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Abstract. In the paper we consider a generalized version of three well-
known problems: Selection Problem in computer science, Slope Se-
lection Problem in computational geometry and Maximum-Density
Segment Problem in bioinformatics. Given a sequence A = (a1, w1),
(a2, w2), . . . , (an, wn) of n ordered pairs (ai, wi) of real numbers ai and
wi > 0 for each 1 ≤ i ≤ n, two nonnegative real numbers �, u with � ≤ u
and a positive integer k, the Density Selection Problem is to find
the consecutive subsequence A(i∗, j∗) over all O(n2) consecutive subse-
quences A(i, j) satisfying width constraint � ≤ w(i, j) =

∑j
t=i wt ≤ u

such that the rank of its density d(i∗, j∗) =
∑j∗

t=i∗ at/w(i∗, j∗) is k. We
will give a randomized algorithm for density selection problem that runs
in optimal expected O(n log n) time.

1 Introduction

Let A = (a1, w1), (a2, w2), . . . , (an, wn) be a sequence of n ordered pairs (ai, wi)
of real numbers ai and width wi > 0 for each 1 ≤ i ≤ n. A segment A(i, j) is
a consecutive subsequence of A starting with index i and ending with index j.
The width w(i, j) of segment A(i, j) is

∑j
t=i wt. The density d(i, j) of segment

A(i, j) is
∑j

t=i at/w(i, j). Given a sequence A = (a1, w1), (a2, w2), . . . , (an, wn)
of n ordered pairs (ai, wi) of real numbers ai and wi > 0 for each 1 ≤ i ≤
n, two nonnegative real numbers �, u and a positive integer k, the Density
Selection Problem (DSP) is to find the feasible segment A(i∗, j∗) over all
feasible segments such that the rank of its density d(i∗, j∗) is k. We say that a
segment A(i, j) is feasible if its width satisfies � ≤ w(i, j) ≤ u. A sequence A
is called uniform width if all wi’s are identical for each i, otherwise it is called
non-uniform width.

The density selection problem for uniform width such that � = 1, u = 1
is the most well-known selection problem in computer science. Hoare [11] and
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Floyd and Rivest [9] gave an optimal expected O(n) time randomized algo-
rithm respectively. Blum, Floyd, Pratt, Rivest, and Tarjan [2] gave an opti-
mal O(n) time deterministic algorithm. The density selection problem such
that k is equal to the total number of feasible segments is exactly the exten-
sively studied maximum-density segment problem [4,10,12,14,15,18,20] which
arises from the problem of finding the biologically meaningful region, called the
most GC-ratio region, in a DNA sequence. When we let the input sequence
A = (a1, w1), (a2, w2), . . . , (an, wn) correspond to a given DNA sequence with
uniform width such that ai = 1 if the corresponding nucleotide in the DNA
sequence is G or C, and ai = 0 if the corresponding nucleotide in the DNA
sequence is A or T. It is obvious that the output feasible segment then corre-
sponds to the most GC-ratio region of the given DNA sequence. The density
selection problem for fixed � = 0, u = ∞, also known as the slope selection prob-
lem [3,5,8,13,16], has received much attention in computational geometry. Cole
et al. [5] first gave an optimal O(n log n) time deterministic algorithm for the
slope selection problem by combining an approximate counting scheme, the AKS
sorting network and parametric search technique. Brönnimann and Chazelle [3]
modified their approximate counting scheme combining ε-net to obtain another
optimal algorithm for this problem. Dillencourt et al. [8] and Matoušek [16] both
gave an optimal randomized Monte Carlo algorithm respectively using the ran-
dom sampling technique. Katz and Sharir [13] gave an optimal deterministic
algorithm using expander graph and approximation technique. In this paper we
will give an optimal randomized Monte Carlo algorithm for the density selection
problem, using the random sampling technique [8,16], that runs in O(n) space
and optimal expected O(n log n) time. Therefore, it can solve the slope selection
problem in optimal expected O(n log n) time as well.

On the other hand, it was observed that the compositional heterogeneity is
highly correlated to the GC content of the genomic sequences [18,21]. The GC-
ratios of the DNA sequences in all organisms vary from 25% to 75%. The typical
GC-ratios of mammalian genomes stay in 45-50% and the GC-ratios of human
DNA in 30-60%, but the GC-ratios have the greatest variations among bacteria’s
DNA sequences. Therefore, we are also interested in finding the range of the GC-
ratios of a DNA sequence for a species. We will consider the Density Range
Query Problem (DRQP) as follows. The input consists of a sequence A of n
ordered pairs, two width bounds �, u with � ≤ u and two real numbers dl, dr

with dl ≤ dr, the reporting mode of the DRQP is to report all feasible segments
A(i, j) satisfying dl ≤ d(i, j) ≤ dr and the counting mode is to count the total
number of feasible segments A(i, j) satisfying dl ≤ d(i, j) ≤ dr. We will show that
the reporting mode and counting mode can be solved in optimal O(n log m + h)
and optimal O(n log m) time respectively, where m = min{ u−�

wmin
, n} and h is the

output size. Clearly, when u = �, both DSP and DRQP can easily be solved in
O(n) time and space. Therefore, from here on we assume u > �.

The rest of the paper is organized as follows. Section 2 solves the density range
query problem. Section 3 gives an algorithm for the density selection problem.
Section 4 gives some conclusion.
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2 Algorithm for Density Range Query Problem

In this section we consider the density range query problem. Without loss of
generality, we may assume wi ≥ 1 for each i and wmin = 1 for DRQP, since
the problem for a sequence A of n ordered pairs (ai, wi) with respect to width
bounds � and u is equivalent to the problem for a sequence B of n ordered pairs
( ai

wmin
, wi

wmin
) with respect to width bounds �

wmin
and u

wmin
.

We first transform the DRQP into a geometric slope range query problem in
O(n) time as follows. We define the point set P = {p0, p1, . . . , pn} in R2 accord-
ing to the prefix sums of the sequence A, where pi =(xi, yi)=(

∑i
t=1 wt,

∑i
t=1 at),

i = 1, 2, . . . , n and p0 = (0, 0). It is easy to see that the slope m(i, j) of the line
segment s(i, j) connecting pi and pj is equal to the density d(i+1, j) of segment
A(i + 1, j), so we can define a line segment s(i, j) is feasible if its corresponding
segment A(i + 1, j) is feasible.

Given a point set P = {p0, p1, . . . , pn} in R2, two width bounds �, u and
two density bounds dl, dr, find all feasible line segments s(i, j) such that
dl ≤ m(i, j) ≤ dr.

We can further transform this geometric slope range query problem into its dual
problem, by transforming points into lines and vice versa. Consider the dual
transform that maps the point pi = (xi, yi) into the dual line li : y = xix − yi.
For any two points pi, pj , their corresponding dual lines li, lj will intersect at the
point with abscissa xij = (yj−yi)/(xj −xi) = m(i, j). It means that the abscissa
of the intersection point of the two corresponding dual lines li, lj is equal to the
slope m(i, j) of line segment s(i, j). Again, we say that an intersection point of
two dual lines li, lj is feasible if � ≤ xj − xi ≤ u.

Given a set of dual lines L = {l0, l1, . . . , ln} in R2, where li : y = xix−yi,
two width bounds �, u and two density bounds dl, dr, find all feasible
intersection points pij = (xij , yij) such that their abscissae xij ∈ [dl, dr].

Let La,b denote the subset {la, la+1, . . . , lb} of L starting with left index a
and ending with right index b. For each dual line lj we have a set of feasible
dual lines Lcj,dj = {lcj , lcj+1, . . . , ldj}, such that each li ∈ Lcj,dj satisfies � ≤
xj −xi ≤ u. Without confusion we shall for simplicity denote Lcj,dj as Lj . Since
the slope sequence {xj}n

j=1 of L is monotonically increasing, the left and right
index sequences {cj}n

j=1 and {dj}n
j=1 are monotonically increasing respectively.

Therefore, we can obtain sequences {cj}n
j=1 and {dj}n

j=1 by a linear scan of the
sequence {xj}n

j=1. To solve the dual problem, it suffices to iterate on each j
finding all feasible intersection points pij = (xij , yij) of Lj and lj such that their
abscissae xij ∈ [dl, dr].

Instead of solving the dual problem directly we will further transform the dual
problem into an orthogonal range query problem in computational geometry. For
each dual line li : y = xix − yi in L, we let qi = (ui, vi) = (xidl − yi, xidr − yi)
be the point with abscissa ui defined by the intercept of li at x = dl and ordinate
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vi defined by the intercept of li at x = dr. Let Q = {q0, q1, . . . , qn} and Qj =
{qi ∈ Q | � ≤ xj − xi ≤ u}. By the monotonically increasing property of the
slope sequence {xj}n

j=0, we know that the slope of lj is larger than the slope of
li for each li ∈ Lj . Therefore, a dual line li in Lj will intersect lj in [dl, dr] if
and only if ui ≥ uj and vi ≤ vj . To solve the dual problem, it is now equivalent
to making an orthogonal range query of the form Rj = [uj ,∞) × (−∞, vj ] to
report all the points of Qj which lie in Rj for each j = 1, 2, . . . , n.

We first develop a reporting mode algorithm for the DRQP. Our reporting
mode algorithm for the DRQP will iterate from j = 1 to n. At any iteration
j, we will maintain a data structure ζ(Qj) in the current window Qj such that
we can make an orthogonal range query of the form Rj = [uj,∞) × (−∞, vj ],
and then we delete points qcj , qcj+1, . . . , qcj+1−1 from ζ(Qj) and insert points
qdj+1, qdj+2, . . . , qdj+1 into ζ(Qj) to obtain ζ(Qj+1). We will use a data structure
called priority search tree to support the above orthogonal range query. A priority
search tree [17] is a hybrid of a heap and a balanced binary search tree used
for orthogonal range query where at least one of sides of the query range is
unbounded. We will make the priority search tree ζ(Qj) dynamic to support
insertion and deletion operations as well. The priority search tree ζ(Qj) can be
constructed by using any balanced binary search tree and the performance of
the priority search tree is summarized in the following lemma.

Lemma 1 ( [7, Theorem 10.9, Page 221]). The priority search tree ζ(S)
for a set S of n points in R2 can be constructed in O(n log n) time and O(n)
space. Using the priority search tree we can report all points in a query range of
the form R = [u, w] × (−∞, v] in O(log n + h) time, where h is the number of
reported points that lie in R.

McCreight [17] shows that a balanced priority search tree can be made dynamic
to support both insertion and deletion operations in O(log n) time if the number
of rotations per updating operation can be bounded by a constant. Tarjan [22]
shows that a class of balanced binary trees can be updated in O(1) rotations. For
example, a red-black tree belongs to the class. Therefore, if we use a red-black
tree as our balanced binary search tree to implement dynamic priority search
tree, then both insertion and deletion operations can be updated in O(log n)
time. Since the reporting mode algorithm for the DRQP needs to do totally n
times range queries, insertions and deletions on the window Qj with |Qj | ≤ m,
the overall running time is therefore O(n log m + h) by Lemma 1, where m =
min{u − �, n} and h is the output size. We can also develop a counting mode
algorithm by using the order-statistics tree data structure similarly. Due to page
limitation, we omit it here. Thus, we obtain the following theorem.

Theorem 1. The reporting and counting mode of the density range query prob-
lem can be solved in O(n) space and optimal O(n log m + h) time and optimal
O(n log m) time respectively, where m = min{ u−�

wmin
, n} and h is the output size.

Now, we show that both reporting and counting algorithms of the DRQP are
optimal in the worst case. It is known that the Element Uniqueness Prob-
lem, i.e., to determine if a set of n real numbers y1, y2, ..., yn are all distinct,
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has a lower bound of Ω(n log n) time in the algebraic decision tree model of
computation [1]. We can transform an instance of element uniqueness problem
to an instance of the DRQP with � = 0, u = ∞, dl = dr = 0 and wi = 1 for
each i in O(n) time by letting a1 = y1, ai = yi − yi−1 for i = 2, . . . , n. The
output of the reporting mode of the DRQP is an empty set (or The output of
the counting mode of the DRQP is 0) if and only if y1, y2, ..., yn are all distinct.
Therefore, both the reporting and counting mode of the DRQP has a lower
bound of Ω(n log n) time in the algebraic decision tree model of computation.

3 Algorithm for Density Selection Problem

In this section we give an optimal randomized Monte Carlo algorithm for the
DSP based on three subroutines, random sampling subroutine, reporting mode
and counting mode algorithms for the DRQP. The DSP is equivalent to the
following problem.

Given a set of lines L = {l0, l1, . . . , ln} in R2, where li : y = xix−yi, find
the feasible intersection point pi∗j∗ = (xi∗j∗ , yi∗j∗) such that its abscissa
xi∗j∗ is the k-th smallest among all feasible intersection points.

For convenience we shall without confusion use the intersection point pij and
its abscissa xij interchangeably. We first develop a random sampling subroutine
running in expected O(n log n) time to randomly generate nNf

2N to 3nNf

2N feasible
intersection points allowing duplicates such that they all lie in a given interval
[dl, dr], where N and Nf are the total numbers of intersection points and feasible
intersection points in [dl, dr] respectively. Note that N and Nf can be obtained
by the counting algorithm for the DRQP. Dillencourt et al. [8] developed a
random sampling subroutine running in O(n log n) time by merge sort technique
to randomly generate n intersection points such that they all lie in a given
interval [dl, dr]. We summarize it in the following lemma.

Lemma 2 (Dillencourt et al. [8]). Let L = {l0, l1, . . . , ln} be a set of lines
in R2 and [dl, dr] be a given interval. We can obtain a random sampling S by
randomly generateing n intersection points of L allowing duplicates in O(n log n)
time such that all points of S are in [dl, dr].

We carefully analyze their random sampling subroutine and find that it can be
used to randomly generate nNf

2N to 3nNf

2N feasible intersection points allowing
duplicates such that they all lie in a given interval [dl, dr] with high probability
by using the well-known Chebyshev’s inequality in probability theory.

Whenever we select a random intersection point in [dl, dr], it has a probability
Nf

N such that it is feasible. Consider such an event as a ”success” in performing n

independent Bernoulli trials, each with a probability Nf

N . Let Xi be the random
variable, attaining value 1 with probability px = Nf

N and value 0 if otherwise.
Let X = X1 + X2 + · · ·+ Xn be the total number of feasible intersection points
for a random sampling S obtained by Lemma 2. The expected value of X is
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μ = npx = nNf

N and the standard deviation of X is σ =
√

npx(1 − px) =
√

nNf

N (1 − Nf

N ) ≤
√

nNf

N . By Chebyshev’s inequality, for any λ ≥ 0 we have
Pr[|X − μ| ≥ λσ] ≤ 1

λ2 , so the probability Pr[μ + λσ ≥ X ≥ μ − λσ] ≥ 1 − 1
λ2 .

Therefore, if we choose nNf

2N ≥ 2λ2 = 4, we have Pr[3nNf

2N ≥ nNf

N + λ
√

nNf

N ≥
μ + λσ ≥ X ≥ μ − λσ ≥ nNf

N − λ
√

nNf

N ≥ nNf

2N ] ≥ 1
2 . Hence, if Nf ≥ 8N

n , we
can obtain a random sampling S of n intersection points in [dl, dr] such that it
contains nNf

2N to 3nNf

2N feasible intersection points with probability no less than
1
2 . Otherwise, if Nf < 8N

n we can solve the density selection problem directly
by using reporting algorithm for DRQP to enumerate Nf feasible intersection
points in O(n log m + Nf ) = O(n log m + 8N

n ) = O(n log m + n) = O(n log n)
time and then select the k-th smallest feasible intersection point d∗ from those
feasible intersection points by using any standard selection algorithm in O(n)
time. Thus, we can assume Nf ≥ 8N

n from now on. Therefore, we have the
following random sampling subroutine.

Lemma 3. Let L = {l0, l1, . . . , ln} be a set of lines in R2. Let N and Nf (assum-
ing Nf ≥ 8N

n ) be the total numbers of intersection points and feasible intersection
points of L in a given interval [dl, dr] respectively. We can randomly generate
in expected O(n log n) time a set of n intersection points allowing duplicates in
[dl, dr] such that they contain M to 3M feasible points, where M = nNf

2N .

We now start to solve the DSP. We shall consider a more general problem, called
Density Selection Range Query Problem (DSRQP) defined as follows.
Given an interval [dl, dr] which contains N = Nf + Ni intersection points where
Nf and Ni are the total number of feasible and infeasible intersection points in
[dl, dr] respectively, we would like to find the k-th smallest feasible intersection
point among the Nf feasible intersection points in the interval [dl, dr]. Let d∗

denote the k-th smallest feasible intersection point in the interval [dl, dr]. Note
that the DSP is just a special case of this problem such that N = n(n−1)

2 ,
Nf = O((u − �)n) and [d�, dr] = (−∞,∞).

The randomized algorithm for the DSRQP will contract the interval [dl, dr]
into a smaller subinterval [dl′ , dr′ ] such that it also contains d∗ and the new
subinterval [dl′ , dr′ ] contains at most O(Nf/

√
M) feasible intersection points.

It will repeat to contract the interval several times until the interval [dl′ , dr′ ]
contains not only d∗ but also at most O(n) feasible intersection points. It then
outputs all the feasible intersection points in [dl′ , dr′ ] by the reporting mode
algorithm for the DRQP and finds the feasible intersection point d∗ with an
appropriate rank by using any standard selection algorithm.

Our randomized algorithm for the DSRQP runs as follows: We first use our
random sampling subroutine to randomly generate a set of feasible intersection
points S′ = {s1, s2, . . . , sF } in [dl, dr]. If F is smaller than M or greater than 3M
we repeat our random sampling subroutine again. From Lemma 3 the probabil-
ity that the set of n randomly generated intersection points contains M to 3M
feasible intersection points is no less than 1/2, so we would perform the random
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sampling subroutine at most twice on average. Assume that we have obtained
a random sampling S′ which contains M to 3M feasible points. We then try to
use this random sampling S

′
to obtain a smaller subinterval [dl′ , dr′ ] as follows.

For each of the selected random feasible intersection point in S
′
, it has a proba-

bility k
Nf

such that it is smaller than or equal to d∗. Consider such an event as a
”success” in performing F independent Bernoulli trials, each with a probability
k

Nf
. Let Xi be the random variable, attaining value 1 with probability px = k

Nf

and value 0 with probability px = 1 − k
Nf

. Let X = X1 + X2 + · · · + XF be
the total number of sample feasible intersection points falling before d∗. The
expected value of X is μx = Fpx = Fk

Nf
and the standard deviation of X is

σx =
√

Fpx(1 − px). It means that the average number of feasible intersec-
tion points in S

′
which is smaller than or equal to d∗ is Fk

Nf
. Hence we expect

that the w-th smallest element in S
′
, where w = �Fpx� = �Fk

Nf
� should be

a good approximation for the k-th smallest feasible intersection point d∗. Let
l
′
= max{1, �Fk

Nf
− t

√
F
2 �} and r

′
= min{F, 	Fk

Nf
+ t

√
F
2 
}, for some constant t to

be determined later. Therefore, after we get a successful random sampling S
′
,

we can find the l
′
-th smallest element d�′ and the r

′
-th smallest element dr′ in

S
′

by any standard selection algorithm in O(|S′ |) time to obtain a subinterval
[d�′ , dr′ ]. The key step of our randomized algorithm for the DSRQP is to check
whether the subinterval [d�′ , dr′ ] satisfies the following two conditions by the
counting algorithm for the DRQP:

(1) The density d∗ of the k-th smallest feasible intersection point lies in the
subinterval [d�′ , dr′ ].

(2) The subinterval [d�′ , dr′ ] contains at most t2Nf

(t−1)
√

M
(< 2tNf√

M
) feasible inter-

section points and contains at most 3t2N
2(t−1)

√
M

intersection points.

If either (1) or (2) is violated, we repeat our randomized algorithm for the
DSRQP from scratch again until both (1) and (2) are satisfied: i.e. we need
to randomly select F , where M ≤ F ≤ 3M , feasible intersection points with
replacement in the interval [d�, dr] by running the random sampling algorithm
again to obtain a new subinterval [d�′ , dr′ ] and then check the above two con-
ditions (1) and (2) for the new subinterval [d�′ , dr′ ]. Let k1 and k2 be the total
number of feasible intersection points lying in [d�, d�′ ) and [d�, dr′ ] respectively.
Note that d∗ lies in the subinterval [d�′ , dr′ ] if and only if k1 < k and k2 ≥ k.
If both of these conditions hold, we replace the current interval [d�, dr] by the
subinterval [d�′ , dr′ ] and let k

′
= k − k1.

Note that the density selection algorithm starts with N = n(n−1)
2 intersection

points and Nf = O((u − �)n) feasible intersection points in the initial interval
[d�, dr] = (−∞,∞). Therefore, after the first successful random sampling which
satisfies conditions (1) and (2) we have an interval [d�′ , dr′ ] which contains the
k

′
-th smallest feasible intersection point d∗ and it contains O( Nf√

M
) feasible inter-

section points and O( N√
M

) intersection points. That is in each iteration we try to
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prune the numbers of intersection points and feasible intersection points roughly

by a factor of O(
√

M) = O(
√

nNf

N ) respectively, so after one successful random
sampling we still maintain the ratio of the number of feasible intersection points
and the number of intersection points in [d�′ , dr′ ] to be O(Nf

N ). Therefore, we
can repeat the same procedure for the next iteration. After the second success-
ful random sampling which satisfies conditions (1) and (2) we have an interval
[d�′′ , dr′′ ] which contains the k

′′
-th smallest feasible intersection point d∗ and

which has O( Nf√
M

/
√

M) = O(Nf

M ) = O(N
n ) = O(n) feasible intersection points.

We can then enumerate all feasible intersection points from this interval [d�′′ , dr′′ ]
by the reporting mode algorithm for the DRQP and select the k

′′
-th smallest

feasible intersection point d∗ from those feasible intersection points by using any
standard selection algorithm. We now show that with a high probability the key
step of our randomized algorithm for the DSRQP is satisfied.

Lemma 4. Let N and Nf be the total numbers of intersection points and feasi-
ble intersection points in [dl, dr] respectively. For a random choice of F indepen-
dent feasible intersection points with replacement in the interval [d�, dr] where
M ≤ F ≤ 3M , we can find a subinterval [d�′ , dr′ ] containing at most t

√
F sam-

ple feasible intersection points such that the probability that it contains at least
t2Nf

(t−1)
√

M
feasible intersection points is at most e−

√
M/2(t−1) and the probability

that it contains at least 3t2N
2(t−1)

√
M

intersection points is at most e−
√

M/2(t−1).

Proof. To show the subinterval [d�′ , dr′ ] contains at most t2Nf

(t−1)
√

M
feasible in-

tersection points with high probability 1 − e−
√

M/2(t−1), we just need to show
[d�′ , dr′ ] contains at most t2Nf

(t−1)
√

F
(≤ t2Nf

(t−1)
√

M
) feasible intersection points with

high probability 1 − e−
√

M/2(t−1). Assume that a successful random sampling
S

′
= {s1, s2, . . . , sF } with replacement in [d�, dr] in the random sampling sub-

routine for the DSRQP gives a subinterval [d�′ , dr′ ] containing at most t
√

F

sample feasible intersection points. Let N
′

and N
′
f be the total numbers of in-

tersection points and feasible intersection points in [d�′ , dr′ ] respectively. Assume
that N

′
f ≥ t2Nf

(t−1)
√

F
. Hence, whenever we select a random feasible intersection

point si in [d�, dr], it has probability larger than t2Nf /(t−1)
√

F
Nf

= t2

(t−1)
√

F
such

that si lies in [d�′ , dr′ ]. We again think such an event as a ”success”, each with
a probability of success equal to p ≥ t2

(t−1)
√

F
. Let Xi be the random variable,

attaining value 1 with probability p ≥ t2

(t−1)
√

F
if the i-th selected feasible in-

tersection point falls in [d�′ , dr′ ] and value 0 with probability 1− p if otherwise.
Let X = X1 + X2 + · · · + XF be the total number of selected feasible inter-
section points falling in [d�′ , dr′ ]. The expectation of the random experiment is
μ = Fp ≥ t2F

(t−1)
√

F
= t2

√
F

t−1 . By the Chernoff bound, we have Pr[X ≤ t
√

F ] ≤
Pr[X ≤ (1 − 1

t )μ] ≤ e−μ/2t2 ≤ e−
√

F/2(t−1) ≤ e−
√

M/2(t−1). Therefore, we have
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the joint probability Pr[(N
′
f ≥ t2Nf

(t−1)
√

F
) ∩ (X ≤ t

√
F )] ≤ e−

√
M/2(t−1). On the

other hand, note that d�′ and dr′ are the l
′
-th and r

′
-th smallest elements in the

random sampling S
′

respectively. It means that the random sampling S
′

con-
tains exactly r

′−�
′
(≤ t

√
F ) sample feasible intersection points lying in [d�′ , dr′ ].

Therefore, we have Pr[(N
′
f ≥ t2Nf

(t−1)
√

F
)∩ (S

′
contains exactly r

′ − �
′
sample fea-

sible intersection points in [d�′ , dr′ ])] ≤ Pr[(N
′
f ≥ t2Nf

(t−1)
√

F
) ∩ (X ≤ t

√
F )] ≤

e−
√

M/2(t−1). The first part of the lemma follows. Due to page limitation we
omit the proof of the second part here.

Lemma 5. Let N and Nf be the total numbers of intersection points and feasible
intersection points in [dl, dr] respectively. For a random choice of F independent
feasible intersection points with replacement in the interval [d�, dr] where M ≤
F ≤ 3M , we can find a subinterval [d�′ , dr′ ] containing at most t

√
F sample

feasible intersection points such that the probability that the k-th smallest feasible
intersection point d∗ not lying in the subinterval [d�′ , dr′ ] is at most 2e−t2/2.

Proof. Let Yi be the random variable, attaining value 1 with probability p = k
Nf

if the i-th sample feasible intersection point is no greater than d∗ and value 0
with probability 1−p if otherwise. If the r

′
-th smallest feasible intersection point

dr′ in S′ is smaller than d∗, it means that at least r
′

among the F randomly
sample feasible intersection points fall before d∗. Let Y = Y1 + Y2 + · · ·+ YF be
the total number of sample feasible intersection points falling before d∗. By the
Chernoff bound, we have Pr[Y ≥ r

′
] = Pr[Y ≥ μ+ t

√
F
2 ] ≤ e−t2/2. Similarly, by

the Chernoff bound we have Pr[Y ≤ l
′
] = Pr[Y ≤ μ − t

√
F
2 ] ≤ e−t2/2.

Now, we can choose t large enough such that 2e−t2/2 ≤ 1
4 and choose M large

enough such that 2e−
√

M/2(t−1) ≤ 1
4 , i.e. choose Nf ≥ 2cN

n for some large enough
constant c such that e−

√
M/2(t−1) ≤ e−

√
c/2(t−1) ≤ 1

8 . For example, we can choose
t = 2.1 and c = 21 respectively. Therefore, we just need to repeat the key step at
most twice on the average in the randomized algorithm for the DSP, otherwise
we can solve the DSP directly by using reporting algorithm for DRQP and any
standard selection algorithm.

Theorem 2. The Density Selection Problem can be solved in O(n) space
and expected O(n log n) time.

4 Conclusion

In the paper we considered an interesting density selection problem. It is a
generalization of three well known problems, the maximum density segment
problem, slope selection problem and selection problem. We have presented a
randomized algorithm for this problem running in expected O(n log n) time. But
whether the density selection problem can be solved by a deterministic algorithm
within the same time bound remains to be seen.
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