. They further showed that the above results can be extended to
any graph in which the edge costs satisfy the triangle inequality. In [3], Hassin
and Tamir showed that the graph-theoretic version of the minimum diameter
spanning tree (MDST) problem, where the edge costs do not necessarily satisfy
the triangle inequality, is reducible to the absolute 1-center problem introduced
by Hakimi [2]. The absolute 1-center problem can be solved in O(mn + n2logn)
time [6], where m and n denote respectively the numbers of edges and of vertices
of G. Chan [10] improved the bound of GMDST problem in d-dimensional space
Rd. He described a semi-online model that computes GMDST of an n-point set
P ⊂ Rd within Õ(n3− 1

(d+1)(d/2+1) ) time by maintaining a dynamic data structure.
(The Õ notation hides factors that are o(nε) for any fixed ε > 0.) In other words,
the GMDST of an n-point set P in the plane can be found within Õ(n17/6) time.
The time bound of the GMDST problem is still very close to the cubic time.

In this paper we consider the geometric versions of these two related bi-criteria
problems, the MDMCST problem and the MRMCST problem. The MDMCST
problem is to construct a MDST among all possible MCSTs and the MRM-
CST problem is to construct for a given center a MRST among all possible
MCSTs. The graph-theoretic version of both problems have been shown to be
NP-hard [4,5]. We will show that the geometric versions of both minimum di-
ameter minimum cost spanning (GMDMCST) problem and minimum radius
minimum cost spanning (GMRMCST) problem are NP-hard. We then give two
heuristic algorithms, called MCST-based algorithm and MDST-based algorithm
for the GMDMCST problem and present some experimental results.

The rest of the paper is organized as follows. In Section 2 we show that
the GMDMCST and GMRMCST problems are NP-hard. In Section 3 we give
MCST-based and MDST-based heuristic algorithms for the GMDMCST
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problem. In Section 4 we give the implementation results of these two kinds
of heuristic algorithm on the Algorithm Benchmark System (ABS) [11] and con-
clude with an analysis and some remarks.

2 NP-Hardness of the GMDMCST and GMRMCST

Given a connected undirected graph G(V, E) with nonnegative edge costs, we
consider the set of all minimum cost spanning trees of G. In the following we will
simply refer to minimum cost spanning tree as minimum spanning tree, when
the cost measure is understood. In [9], Seo defined the minimum spanning tree
intersection graph (MSTIG) which is the intersection of all the MST’s, and the
minimum spanning tree union graph (MSTUG) which is the union of all the
MST’s. The edges in MSTIG are called the essential edges and those in MSTUG
but not in MSTIG are called the optional edges.

Given a set P of n points in the plane in which the cost of an edge connecting
any two points is the Euclidean distance between them, Seo [9] gave an algorithm
that runs in O(n2 log n) time for finding the MSTIG(G) and MSTUG(G) and
coloring all edges in G according the following coloring rule. The essential edges
are colored blue, the optional edges are colored green and the edges not in the
MSTUG are colored red. Thus all the edges of a graph G will be partitioned into
three classes, each assigned a distinct color. The MSTUG will be a connected
graph, and the MSTIG will be a forest unless the MST is unique. The subtrees
in the forest of MSTIG that consist solely of essential edges are called blue trees.

In this section, we show that the decision version of the optimization GMRM-
CST problem, the so-called the geometric bounded radius bounded cost spanning
tree (GBRBCST) problem, is NP-complete. We first show that the PARTITION
problem, a well-known NP-complete problem [1], is polynomially reducible to the
GBRBCST problem, and then show that the GBRBCST problem is polynomi-
ally reducible to the GBDBCST problem, and finally show that the GBRBCST
and GBDBCST problems are respectively polynomially reducible to the GM-
RMCST and GMDMCST problems.

The PARTITION problem is defined as follows. Given a finite set W and a
size s(w) ∈ Z+ for each w ∈ W , decide if there exists a subset W ′ ⊆ W such
that

∑
w∈W ′ s(w) =

∑
w∈W−W ′ s(w)?

The GBRBCST is defined as follows. Given a point set P in the plane, a center
s and two positive values R and C, decide if there exists a Euclidean spanning
tree T such that the distance, ecc(s), from s to the farthest site along the tree is
bounded above by R and that the total cost of the tree is bounded above by C?

Theorem 1. The GBRBCST problem is NP-complete.

Proof. GBRBCST is obviously in NP. For simplicity we assume that an instance
of PARTITION is a multiset of positive integers (with repetition permitted)
sorted in nondecreasing order, i.e., w1, w2, . . . , wn where wi ≤ wi+1 for i =
1, ..., n − 1. We shall construct an instance of GBRBCST based on the input
instance of PARTITION. The construction (see Fig. 1) is as follows. Let ISqr+(k)
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and ISqr−(k) be imaginary squares corresponding to wk such that each side is
of length 2wk. The top right (TR) corner of ISqr+(i) and the bottom left(BL)
corner of ISqr+(i + 1) are coincident, while BL(ISqr−(i)) and TR(ISqr−(i + 1))
are coincident. Suppose that BL(ISqr+(1)) and TR(ISqr−(1)) are located at
the origin s. For k > 1, BL(ISqr+(k)) = TR(ISqr+(k − 1)) has coordinates
(2

∑k−1
i=1 wi, 2

∑k−1
i=1 wi), while TR(ISqr−(k)) = BL(ISqr−(k−1)) has coordinates

(−2
∑k−1

i=1 wi,−2
∑k−1

i=1 wi). The bottom and left sides of each ISqr+(k) or each
ISqr−(k) are parallel to x− and y−coordinate axes, respectively. Figure 2 shows
a more detailed positioning of the points in a square of dimension w ×w. There
are three types of points in our construction.

1. For each pair of imaginary squares ISqr+(k) and ISqr−(k), there is one basic
TYPE1 point p at (2

∑k
i=1 wi,−2

∑k
i=1 wi) shown in Fig. 2 on a matching

path connecting ISqr+(k) and ISqr−(k), where the matching path consists
of an upward vertical line from p to meet the right side of ISqr+(k) and a
leftward horizontal line from p to meet the bottom side of ISqr−(k). Extra-
neous TYPE1 points on this matching path are added so that they equally
divide the vertical and horizontal line segments h, p and h′, p in Fig. 2, into
� (4

∑ k
i=1 wi)−wk

0.5wk
� + 1 edges, respectively. The divided edges will be of length

strictly less than 0.5wk. Since wi’s are sorted in nondecreasing order, the
number of TYPE1 extra points for each k is bounded by O(n). Hence there
will be O(n2) TYPE1 points.

2. Now consider TYPE2 points. For each ISqr, there will be 10 basic points
(e.g. a,b,c,d,e,f ,g,h,i and j for ISqr+(k) in Fig. 2) and 10 extra dividing
points (e.g. in the middle of 5 edges (c,d),(d,e),(e,f),(g,j) and (i,j), 3 points
equally dividing (a,b), and 2 points equally dividing (b,c), as shown). These
dividing points are introduced to ensure that the distance of any divided
segment in the corresponding ISqr is strictly less than 0.5wk. Similarly we
have 20 points for ISqr−(k). Note that the distances between points c and
h, between points h and i, and between points f and g in ISqr+(k) (or
correspondingly those between points c′ and h′, between points h′ and i′,
and between points f ′ and g′ in ISqr−(k)) are 0.5wk. Figure 2 shows the
x and y-coordinates of basic TYPE2 points in ISqr+(k) and ISqr−(k); the
subscript k is omitted from the figure. Note that points f and g are shifted
so that the distance between points f and i is strictly greater than 0.5wk.
Points f ′ and g′ are shifted similarly.

3. Finally there are TYPE3 points, t1, t2, t3, t4 and other auxiliary points.
Points t1 and t2 have x- and y- coordinates ((2 + 4.5

√
2)

∑n
i=1 wi, (2 +

4.5
√

2)
∑n

i=1 wi) and (−(2+4.5
√

2)
∑n

i=1 wi,−(2+4.5
√

2)
∑n

i=1 wi), respec-
tively. The distances between points jn and t1, and between points j′n and t2
are equal to 9

∑n
i=1 wi. Note that this distance is longer than the length of

any matching path. The length of the matching path (hk, pk, h′
k) for ISqr(k)

is 8
∑k

i=1 wi − 2wk. The shortest distance from s to t1 (and to t2) in a mini-
mum spanning tree is 13

∑n
i=1 wi. Points t3 and t4 form an isosceles triangle

with the apex s. The line segments s, t3 and s, t4 are of length 13.5
∑n

i=1 wi.
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The slopes of s, t3 and s, t4 are -4 and -1/4, respectively. The auxiliary points
on s, t3 are those with y-coordinates (2

∑k
i=1 wi) and (2

∑k
i=1 wi − wk) for

1 ≤ k ≤ n. On the other hand, the auxiliary points on s, t4 are those with
x-coordinates (−2

∑k
i=1 wi) and (−2

∑k
i=1 wi + wk). The slopes of s, t3 and

s, t4 are selected so that the closest point from any auxiliary point must be
s, t3, t4, or another auxiliary point on the same slope.

Let C be equal to the cost of the minimum spanning tree and R be equal to

13
n∑

i=1

wi +
1
2
S = 13.5

n∑

i=1

wi.

We now show that the instance of PARTITION has a solution if and only if the
constructed instance of the GBRBCST problem has answer YES.

Let the solution be denoted by T ∗. Note that all the edges shown as solid lines
in Fig. 1 must belong to T ∗, i.e., they are essential edges, and that those shown
as dashed lines may or may not belong to T ∗, i.e., they are optional edges. Let L1

and L2 denote the path length from s to t1 and from s to t2 in T ∗, respectively.
An imaginary square is said to be straight, crooked, or bad if it satisfies the
following constraints. If both (c�, h�) and (h�, i�) of ISqr+(�) (or correspondingly
(c′�, h

′
�) and (h′

�, i
′
�) of ISqr−(�)) are in T ∗, then ISqr+(�) (or correspondingly

ISqr−(�)) is said to be straight. If only (f�, g�) of ISqr+(�) (or correspondingly
(f ′

�, g
′
�) of ISqr−(�)) is in T ∗, then ISqr+(�) (resp. ISqr−(�)) is said to be crooked.

An imaginary square which is neither straight nor crooked is said to be bad.
By Lemma 5, we can obtain from T ∗ a solution to the PARTITION problem by
assigning w� to W ′ if ISqr+(�) is crooked and assigning w� to W −W ′ if ISqr+(�)
is straight, for � = 1, 2, . . . , n. This completes the proof that the GBRBCST
problem is NP-complete.

According to the construction of an instance of GBRBCST above, we have the
following lemmas. Due to the page limit, some proofs are omited.

Lemma 1. L1 + L2 ≤ 27
∑n

i=1 wi.

Lemma 2. Each pair of imaginary squares ISqr+(�) and ISqr−(�) contributes
8w� to L1 + L2 if both of them are straight,
9w� to L1 + L2 if one of them is straight and the other one is crooked,
10w� to L1 + L2 if both of them are crooked, and
≥ 14w� L1 + L2 if at least one of them is bad.

Lemma 3. For each pair of imaginary squares ISqr+(�) and ISqr−(�), at least
two and at most four of the six optional edges (c�, h�), (h�, i�), (f�, g�), (c′�, h

′
�),

(h′
�, i

′
�) and (f ′

�, g
′
�) are in T ∗.

Lemma 4. For each pair of imaginary squares ISqr+(�) and ISqr−(�), at most
one of them is straight.

Lemma 5. For each pair of imaginary squares ISqr+(�) and ISqr−(�), exactly
one of them is straight and the other one is crooked.
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(2w1,-2w1)

(2(w1+w2+w3),-2(w1+w2+w3))

(2(w1+w2),-2(w1+w2))

Fig. 1. MSTUG/MSTIG constructed from an instance of PARTITION

Lemma 6. Given a graph G, suppose that the optional edges in MSTUG(G)
are partitioned into lmax equivalence classes K1, K2, . . ., Klmax such that the
edges in the same class have an identical weight and the weight of an edge in
Ki is strictly less than that in Kj if and only if i < j. Let NOi(T ) denote the
number of optional edges in Ki that are contained in the MST T . Then, for any
pair of MST’s T and T ′, NOi(T ) = NOi(T ′) for 1 ≤ i ≤ lmax.

Theorem 2. The GBDBCST problem is NP-complete.

Proof. Let D = 2R. Then the previous construction can be used to prove that
the GBRBCST problem is polynomially reducible to the GBDBCST problem.

Theorem 3. The GMRMCST and the GMDMCST problems are NP-hard.

Proof. It is obvious that the GBRBCST problem and the GBDBCST problem
are polynomially reducible to the GMRMCST problem and the GMDMCST
problem, respectively.

3 Heuristic Algorithms for GMDMCST

In this section, we assume that MSTIG(G) and MSTUG(G) have been computed
and will be used as the input of our heuristic algorithms [9]. Let BTi denote a
blue-tree in MSTIG(G). We define the pseudo-center, denoted pc(BTi), of BTi

to be the point on an edge or a vertex in BTi such that the distances from the
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two extremes of the diameter D(BTi) to pc(BTi) are the same. It is trivial to
see that ecc(pc(BTi)) = D(BTi)/2.

The crux of this problem lies in the selection of optional edges to be included
in GMDMCST so that the resulting diameter of the MST is minimized. We shall
adopt different strategies in our heuristic algorithms to select optional edges. The
following properties and operations are needed for our heuristics. For each blue
tree BTi, we will maintain diameter D(BTi), pseudo-center pc(BTi), and the
distance, denoted �(v), from v to pc(BTi) for each vertex v in BTi. When we
select an optional edge e = (u, v) concatenating two blue trees, BTi and BTj, we
will create a new blue tree BTi,j, which is the union of BTi, BTj and the optional
edge e. D(BTi,j) = max{D(BTi), D(BTj), c(e) + �(u) + �(v) + ecc(pc(BTi)) +
ecc(pc(BTj))}, where c(e) denotes the cost of edge e.

We now start to develop our heuristic algorithms for GMDMCST. Both kinds
of our heuristic algorithm for GMDMCST use the greedy method. The general
idea is as follows: We greedily select an optional edge concatenating two blue
trees so that the new blue tree has a minimum diameter until all the blue trees are
connected to become a single MST. Note that we can easily modify our heuristic
algorithm for GMDMCST to become a heuristic algorithm for GMRMCST by
using a different greedy criterion which is to greedily select an optional edge
concatenating two blue trees so that the new blue tree has a minimum radius.

3.1 The MST-Based Heuristic

In this subsection, we use the ideas of the Prim’s and Kruskal’s MST algorithm
to develop our MST-based heuristic algorithm.

ISqr-

ISqr+

t1

t2

t3

t4

a b

c
d

e f

g

h

i

j

s

a’

b’c’

d’e’

f’

g’

h’i’j’

e:(w,1.5w)d:(w,w)c:(1.5w,w)b:(1.5w,0)a: (0,0) 

f:(1.375w,1.5w) g:(1.375w,2w) h:(2w,w) i:(2w,1.5w) j:(2w,2w)

a’:(0,0)

f’:(-1.5w,-1.375w) g’:(-2w,-1.375w) h’:(-w,-2w) i’(-1.5w,-2w)

e’:(-1.5w,-w)c’:(-w,-1.5w) d’:(-w,-w)b’:(0,-1.5w)

(Base Point: TR(ISqr-))

(Base Point: BL(ISqr+))

Origin (0,0)

Basic Points

Extra Points

j’:(-2w,-2w)

ISqr’s

Essential Lines

Optional Edgesp

Relative Coordinates of TYPE II Basic Points

Fig. 2. The detailed picture for ISqr’s in Figure 1
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3.1.1 Prim-Like Heuristic
We start with a randomly selected blue tree BTs among all blue trees in
MSTIG(G) and consider the optional edges that are incident to BTs with the
minimum cost. Let e = (u, v) be one of the optional edges with the minimum
cost that is incident to BTs, where u ∈ BTs and v ∈ BTj for some j 
= s.

D(BTs) = max{D(BTs), D(BTj), c(e) + �(u) + �(v) + (D(BTs) + D(BTj))/2}.
We greedily select among all optional edges with the minimum cost that are

incident to BTs the optional edge e that gives the minimum diameter according
to the formula above. After selecting this optional edge e, we obtain a new blue
tree BTs by concatenating these two blue trees.

3.1.2 Kruskal-Like Heuristic
Let e = (u, v) be one of the optional edges with the minimum cost, where u ∈ BTi

and v ∈ BTj . We will concatenate BTi and BTj to be a new blue tree for which
δ(e) is minimum, where δ(e) = D(BTi,j) − (D(BTi) + D(BTj)).

3.2 The MDST-Based Heuristic

3.2.1 k-Center Heuristic
In [5], Ho et al. proved that there exists a GMDST of a set of n points which
is monopolar or dipolar. The idea of k-center heuristic is to extend monopolar
and dipolar spanning trees to k-polar. Let b be the total number of blue trees in
MSTIG(G). If each combination contains k distinct blue trees in MSTIG(G), it
has total C(b, k) distinsct combinations. For each combination π of k blue trees
BTπ(1), BTπ(2), . . . , BTπ(k), we will partition the set of remaining blue trees into
k subsets S1, S2, . . . , Sk by some greedy criteria, connect each blue tree in Si

to BTπ(i) for each 1 ≤ i ≤ k and then connect BTπ(1), BTπ(2), . . . , BTπ(k) by
Kruskal-like heuristic to obtain a minimum spanning tree BTπ. The k-center
heuristic will consider all combinations of k blue trees as possible k-poles, and
select one such that its resulting minimum spanning tree has the minimum
diameter.

Note that we can apply the Prim-like heuristic algorithm to implement the
1-center heuristic algorithm. We can implement the 1-center heuristic by calling
the Prim-like heuristic b times, each starts with blue tree BTi, where 1 ≤ i ≤ b,
and then select the MST with the minimum diameter. The k-center heuristic
can also be viewed as a combination of Prim-like heuristic and Kruskal-like
heuristic. For each combination π of k blue trees BTπ(1), BTπ(2), . . . , BTπ(k), we
first connect all blue trees in Si to BTπ(i) by Prim-like heuristic and then connect
blue trees BTπ(1), BTπ(2), . . . , BTπ(k) by Kruskal-like heuristic.

4 Implementation

The MST-based heuristic algorithm and the MDST-based heuristic algorithm
have been implemented on the ABS. Tables 1 and 2 summarize the experimental
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Table 1. The experimental results for MST-based heuristic algorithms

MST PRIM MST KRUSCAL
n m mopt mBT avg. d. avg. t. avg. d. avg. t.

50 50 3.05 2.50 1265.028 0.0002 1263.837 0.0002
100 50 10.06 5.93 1437.457 0.0002 1431.074 0.0002
150 50 21.77 11.60 1509.909 0.0006 1496.996 0.0002
200 50 33.78 17.41 1584.962 0.0008 1555.767 0.0004
250 50 50.17 25.09 1646.061 0.0007 1596.836 0.0003
300 50 65.91 32.60 1639.306 0.0006 1608.231 0.0004
350 50 82.21 40.70 1693.195 0.0011 1631.054 0.0007
400 50 102.79 51.16 1655.356 0.0005 1598.080 0.0011

Table 2. The experimental results for MDST-based heuristic algorithms

MDST 1C MDST 2C MDST 3C MDST 4C MDST 5C
n m mopt mBT avg. d. avg. t. avg. d. avg. t. avg. d. avg. t. avg. d. avg. t. avg. d. avg. t.

50 50 3.05 2.50 1262.6 0.0001 1262.0 0.0001 1262.4 0.0001 1262.4 0.0001 1263.3 0.0002
100 50 10.06 5.93 1424.4 0.0006 1423.7 0.0011 1424.3 0.0011 1426.4 0.0015 1428.6 0.0018
150 50 21.77 11.60 1463.8 0.0009 1459.3 0.0044 1457.2 0.0135 1456.2 0.0381 1454.8 0.0847
200 50 33.78 17.41 1527.0 0.0016 1520.9 0.0142 1507.8 0.0785 1505.2 0.3383 1504.6 1.1756
250 50 50.17 25.09 1560.5 0.0048 1537.1 0.0446 1520.9 0.3563 1509.9 2.1918 1504.7 10.7995
300 50 65.91 32.60 1530.0 0.0077 1513.1 0.1066 1487.7 1.1158 1474.2 9.0257 1466.9 59.0691
350 50 82.21 40.70 1553.0 0.0127 1512.0 0.2253 1486.4 2.9002 1467.4 28.6890 1454.2 230.5542
400 50 102.79 51.16 1534.0 0.0217 1495.7 0.4741 1464.2 7.5041 1444.8 91.5174 1425.9 516.9337

results. Columns 1 - 2 indicate the total number of input vertices (n) and the size
of grid (m × m) respectively. Columns 3 - 4 contain the average number of op-
tional edges (mopt) and the average number of the blue trees (mBT ) for the input
instances. The other columns contain the average diameter (avg. d.) and average
running times ( avg. t.) of the Prim-like heuristic algorithm (MST PRIM), the
Kruskal-like heuristic algorithm (MST KRUSCAL) and the k-center heuristic al-
gorithms (1-center (MST 1C), 2-center (MST 2C) , 3-center (MST 3C), 4-center
(MST 4C), 5-center (MST 5C)), respectively. We generate the test instances with
input size from 50, 100, 150, . . . , 400 vertices on a 50 × 50 grid. For each input
size we randomly generate 1000 test instances and then execute all heuristic algo-
rithms for every test instance. In general, we see the MDST-based heuristics are
better than the MST-based heuristics, but they spend more time. As far as the
MST-based heuristics are concerned, the Kruskal-like heuristic is better than the
Prim-like heuristic. We also see that the 2-center heuristic obtains the smallest
diameter for smaller input size 50 and 100, and the 5-center heuristic yields the
smallest diameter spanning tree when the input size is larger than or equal to 150.
It seems that the number of centers in an optimal MDMCST increases as the input
size (or the size of blue trees) increases.
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5 Conclusion

In this paper, we have considered two related bi-criteria problems GMDMCST
and GMRMCST and shown that they both are NP-hard. We have presented two
kinds of heuristic algorithms for the GMDMCST problem, called MST-based
algorithm and MDST-based algorithm. The MST-based heuristic algorithm in-
cludes Prim-like heuristic algorithm and Kruskal-like heuristic algorithm. We
have also introduced a k-center heuristic algorithm, which is an MDST-based
heuristic algorithm. The time complexity of the Prim-like heuristic algorithm
and the Kruskal-like heuristic algorithm both are O(n2 + moptmBT ), where n is
the number of vertices, mBT is the number of blue trees and mopt is the number
of the optional edges. The time complexity of k-center heuristic algorithm is
O(nk(n2 + moptmBT + mopt log mopt)).

So far, we have not been able to find any approximation algorithm for the
GMDMCST. This is an interesting problem for further research. Our benchmark
results give us a hint to find an approximation algorithm by approximating the
number of centers in an optimal MDMCST.
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