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Abstract. We consider the broadcasting problem in heterogeneous tree
networks. A heterogeneous tree network is represented by a weighted
tree T = (V, E) such that the weight of each edge denotes the communi-
cation time between the two end vertices. The broadcasting problem is
to find a broadcast center such that the maximum communication time
from the broadcast center to all vertices is minimized. In this paper, we
propose a linear time algorithm for the broadcasting problem in a het-
erogeneous tree network following the postal model. As a byproduct of
the algorithm, we can compute in linear time the broadcasting time of
any vertex in the tree, i.e., the maximum time required to transmit mes-
sages from the vertex to every other vertex in the tree. Furthermore, an
optimal sequence by which the broadcast center broadcasts its messages
to all vertices in T can also be determined in linear time.

Keywords: algorithm, broadcast center, heterogeneous network, weighted
tree, postal model.

1 Introduction

A heterogeneous network is a network connecting workstations with different op-
erating systems and communication protocols. Thus, the times to communicate
between any pair of workstations may be different. A heterogeneous network
is represented by a weighted graph G = (V,E), in which V (G) represents a
set of workstations and each edge u, v ∈ E(G) represents a connection between
two adjacent workstations. The weight of each edge represents the transmission
time β required to transmit messages between two adjacent workstations. In
heterogeneous networks, each communication link may have different message
transmission time, and each workstation may need connection time α to set up
connection between two adjacent workstations to complete the message transmis-
sion. In this paper, we consider the broadcasting problem in a heterogeneous tree
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network T = (V, E), where the weight w(u, v) of each edge u, v ∈ E(G), denotes
the transmission time required. The broadcasting problem has been extensively
studied for several decades [1, 6–9, 11–13] due to the increasing demands of het-
erogeneous network of workstations [7, 9]. The broadcasting problem is to find
a broadcast center such that the broadcasting time from the broadcast center
to all vertices in T is minimized. We consider the problem following the postal
model [1–4, 9] as described below.

The postal model makes distinction between connection time α and trans-
mission time β, where α > 0 is assumed to be a constant and β ≥ 0 varies
from edge to edge. More specifically, the postal model assumes that the sender
requires α time to set up a connection. After the sender sets up the connection,
the sender is allowed to set up another connection to the next receiver while the
sender is still transmitting the messages to the current receiver. For example, the
sender v first sets up the connection with the receiver u1 in α time, and then v
can set up another connection to the next receiver u2 while still transmitting the
messages to u1. The message transmission between two vertices is referred as a
“call”. A sender can only set up one connection to make a call to a receiver per α
time and a sender can only transmit the messages to adjacent vertices. A call is
said to be completed only after the sender completes transmitting the messages
to the receiver. That is, if the transmission time β between the sender v and
receiver u is w(u, v), and the receiver u is the ith vertex called by the sender,
then the call from v to u will be completed after αi + w(u, v) time. The receiver
u cannot forward the messages until the sender completes the transmission.

In contrast to the postal model is the telephone model, in which the sender is
allowed to set up another connection to the next receiver only after completing
the transmission of messages to the current receiver. That is, only after the
sender completes the transmission, can the sender set up another connection to
the next receiver. For example, the sender v first sets up a connection with the
receiver u1 after α time, then the sender v can only set up another connection to
the next receiver u2 after α + w(u1, v) time. For both the postal and telephone
models, the receiver cannot forward the messages until the receiver finishes the
receipt of the messages from the sender. Moreover, we assume that the message
transmission between two adjacent vertices is full-duplex, i.e., the sender and
receiver can exchange the messages between them simultaneously.

Some notations are introduced in order to give a formal definition of the
broadcasting problem. Given a weighted tree T = (V,E), the broadcasting time of
v, denoted as b(v, T ), is the minimum time required to broadcast a message from
v to all vertices in T . The broadcasting time of T , denoted as b(T ), is the minimum
broadcasting time of any vertex v ∈ V (T ), i.e., b(T ) = min{b(v, T )| v ∈ V (T )}.
The broadcast center BC(T ) of T is the set of vertices with the minimum broad-
casting time, i.e., BC(T ) = {v | v ∈ V (T ), b(v, T ) = b(T )}.
Problem Definition: Given a weighted tree T = (V, E) in which the weight
w(u, v) ≥ 0 of an edge u, v represents the transmission time between them,
the broadcasting problem is to compute the set of broadcast centers BC(T )
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and determine the broadcasting time b(T ), following the postal model with a
constant connection time α > 0. We use n to denote the size of the tree T .

1.1 Previous work

The telephone model and the postal model are the two most popular communi-
cation models in the literature. In 1978, Slater et al. [13] showed that computing
the broadcasting time of a given vertex in an arbitrary unweighted graph is
NP-complete following the telephone model. Furthermore, they also provided an
O(n)-time algorithm to compute the set of broadcast centers and determine the
broadcasting time for the unweighted trees following the telephone model. By
adopting Slater et al.’s algorithm, Koh and Tcha [10] extended the results to
provide an algorithm for the weighted trees following the telephone model. The
algorithm runs in O(n log n) time due to the use of a sorting procedure and a
priority queue.

For the telephone model in an unweighted graph G, Farley [5] determined
the lower and upper bounds of the time required to broadcast m messages from
a given vertex v to all vertices in G. For the postal model in an unweighted
complete graph G, Bar-Noy and Kipnis [2] presented an algorithm to deter-
mine the minimum broadcasting time from a given broadcast center to all ver-
tices in G. Further, they showed that the algorithm is optimal which runs in
Θ(λ log n/ log(λ + 1)) time, where λ is the communication latency, i.e., the time
needed when the sender starts sending messages until the receiver completes the
transmission.

Given a graph G and two nonempty subsets A ⊆ V (G) and B ⊆ V (G) of
vertices in G, the multicasting problem is to determine the minimum time to
broadcast messages from all vertices in A to all vertices in B. For the telephone
model in an unweighted complete graph, Khuller et al. [8] presented polynomial-
time approximation algorithms for the single-source multicasting, i.e., |A| = 1,
multi-source broadcasting problems, i.e., B = V , and multi-source multicasting
problems.

In this paper, we consider the broadcasting problem in heterogeneous tree
networks following the postal model. Note that our problem becomes the broad-
casting problem for unweighted trees following the telephone model when α = 1
and β = 0 for all edges.

1.2 Contributions

In this paper, we propose an O(n)-time algorithm for the broadcasting problem
in heterogeneous tree networks following the postal model. Similar to the algo-
rithm by Koh and Tcha [10], our algorithm is based on the concept of Slater
et al.’s algorithm. But unlike their algorithm which uses a priority queue and
a sorting procedure, resulting in an O(n log n)-time algorithm, we develop an
O(n)-time algorithm by using a new observation and a non-sorting labeling
method. The two major refinements lead to a time complexity improvement
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from O(n log n) to O(n). We further show that an optimal sequence of calls can
also be obtained in O(n) time.

For determining the broadcast centers BC(T ) in T , Slater et al. [13] use
a bottom-up approach to iteratively update the labels of vertices and remove
leaf nodes with the smallest label. Since the edges are unweighted, the value of
labels are integers in {0, . . . , n−1}. They exploit this fact to create a useful data
structure to avoid the use of a priority queue and a sorting procedure. Since the
labels are real numbers in our problem, it is not clear how to avoid the use of
priority queue, which takes O(log n) time per operation, if one needs to select a
vertex with the smallest label. However, we prove in Lemma 4 that it is sufficient
to select between any two labeled vertices the one with the smaller label. With
this new observation, we can perform this task in O(n) time. As for update of
labels of vertices in T , we propose a brand-new non-sorting procedure, and show
in Theorem 1 its details.

We summarize our contributions as follows.

– The set of broadcast centers BC(T ) can be computed and the broadcasting
time b(T ) can be determined in O(n) time.

– An optimal sequence of calls by which the broadcast center broadcasts to all
vertices in T can be determined in O(n) time.

– Given a vertex v ∈ V (T ), the broadcasting time b(v, T ) and an optimal
sequence of calls from v to all vertices in T can be determined in O(n) time.

1.3 Organization

The rest of the paper is organized as follows. Section 2 describes the algorithm
BROADCAST which computes the set of broadcast centers BC(T ) and deter-
mines the broadcasting time b(T ) following the postal model. In Section 3, we
provide the correctness proof and timing analysis of the algorithm. Finally, we
give concluding remarks and suggest some direction for future work in Section 4.

2 Algorithm BROADCAST

The algorithm adopts a greedy strategy to process the vertices in T in a bottom-
up manner. For an edge u, v in T , the removal of this edge will result in two
subtrees, each of which contains v and u respectively. The subtree of T containing
v is denoted as T (v, u), and the subtree of T containing u is denoted as T (u, v).
Recall that b(v, T ) denotes the minimum time required to broadcast a message
from v to all vertices in T . Suppose that u1, u2, . . . , uk are the neighbors of
v in T such that b(u1, T (u1, v)) + w(u1, v) ≥ b(u2, T (u2, v)) + w(u2, v) ≥ . . . ≥
b(uk, T (uk, v))+w(uk, v). If we want to broadcast messages from v to all vertices
in T , it is not difficult to see that an optimal sequence of calls from v to its
neighbors would be ordered as u1, u2, ..., uk. Hence, the broadcasting time from
v to all vertices in T is b(v, T ) = max{b(ui, T (ui, v)) + w(ui, v) + αi| 1 ≤ i ≤ k}.

Based on the above observation, the concept of our algorithm BROADCAST
is as below. The algorithm initially assigns a label t(u) = 0 to each leaf node
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u. It then removes a leaf u in the current tree T iteratively and assigns a label
t(v) to the vertex v, which becomes a leaf in the tree T − {u}. We always keep
the leaf vertex with the largest label when removing a leaf node. It is one of
the most significant differences of our algorithm from the algorithm by Slater
et al. [13]. We will show that the tree T − {u} still contains a broadcast center
in T after removing the vertex u. Each vertex in T would be labeled exactly
once except the last remaining vertex, which gets labeled twice. Let κ denote
the last remaining vertex in the rest of this paper. For a vertex v 6= κ in T , let
v′ be the neighbor of v such that v′ is on the path from v to κ. We will show
that t(v) = b(v, T (v, v′)), which is the minimum broadcasting time from v to all
vertices in T (v, v′). The algorithm is detailed below.

Algorithm 1 Algorithm BROADCAST
Input: A weighted tree T = (V, E) with weight w(u, v) ≥ 0 for u, v in E(T ).
Output: The broadcasting time b(T ) and the set of broadcast centers BC(T ).
1: for each leaf ` ∈ T do t(`) ← 0;
2: let BC(T ) ← ∅, W ← ∅ and T ′ ← T ;
3: while |V (T ′)| ≥ 2 do
4: select two leaves ux and uy in T ′ arbitrarily;
5: let t(u) ← min{t(ux), t(uy)}, W ← W ∪ {u} and T ′ ← T ′ − {u};

let v be the vertex adjacent to u in T ′;
6: if v is a leaf in T ′ then
7: suppose that v is adjacent to labeled vertices u1, u2, . . . , uk in W such that

t(u1) + w(u1, v) ≥ t(u2) + w(u2, v) ≥ . . . ≥ t(uk) + w(uk, v);
let t(v) ← max{t(ui) + w(ui, v) + αi| 1 ≤ i ≤ k};

8: end if
9: end while

10: let κ be the only vertex left in T ′, b(T ) ← t(κ) and BC(T ) ← {κ};
11: let the neighbors of κ in T be u1, u2, . . . , uk such that

t(u1) + w(u1, κ) ≥ t(u2) + w(u2, κ) ≥ . . . ≥ t(uk) + w(uk, κ);
12: let h be the smallest integer such that t(uh) + w(uh, κ) + αh + α > b(T );
13: BC(T ) ← BC(T ) ∪ {ui| w(ui, κ) = 0 and i ≤ h}.

In the beginning of the algorithm, we set t(`) = 0 for each leaf ` in T .
Next, in each iteration of the while loop, to keep the vertex with the largest
label, we arbitrarily select two leaves ux and uy in the current tree T . If t(u) =
min{t(ux), t(uy)}, then we remove u from the current tree T . Suppose that v is
the vertex adjacent to u in the current tree T . If v becomes a leaf in T −{u}, we
set t(v) = max{t(ui) + w(ui, v) + αi| 1 ≤ i ≤ k}, where u1, u2, . . . , uk ∈ W are
the neighbors of v with t(ui) + w(ui, v) ≥ t(ui+1) + w(ui+1, v) for 1 ≤ i ≤ k− 1.
After the execution of the while loop, we have only one vertex left, denoted as κ,
which is one of the broadcast centers in T . Moreover, the neighbors of κ are the
only candidates for being a broadcast center of T . Suppose that h is the smallest
integer such that t(uh) + w(uh, κ) + αh + α > b(T ). Let N(κ) be the neighbors
of κ in T . We will prove that for each vertex ui ∈ N(κ), ui is a broadcast center
in T if and only if w(ui, κ) = 0 and i ≤ h.
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3 Correctness and complexity analysis

Let v be an arbitrary vertex in T and u1, ..., uk be the neighbors of v. Let
T̄ =

⋃
1≤i≤k{(v, ui)+T (ui, v)} be a rooted tree of T with v as the root, and the

neighbors of v are ordered so that b(ui, T (ui, v))+w(ui, v) ≥ b(ui+1, T (ui+1, v))+
w(ui+1, v) for 1 ≤ i ≤ k − 1.

Intuitively, in order to shorten the broadcasting time from v to all vertices
in T̄ , we will transmit the message to u1 first, then u2, u3, and so on. The
following lemma shows that u1, ..., uk is in fact an optimal sequence of calls to
broadcast messages from v to its neighboring vertices in T̄ . Then, it follows
that the minimum time required to broadcast from v to all vertices in T̄ is
b(v, T̄ ) = max{b(ui, T (ui, v)) + w(ui, v) + αi | 1 ≤ i ≤ k}.
Lemma 1. Let v be an arbitrary vertex in T and u1, ..., uk be the neighbors of v.
Let T̄ =

⋃
1≤i≤k{(v, ui)+T (ui, v)} be a rooted tree of T with v as the root, and the

neighbors of v are ordered so that b(ui, T (ui, v))+w(ui, v) ≥ b(ui+1, T (ui+1, v))+
w(ui+1, v) for 1 ≤ i ≤ k − 1. Then, u1, u2, . . . , uk is an optimal sequence of
calls to broadcast messages from v to neighboring vertices in T̄ . Consequently,
b(v, T̄ ) = max{b(ui, T (ui, v)) + w(ui, v) + αi | 1 ≤ i ≤ k}.

Then we show an important result, on which the correctness proof of our
algorithm is based, and also some useful properties for finding a broadcast center.

Lemma 2. For each vertex v in T we have t(v) = b(v, T (v, v′)).

Proof. Let v1, v2, . . . , vn be the elimination order of vertices in T such that vi

is removed from T ′ before vj if i < j. We prove the statement by induction on
the number of vertices. Let vertex v′1 be the neighbor of v1 on the path from v1

to κ = vn. Clearly, v1 is a leaf in T and so we have t(v1) = b(v1, T (v1, v
′
1)) = 0.

Suppose that the statement holds for i = k. We consider i = k + 1 below.

We first consider the case when vk+1 is a leaf in T . Clearly, t(vk+1) =
b(vk+1, T (vk+1, v

′
k+1)) = 0, where v′k+1 is the neighbor of vk+1 on the path

from vk+1 to κ. Next, we consider the case when vk+1 is an internal vertex in
T . Suppose that v′k+1, u1, ..., u` are the neighbors of vk+1 in T , and without loss
of generality, let we assume that t(ui) + w(ui, v) ≥ t(ui+1) + w(ui+1, v), for
i = 1, ..., `− 1. Notice that ui ∈ {v1, ..., vk} for 1 ≤ i ≤ `. By induction hypoth-
esis, we have t(ui) = b(ui, T (ui, vk+1)) for 1 ≤ i ≤ `. Therefore, by Lemma 1, it
holds that b(vk+1, T (vk+1, v

′
k+1)) = max{t(ui) + w(ui, vk+1) + αi | 1 ≤ i ≤ `}.

Meanwhile, according to the execution of Step 7 of the algorithm BROADCAST,
we have t(vk+1) = max{t(ui) + w(ui, vk+1) + αi | 1 ≤ i ≤ `}. It follows that
t(vk+1) = b(vk+1, T (vk+1, v

′
k+1)).

Lemma 3. If b(x1, T (x1, x2)) ≤ b(x2, T (x2, x1)) with x1, x2 ∈ E(T ), then the
following two statements hold :

1. b(x1, T ) = α + w(x1, x2) + b(x2, T (x2, x1)); and
2. b(x2, T ) ≤ b(x1, T ).
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In the following, we show that after removing a leaf u in the current tree T ,
T − {u} still contains a broadcast center by keeping the vertex with the largest
label. It leads to the fact that the last remaining vertex κ is a broadcast center.

Lemma 4. Suppose that a leaf u is deleted in the current tree T in the ith

iteration of the while loop. Then we have the following results:

1. BC(T ) ∩ V (T ′) 6= ∅, where T ′ = T − {u}; and
2. the last remaining vertex κ ∈ BC(T ) and b(κ, T ) = b(T ).

Proof. Suppose that the leaf u is deleted in the ith iteration and v is the vertex
adjacent to u in the current tree T . To prove BC(T ) ∩ V (T ′) 6= ∅, it suffices
to show that b(v, T ) ≤ b(u, T ). We first consider the case when the current
tree T contains exactly two vertices u and v. Note that by the choice of u and
Lemma 2, b(v, T (v, u)) = t(v) ≥ t(u) = b(u, T (u, v)). According to Lemma 3,
since b(v, T (v, u)) ≥ b(u, T (u, v)) with u, v ∈ E(T ), we have b(v, T ) ≤ b(u, T ).

Next, we consider the case when the current tree T contains at least three
vertices u, v, and y. Suppose that u and y are the two leaves selected in the ith

iteration of the while loop and t(u) ≤ t(y). Let y′ be the neighbor of y on the
path from y to v. Similarly, it suffices to show that b(v, T ) ≤ b(u, T ). Once again,
we prove that by showing b(v, T (v, u)) ≥ b(u, T (u, v)) according to Lemma 3.
Suppose to the contrary that b(v, T (v, u)) < b(u, T (u, v)). Since T (y, y′) is a
subtree of T (v, u), we have b(y, T (y, y′)) < b(v, T (v, u)). By t(u) ≤ t(y), we have
b(u, T (u, v)) = t(u) ≤ t(y) = b(y, T (y, y′)). This implies that b(y, T (y, y′)) <
b(v, T (v, u)) < b(u, T (u, v)) ≤ b(y, T (y, y′)), a contradiction. Therefore, it is
in fact that b(v, T (v, u)) ≥ b(u, T (u, v)). Hence according to Lemma 3, since
b(v, T (v, u)) ≥ b(u, T (u, v)) with u, v ∈ E(T ), we have b(v, T ) ≤ b(u, T ).

Intuitively, a tree may contain more than one broadcast center. Below we
show that the only candidates for being a broadcast center of T are the neighbors
of κ. Moreover, for each vertex ui ∈ N(κ), ui is a broadcast center of T if and
only if w(ui, κ) = 0 and i ≤ h.

Lemma 5. If v is the broadcast center in T , then v ∈ N(κ) ∪ {κ}.
Lemma 6. For each vertex ui ∈ N(κ), if w(ui, κ) = 0 and i ≤ h, then we have
ui ∈ BC(T ).

Lemma 7. For each vertex ui ∈ N(κ), if w(ui, κ) > 0 or i > h, then we have
ui 6∈ BC(T ).

Since the only candidates for being a broadcast center of T are the neighbors
of κ, the set of broadcast centers BC(T ) is a star. Then we have the following
corollary.

Corollary 1. The set of broadcast centers BC(T ) is a star.

Below we provide the correctness proof and the timing analysis of the algo-
rithm.
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Theorem 1. Given a weighted tree T (V, E), the algorithm BROADCAST com-
putes the set of broadcast centers and determines the broadcasting time b(T ) in
O(n) time.

Proof. Combining Lemmas 4 to 7, we obtain the correctness proof of the algo-
rithm. In the following, we will show that the algorithm can be implemented in
O(n) time. We first observe that Steps 1 and 2 take O(n) time. For the while
loop, there is an intuitive implementation which takes O(k log k) time to sort the
values t(u1)+w(u1, v), t(u2)+w(u2, v), . . . , t(uk)+w(uk, v) for each vertex v in
T . However, we can see that one vertex is removed from T in each iteration of
the while loop. Therefore, if Step 7 takes O(k) time to assign the label t(v) for
each vertex v in T , then the while loop can also be completed in O(n) time. In
the following, we introduce a useful data structure which enables us to compute
labels for n vertices in O(n) time without sorting.

Suppose that u1, u2, . . . , uk are the neighbors of v in T such that t(u1) +
w(u1, v) ≥ t(u2) + w(u2, v) ≥ . . . ≥ t(uk) + w(uk, v). Note that k = |N(v)|. If
a vertex up satisfies t(u1) + w(u1, v) ≥ t(up) + w(up, v) + αk with k ≥ p, then
t(u1)+w(u1, v)+α > t(up)+w(up, v)+αp. Note that the vertex up would have
no influence on the label of v. Therefore, in order to determine t(v), we only need
to consider the neighbor ui of v such that t(ui)+w(ui, v) > t(u1)+w(u1, v)−αk.
Based on the above observation, we construct the following k linked lists.

For each list[i], with 0 ≤ i ≤ k − 1, the list[i] contains the vertices uj such
that αi ≤ (t(u1)+w(u1, v))− (t(uj)+w(uj , v)) < α(i+1). Note that the vertex
u1 with t(u1) + w(u1, v) = max{t(ui) + w(ui, v)} can be determined by simply
visiting the neighbors of v once. For each neighbor ui of v in N(v) − {u1}, if
t(ui)+w(ui, v) ≤ t(u1)+w(u1, v)−αk, then we discard it. Otherwise, we insert
the vertex into the front of its corresponding linked list. Therefore, it takes O(k)
time to construct these k linked lists.

We use num[i] to denote the number of vertices in the list[i] and let acc[i] =∑i
j=0 num[j] for 0 ≤ i ≤ k − 1. Further, let ui∗ be the vertex in the list[i] such

that t(ui∗)+w(ui∗ , v) = min{t(uj)+w(uj , v) | uj belongs to the list[i]}. Clearly,
for 0 ≤ i ≤ k−1, the values num[i], acc[i], and the vertex ui∗ can be determined
in O(k) time. For any given vertices ux and uy belonging to the same linked list
with x < y, since y − x ≥ 1 and (t(ux) + w(ux, v))− (t(uy) + w(uy, v)) < α, we
have t(uy) + w(uy, v) + αy > t(ux) + w(ux, v) + αx. Therefore,

t(v) = max{t(ui) + w(ui, v) + αi | 1 ≤ i ≤ k}
= max{t(ui∗) + w(ui∗ , v) + αacc[i] | 0 ≤ i ≤ k − 1}.

So the label of v, t(v), can be determined in O(k) time. By the above labeling
method, the while loop can be completed in O(n) time for n vertices.

Next, we show that the smallest integer h such that t(uh)+w(uh, κ)+αh+α >
b(T ) can also be determined in O(n) time in Step 12. Let q be the smallest integer
such that t(uq∗) + w(uq∗ , κ) + αacc[q] + α > b(T ). Clearly, the list[q] contains
the vertex uh. We will show that either h = acc[q] or h = acc[q] − 1. For any
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given vertices ux and uy belonging to the same linked list with y ≥ x + 2, since
(t(ux)+w(ux, v))−(t(uy)+w(uy, v)) < α, we have (t(uy)+w(uy, κ)+y)−(t(ux)+
w(ux, κ) + x) > α. Note that t(uq∗) + w(uq∗ , κ) + αacc[q] ≤ b(T ). Therefore, we
have h = acc[q] or h = acc[q] − 1. Hence, h can be determined in O(n) time.
These prove the correctness and the time complexity of the algorithm.

In the following, we will show that an optimal sequence of calls by which the
broadcast center broadcasts its messages to all vertices in T can be determined
in O(n) time.

Theorem 2. An optimal sequence of calls by which the broadcast center broad-
casts its messages to all vertices in T can be determined in O(n) time.

Proof. Suppose that u1, u2, . . . , uk are the neighbors of v in T such that t(u1) +
w(u1, v) ≥ t(u2)+w(u2, v) ≥ . . . ≥ t(uk)+w(uk, v). For each list[i], with 0 ≤ i ≤
k−1, the list[i] contains the vertices uj such that αi ≤ (t(u1)+w(u1, v))−(t(uj)+
w(uj , v)) < α(i+1). Suppose further that the list[k] contains the vertices uj such
that t(u1) + w(u1, v) ≥ t(uj) + w(uj , v) + αk. Let num[i] denote the number of
vertices in the list[i] and acc[i] =

∑i
j=0 num[j] for 0 ≤ i ≤ k−1. Further, let ui∗

be the vertex in the list[i] such that t(ui∗) + w(ui∗ , v) = min{t(uj) + w(uj , v) |
uj belongs to the list[i]}. We place the vertex ui∗ at the end of the list[i] for
0 ≤ i ≤ k.

Then, we assume that uπ(1), uπ(2), . . . , uπ(k) is a traversal ordering of the lists
such that the list[p] is traversed before the list[q] if p < q. When traversing a list,
we traverse the list from the beginning to the end of the list sequentially. Clearly,
the ordering uπ(1), uπ(2), . . . , uπ(k) can be determined in O(k) time. Since

t(v) = max{t(ui) + w(ui, v) + αi | 1 ≤ i ≤ k}
= max{t(ui∗) + w(ui∗ , v) + αacc[i] | 0 ≤ i ≤ k − 1}
= max{t(uπ(i)) + w(uπ(i), v) + απ(i) | 1 ≤ i ≤ k},

uπ(1), uπ(2), . . . , uπ(k) is an optimal sequence of calls by which v broadcasts mes-
sages to its neighboring vertices in T , which completes the proof.

Using a similar method of the above arguments, one can show that the fol-
lowing result is true.

Theorem 3. Given a vertex v ∈ V (T ), the broadcasting time b(v, T ) and an
optimal sequence of calls from v to all vertices in T can be determined in O(n)
time.

4 Conclusion and Future Work

We have proposed a non-sorting linear time algorithm for the broadcasting prob-
lem in a weighted tree following the postal model. The algorithm BROADCAST
computes the set of broadcast centers, determines the broadcasting time b(T ),
and an optimal sequence of calls from the broadcast center to all vertices in T .
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Also, given a vertex v ∈ V (T ), the broadcasting time b(v, T ) and an optimal
sequence of calls from v to all vertices in T can be determined in linear time.

Below we present some open problems related to the broadcasting problem
in heterogeneous networks following the postal model, i.e., the broadcasting p-
center and the broadcasting p-median problems.

The broadcasting p-center problem is a generalization of the broadcasting
problem. In the broadcasting p-center problem, we want to locate p centers
on a network and partition the set of n vertices in p subsets, such that the
maximum communication time from the centers to the associated subsets of
vertices is minimized. On the other hand, in the broadcasting p-median problem,
instead of minimizing the maximum communication time, we minimize the sum
of communication times from the centers to the associated subsets of vertices.
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