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Abstract—Dynamic binary translation (DBT) is a core technology to many important applications such as system virtualization,

dynamic binary instrumentation and security. However, there are several factors that often impede its performance: (1) emulation

overhead before translation; (2) translation and optimization overhead, and (3) translated code quality. The issues also include its

retargetability that supports guest applications from different instruction-set architectures (ISAs) to host machines also with different

ISAs – an important feature to system virtualization. In this work, we take advantage of the ubiquitous multicore platforms, and use a

multithreaded approach to implement DBT. By running the translator and the dynamic binary optimizer on different cores with different

threads, it could off-load the overhead incurred by DBT on the target applications; thus, afford DBT of more sophisticated optimization

techniques as well as its retargetability. Using QEMU (a popular retargetable DBT for system virtualization) and LLVM (Low-Level

Virtual Machine) as our building blocks, we demonstrated in a multi-threaded DBT prototype, called HQEMU (Hybrid-QEMU), that

it could improve QEMU performance by a factor of 2.6X and 4.1X on the SPEC CPU2006 integer and floating point benchmarks,

respectively, for dynamic translation of x86 code to run on x86-64 platforms. For ARM codes to x86-64 platforms, HQEMU can gain

a factor of 2.5X speedup over QEMU for the SPEC CPU2006 integer benchmarks. We also address the performance scalability

issue of multi-threaded applications across ISAs. We identify two major impediments to performance scalability in QEMU: (1) coarse-

grained locks used to protect shared data structures, and (2) inefficient emulation of atomic instructions across ISA’s. We proposed

two techniques to mitigate those problems: (1) using Indirect Branch Translation Caching (IBTC) to avoid frequent accesses to locks,

and (2) using lightweight memory transactions to emulate atomic instructions across ISAs. Our experimental results show that, for

multi-thread applications, HQEMU achieves 25X speedups over QEMU for the PARSEC benchmarks.

Index Terms—Dynamic Binary Translation, Multicores, Feedback-Directed Optimization, Hardware Performance Monitoring, Traces
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1 INTRODUCTION

D YNAMIC binary translators (DBT) that emulate a
guest binary executable code in one instruction-set

architecture (ISA) on a host machine with a different ISA
are gaining importance. It is because dynamic binary
translation is a core technology of system virtualization.
DBT is also frequently used in binary instrumentation,
security monitoring and other important applications.
However, there are several factors that could impede the
effectiveness of a DBT: (1) emulation overhead before the
translation; (2) translation and optimization overhead;
(3) the quality of the translated code. Retargetablity of
the DBT is also an important requirement. We would
like to have a single DBT to take on application binaries
from several different ISAs and retarget them to host
machines with different ISAs. This requirement imposes
additional constraints on the structure of a DBT and,
thus, additional overheads.

As a DBT is running at the same time the application is
being executed, the overall performance is very sensitive
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to the overhead of the DBT itself. A DBT could ill-afford
to have sophisticated techniques and optimizations for
better codes. However, with the ubiquity of the multicore
processors today, most of the DBT overheads could be
off-loaded to other cores when they are not in use. The
DBT could thus leverage multithreading on multicores
itself. This allows DBT to become more scalable when it
needs to take on large-scale multithreaded applications.

In this work, we developed a multithreaded DBT
prototype, called HQEMU (Hybrid-QEMU), which uses
QEMU [1], a retargetable DBT system as its frontend
for fast binary code emulation and translation. However,
QEMU lacks a sophisticated optimization backend to
generate more efficient code. To this, we use the LLVM
compiler [2], also a popular compiler with sophisticated
compiler optimization as its backend, together with a
dynamic binary optimizer that uses on-chip hardware per-
formance monitor (HPM) to dynamically improve code
for higher performance. With the hybrid QEMU + LLVM
approach, we successfully address the dual issues of
high-quality translated code and low translation over-
head. Significant performance improvement over QEMU
has been observed. To our knowledge, our work is the
first successful effort to integrate QEMU and LLVM to
achieve significant improvement.

We also addressed the performance scalability issue
in translating multi-threaded applications across ISAs. It
requires reducing the amount of shared resources and
more efficient synchronization mechanisms to handle
the large number of application threads that need to be
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translated and optimized.
The main contributions of this work are as follows:

• We developed a multi-threaded retargetable DBT on
muticores that achieved low translation overhead and
good translated code quality on the guest binary ap-
plications. We show that this approach can be ben-
eficial to both short- and long-running applications.

• We propose a novel trace combining technique
to improve existing trace formation algorithms. It
could effectively combine/merge traces based on
the information provided by the on-chip HPM.
We demonstrate that such feedback-directed trace
merging optimization can significantly improve the
overall code performance.

• We use two optimization schemes, indirect branch
translation caching (IBTC) and lightweight memory
transactions, to reduce the contention on shared re-
sources when emulating a large number of appli-
cation threads. We show that these optimizations
significantly reduce the emulation overhead of a
DBT and make it more scalable.

• We built a HQEMU prototype, and the experimental
results show it could improve the performance by
a factor of 2.6X and 4.1X over QEMU for x86 to
x86-64 emulation using SPEC CPU2006 integer and
floating point benchmarks, respectively. For ARM
to x86-64 emulation, HQEMU shows a gain of 2.5X
speedup over QEMU for SPEC integer benchmarks.
For the performance of multithreaded applications,
HQEMU achieves 25X speedup over QEMU for the
PARSEC benchmarks with 32 emulated threads.

This paper extends our previous work [3], which
focuses on the techniques to enhance single-thread per-
formance, with techniques to enhance scalability of em-
ulating multi-threaded programs.

The rest of this paper is organized as follows. Section 2
provides a brief overview of our multi-threaded hybrid
QEMU+LLVM DBT system. We then elaborate on three
unique aspects of HQEMU: (1) Techniques to improve
single-thread performance that include trace formation
and trace merging in Section 3; (2) Techniques to en-
hance scalability that address the contention of shared
resources among multiple threads, IBTC, and handling of
atomic operations for synchronization using light-weight
memory transactions in Section 4; and (3) Issues related
to retargetability of DBT in Section 5. We detail some
experimental results on the effectiveness of HQEMU in
Section 6. Section 7 presents some related work. Finally,
Section 8 concludes this paper.

2 A TRACE-BASED HYBRID DYNAMIC BI-
NARY TRANSLATOR

QEMU is a state-of-the-art retargetable DBT system that
enables both full-system virtualization and process-level
emulation. It has been widely used in many applications.
This motivates us to use QEMU as our base.
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Fig. 1: Major components of HQEMU on an m-core platform.

The core translation engine of QEMU is called Tiny
Code Generator (TCG), which provides a small set of
IR (intermediate representation) operations. The main
loop of QEMU translates and executes the emulated
code one basic block at a time. TCG provides two simple
optimization passes: register liveness analysis and store
forwarding optimization. Dead code elimination is done as
a by-product of these two optimizations. Finally, the
intermediate code is translated into the host binary. The
whole translation and optimization process is designed
to be lightweight and with negligible overhead. Such
design considerations make QEMU an ideal platform
for emulating short-running applications or applications
with few hot blocks, such as during the booting of an
operating system.

Figure 1 shows the organization of HQEMU. It has an
enhanced QEMU as its frontend, and an LLVM together
with a dynamic binary optimizer (DBO) as its backend.
QEMU is running by the execution thread(s), LLVM and
DBO are running on separate threads depending on their
workloads. Two code caches, a block-code cache and a trace
cache, are used in HQEMU. They keep translated binary
codes at different optimization levels.

There are two translators in HQEMU for different pur-
poses. The translator in the enhanced QEMU (i.e. TCG)
acts as a fast translator. TCG translates guest binary at
the granularity of a basic block, and emits translated codes
to the block-code cache. It also keeps the translated guest
binary in its TCG IR format for further optimization
in the HQEMU backend. The emulation module (i.e. the
dispatcher in QEMU) coordinates the translation and the
execution of guest binaries. When the emulation module
detects that some code region has become hot and is
worthy of further optimization, it sends a request to
the optimization request FIFO queue with the translated
guest binary in its TCG IR format. The requests will be
serviced by the HQEMU backend optimizer running on
another thread. We use an enhanced LLVM compiler as
the backend because it consists of a rich set of aggressive
optimizations and a just-in-time runtime system.

When the LLVM optimizer receives an optimization
request from the FIFO queue, it converts its TCG IR
to LLVM IR directly instead of converting guest bi-
nary from its original ISA. This approach simplifies
the backend translator tremendously (see Section 5 for
more details). A rich set of program analysis facilities
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Fig. 2: A CFG of three basic blocks and traces generated with
NET trace selection algorithm.

and powerful optimization passes in LLVM can produce
very high quality host codes, and they are stored in the
trace cache. Such analysis and optimization are running
concurrently on another thread. Hence, their overhead
can be hidden and without interfering with the execution
of the guest program. The backend LLVM translator
can also spawn more worker threads to accelerate the
processing of optimization requests if there are many
waiting in the queue. We also apply the structure of a
non-blocking FIFO queue [4] to reduce the overhead of
communication among these threads.

The DBO uses a hardware performance monitor based
(i.e. HPM-based), feedback-directed runtime optimiza-
tion scheme. It can detect separate traces with low over-
head and work with the LLVM translator to re-optimize
the merged traces (see Section 3 for more details).

With the hybrid QEMU+LLVM approach, we can ben-
efit from the strength of both translators. This approach
successfully addresses the dual issues of good translated
code quality and low translation overhead.

3 TECHNIQUES TO ENHANCE SINGLE-
THREAD PERFORMANCE

A typical binary translator needs to save and restore
program contexts when the control switches between the
dispatcher and the execution of translated code in the code
caches, and also among small code regions in code caches.
Such small code region transitions could incur significant
overhead. Enlarging the code regions can alleviate such
overheads. The idea is to merge many small code regions
into larger ones, called traces, and thus eliminating the
redundant load and store operations by promoting such
memory operations to register accesses within traces.
Through such trace formation, we not only can eliminate
the high overhead of region transitions, but also can
apply more code optimizations to a larger code region.

A relaxed version of Next Executing Tail (NET) [5] is
chosen as our trace selection algorithm. In the original
NET scheme, it considers every backward branch as
an indicator of a cyclic execution path, and terminates
the trace formation at such backward branches. We
relax such a backward-branch constraint, and stop trace
formation only when the same program counter (PC) is
executed again. More details on trace formation, hot trace
detection, and optimization techniques in HQEMU can be
found in Appendix A.
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Fig. 3: Workflow of the HPM-based trace merging in DBO.

Although using such NET-based algorithm can gener-
ate high-quality traces with low cost, such trace forma-
tion techniques have some well-known weaknesses such
as trace separation and early exits [6]. The main cause of
the weaknesses is that NET-based algorithm can only
handle code regions with simple control flow graph (CFG),
such as straight fall-through paths or simple loops. It
cannot deal with code regions with more complex con-
trol flow patterns. Figure 2(a) shows a code example with
three basic blocks. Applying NET on this code region
will result in two separate traces as shown in Figure
2(b). Trace 1 will have a frequent early exit to Trace 2 that
could incur significant transition overhead. In order to
overcome such problems, our improved trace-merging
algorithm will force the merging of problematic traces
that frequently jump between themselves.

The trace merging is different from conventional trace
chaining [7] where two traces are chained together by
patching a jump from the side exit of one trace to the head
of the other. Conducting trace chaining does not solve the
problem of early exits due to trace separation, i.e. control
transfer occurs in the middle of a trace, instead of from
the tail, to another trace. In contrast, trace merging can
keep the execution staying in the combined trace.

The challenges for trace merging are (1) efficient detec-
tion of such problematic traces, and (2) implementation
of such merging at runtime. One feasible approach is to
insert detection routines to detect the separation of traces
and early exits at each jump instruction in each trace.
This approach, however, will incur substantial overhead
because they are likely to be in frequently executed hot
code regions. Instead, we use a feedback-directed ap-
proach with the help of on-chip hardware performance
monitor to support trace merging. The workflow of such
trace merging in DBO is shown in Figure 3.

The DBO consists of three components: a profile an-
alyzer, a trace filter and a trace combiner. At first, the
profile analyzer collects sampled PCs and accumulates the
sample counts for each trace to determine its hotness. In
the second step, the trace filter selects hot candidate traces
for merging. In our algorithm, a trace has to meet three
criteria to be considered as a hot trace: (1) the trace is
in a stable state; (2) the trace is in the 90% cover set (to
be explained later), and (3) the sampled PC count of the
trace must be greater than a threshold.

To determine if a trace has entered a stable state, a
circular queue is maintained in the trace filter to keep
track of the traces executed in the most recent N sampled



4

intervals. The collection of traces executed in the most
recently sampled interval is put in an entry of the
circular queue, and the oldest entry at the tail of the
queue is discarded if the queue overflows. We consider
a trace is in a stable state if it appears in all entries of the
circular queue. The top traces that contribute to 90% of
total sample counts are collected as the 90% cover set.

The trace combiner then chooses the traces that are
likely to cause trace separation for merging. Note that, in
trace formation, we apply the concept in NET to collect
the basic blocks that form a cyclic path to build a trace.
The same concept is applied here in trace merging. The
trace combiner collects all traces that form cyclic paths
after merging. However, we do not limit the shape of the
merged trace to a simple loop. Any CFG that has nested
loops, irreducible loops, or several loops in a trace, can
be formed as a merged trace. Moreover, it is possible to
have several groups of traces being merged at a time.

Finally, the groups of traces merged by the trace com-
biner are placed in the optimization request FIFO queue for
further optimization by LLVM, and the LLVM translator
re-builds the LLVM IR of the merged traces from their
component blocks’ TCG IR. After a merged trace is
optimized, its initial sample count is set to the maximum
sample count of its component traces. Moreover, the
sample counts of the component traces are reset to zero
so that they will not affect the formation of the next 90%
cover set for future trace combination.

4 TECHNIQUES TO ENHANCE SCALABILITY

OF EMULATING MULTI-THREADED PROGRAMS

QEMU has two modes in emulating an application
binary: (1) full-system emulation, in which all OS kernels
involved are also emulated, and (2) process-level emula-
tion, in which only application binaries are emulated.
In this work, we focus on process-level emulation. When
emulating a multithreaded application, QEMU creates
one host thread for each guest thread, and all these guest
threads are emulated concurrently.

QEMU uses a globally shared code cache, i.e. all ex-
ecuting threads share a single code cache, and each
guest block has only one translated copy in the shared
code cache. All threads maintain a single directory that
records the mapping from a guest code block to its
translated host code region. An execution thread first
looks up the directory to locate the translated code
region. If not found, it kick-starts the TCG to translate
the untranslated guest code block. Since all execution
threads share the code cache and the directory, QEMU
uses a critical section to serialize all accesses to the shared
structures. Such a design yields very efficient memory
space usage, but it could cause severe contention to the
shared code cache and directory when a large number
of guest threads are emulated.

In this section, we identify two problems in QEMU
when emulating multithread programs, and then de-
scribe the optimization strategies used in HQEMU to
mitigate those problems.

4.1 Indirect Branch Handling

Indirect branches, such as indirect jump, indirect call and
return instructions, cannot be linked in the same way
as direct branches because they can have multiple jump
targets. Making the execution threads go back to the
dispatcher for the branch target translation each time
when an indirect branch is encountered may cause huge
performance degradation. The degradation is due to the
overhead from (1) saving and restoring program contexts
when a context switch occurs, and (2) the contention for
the shared directory (protected in a critical section) to
find the branch target address when a large number of
threads are emulated.

To mitigate this overhead, we try to avoid going back
to the dispatcher for branch target translation. For the
indirect branches that leave a block or exit a trace, the
Indirect Branch Translation Cache (IBTC) [8] is used. The
translation of an indirect branch target with IBTC is per-
formed as a fast hash table look-up inside the code cache.
Only upon an IBTC miss, the execution thread goes
back to the dispatcher, performs expensive translation
of indirect branch with the shared directory, and caches
the lookup result in the IBTC entry. Upon an IBTC hit,
the execution jumps directly to the next translated code
region so that a context switch back to the dispatcher is
not required. The IBTC in our framework is a large hash
table shared by all indirect branches, including indirect
jump/call and return instructions. That is, the translation
of branch targets looks up the same IBTC for all indirect
branches. We set up one IBTC for each execution thread.
Such thread-private IBTC can avoid contention during the
branch target translation. The detailed implementation
of IBTC hash table and a comparison with Pin’s indirect
branch chain are described in Appendix B.

During trace formation, the prediction routine might
record two successive blocks following the path of an in-
direct branch. We use IB inlining (Indirect Branch Inlining)
[9] to facilitate the translation of indirect branch target.
In IB inlining, when translating an indirect branch in the
predecessor block, the code to compare the value in the
indexing register against the address of the successor
block is inlined in the trace. Upon a match, the execution
will continue to the successor block without leaving the
trace. If there is a no-match, meaning that the prediction
fails, this indirect branch will leave the trace and the
execution is redirected to the IBTC. Such IB inlining is
advantageous because it must be hot to be included
in a trace, and thus the prediction is most likely to
succeed. Using thread-private IBTC and IB inlining, we
can effectively reduce the overhead by avoding thread
contention and keeping the execution threads staying in
the code cache most of the time.

4.2 Atomic Instruction Emulation

The emulation of guest atomic instructions, which are of-
ten used to implement synchronization primitives, poses
another design challenge. The correctness and efficiency
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of emulating atomic instructions are critical to multi-
threaded applications. To ensure the correctness, DBT
must guarantee that the translated host code be executed
atomically. To emulate the atomicity of a guest atomic
instruction, QEMU places the translated code region that
corresponds to the guest atomic instruction in a critical
section, protected with a lock-unlock pair, on the host ma-
chine. Thus, concurrent accesses to the critical section are
serialized. However, QEMU uses the same lock variable
for all such critical sections. Figure 4(a) shows how two
guest atomic instructions, atomic INC and atomic XCHG,
are protected by the same lock variable global lock. The
reason that QEMU uses the same global lock variable for
all such critical sections is because it cannot determine if
any two memory addresses are aliases at the translation
time.

Although the global lock scheme of QEMU is portable,
it has several problems: (1) Wang et al. [10] proved
that this approach could still have correctness issues
that may cause deadlocks; (2) accesses to non-aliased
memory locations (e.g. two independent mutex variables
in the guest source file) by different threads are serialized
because of the same global lock; (3) the performance is
poor due to the high cost of the locking mechanism.
The overhead of accessing the global lock depends on
the design of the locking mechanism. For example, the
locking mechanism in QEMU is implemented using
NPTL synchronization primitives, which use Linux futex
(a fast user-space mutex). When an execution thread
fails to acquire or release the global lock, the thread
is put to sleep in a wait-queue, and is waken later via
an expensive futex system call. Such expensive switch-
ing between user and kernel mode and the additional
contention caused by false protection of non-aliased
memory accesses could result in significant performance
degradation.

To solve the problems incurred by the global lock,
we use lightweight memory transactions proposed in [10]
to address the correctness issues, as well as to achieve
efficient atomic instruction emulation. The lightweight
memory transaction based on the multi-word compare-
and-swap (CASN) algorithm [11] allows translated code
of atomic instructions to be executed optimistically. It
detects data races while emulating an atomic instruc-
tion using the atomic primitives supported by the host
architecture, and re-executes this instruction until the
entire emulation is atomically performed. Figure 4(b)
illustrates the translation of the same two guest atomic
instructions using lightweight memory transactions. At
first, the value of the referenced memory is loaded to
the temporary register, Old. The new value after the
computation is atomically stored in the memory if the
value in the memory is the same as Old. Otherwise, the
emulation keeps retrying if the CAS transaction fails.

Based on this approach, the protection of memory
accesses with a global lock can be safely removed be-
cause the lightweight memory transactions can guaran-
tee correct emulation of atomic instructions. Moreover,

Lock (&global_lock)

tmp0 [Addr1]

tmp0 tmp0 + 1

[Addr1] tmp0

Unlock (&global_lock)

Lock (&global_lock)

tmp0 Reg

Reg [Addr2]

[Addr2] tmp0

Unlock (&global_lock)

Atomic INC [Addr1] Atomic XCHG Reg, [Addr2]

(a) The same global lock variable global lock

retry:

Old [Addr1]

New Old + 1

CAS [Addr1], Old, New

If (FAIL) goto retry

retry:

Old [Addr2]

CAS [Addr2], Old, Reg

If (FAIL) goto retry

Reg Old

(b) Lightweight memory transactions

Fig. 4: An example of translating two atomic instructions using
global lock and lightweight memory transactions.

the performance will not degrade much because the false
protection of non-alias memory accesses and the over-
head of expensive locking mechanism are eliminated as
a result of the removal of global lock.

5 RETARGETABILITY

The goal of HQEMU is to have a single DBT frame-
work to take on application binaries from several different
ISAs and retarget them to host machines with differ-
ent ISAs. Using a common intermediate representation
(IR) is an effective approach to achieve retargetability,
which is used in both QEMU (i.e. TCG) and LLVM.
By combinig these two frameworks, HQEMU inherits
their retargetability with minimum effort. In HQEMU,
when LLVM optimizer receives an optimization request
from the FIFO queue, it converts its TCG IR to LLVM
IR directly instead of converting guest binary from its
original ISA. Such two-level IR conversion simplifies the
translator tremendously because TCG IR only consists
of about 142 different operation codes – much smaller
than in most existing ISAs. Without such two-level IR
conversion, for example, supporting full x86 ISA requires
implementing more than 2000 x86 opcode to LLVM IR
conversion routines.

A retargetable DBT does not maintain a fixed register
mapping between the guest architectural states and the
host architectural states. It thus has extra overhead com-
pared to same-ISA DBTs (e.g. Dynamo [7]) or dedicated
DBTs (e.g. IA-32 EL [12]), which usually assume the
host ISA has the same or richer register set than the
guest ISA. Moreover, retargetable DBTs allow flexible
translation, such as adaptive SIMDization to any vector
size or running 64-bit binary on 32-bit machines. This is
hard to achieve by same-ISA and dedicated DBTs.

6 PERFORMANCE EVALUATION

In this section, we present the performance evaluation
of HQEMU by using both single-threaded and multi-
threaded benchmarks. To show the performance porta-
bility of HQEMU across different ISAs, we also compare
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the results with QEMU. Other DBT systems, such as Pin
or DynamoRIO, are not compared because they are not
cross-ISA DBTs, and most of their execution is done in
native mode with no need for translation, and hence, no
performance degradation.

6.1 Emulation of Single-Thread Programs

We first evaluate the performance of HQEMU on single-
threaded programs. SPEC CPU2006 benchmark suite is
chosen as the test programs in this experiment.

6.1.1 Experimental Setup

All performance evaluation is conducted on three host
platforms listed in Table 1. The SPEC CPU2006 bench-
mark suite is tested with both test and reference inputs
and for two different guest ISAs, ARM and x86, to
show the retargetability of HQEMU. All benchmarks are
compiled with GCC 4.4.2 for the x86 guest ISA and
GCC 4.4.1 for the ARM guest ISA. LLVM version 3.0
is used for the x86 and PPC host, and version 2.8 for the
ARM host. The default optimization level (-O2) is used
for JIT compilation. We run only one thread with the
LLVM translator and this thread is capable of handling
all optimization requests. The trace-profiling threshold is
set at 50 and the maximum length of a trace is 16 basic
blocks. We use Perfmon2 for performance monitoring
with HPM. The sampling interval is set at 1 million
cycles/sample. The size of the circular queue, N, for
trace merging in the dynamic optimizer is set at 8. We
compare the results to the native runs whose programs
are compiled to the host executable with SIMD enabled.
All compiler optimization flags used are listed in Table
1. Four different configurations are used to evaluate the
effectiveness of HQEMU:

• QEMU which is the vanilla QEMU version 0.13 with
the fast TCG translator.

• LLVM which uses the same modules of QEMU

except that the TCG translator is replaced by the
LLVM translator.

• HQEMU-S which is the single-threaded HQEMU
with TCG and LLVM translators running on the
same thread.

• HQEMU-M which is the multi-threaded HQEMU,
with TCG and LLVM translators running on sepa-
rate threads.

In both QEMU and LLVM configurations, code trans-
lation is conducted at the granularity of basic blocks
without trace formation. In HQEMU-S and HQEMU-M
configurations, trace formation and trace merging are used.
IBTC is used in all configurations except QEMU.

6.1.2 Overall Performance of SPEC CPU2006

Figure 5 illustrates the overall performance of x86-32 to
x86-64, ARM to x86-64, ARM to PPC64, and x86-32 to
ARM emulations against the native runs with reference
inputs. The Y-axis is the normalized execution time over
native execution time. Note that in all figures, we do not

TABLE 1: Configurations. DEFAULT=”-O2 -fno-strict-aliasing”

Hardware settings – CPU / Memory size
x86/64 3.3 GHz quad-core Intel Core i7 975 / 12 GB
PPC/64 2.0 GHz dual-core PPC970FX / 4 GB
ARM 1.3 GHz quad-core ARMv7r / 2 GB

Optimization flags
Native-x86/64 $DEFAULT

Native-PPC/64 $DEFAULT -maltivec

Native-ARM $DEFAULT -mfpu=vfp

Guest-x86/32 $DEFAULT -m32 -msse2 -mfpmath=sse

Guest-ARM $DEFAULT -ffast-math -msoft-float

-mfpu=neon -ftree-vectorize

provide the confidence intervals because there was no
noticeable performance variation among different runs.
Detailed performance results with test inputs are shown
in Appendix C.

Figure 5(a) and 5(b) present the x86-32 to x86-64
emulation results for integer and floating point bench-
marks. Unlike test inputs, the programs spend much
more propotion of time running in the code caches. As
the results show, the LLVM configuration outperforms
QEMU since optimization overhead is mostly amortized.
The speedup from LLVM includes some DBT-related
optimizations such as indirect branch prediction, as well
as regular compiler optimizations such as redundant
load/store elimination. Redundant load/store elimination
is effective in reducing expensive memory operations.
Trace formation and trace merging in HQEMU further elim-
inate many redundant load/store instructions related to
architecture state transitions. Through trace formation,
HQEMU achieves significant improvement over both
QEMU and LLVM. Using reference inputs, the benefit of
HQEMU-M is not as significant as that of using test
inputs when compared to HQEMU-S. This is because the
translation overhead is playing less of a role using refer-
ence inputs. As shown in Figure 5(a) and 5(b), HQEMU-
M achieves about 45.5% and 50% of the native speed for
CINT and CFP benchmarks, respectively. Compared to
QEMU, HQEMU-M is 2.6X and 4.1X faster for CINT and
CFP, respectively.

For CFPs, the speedup of LLVM and HQEMU over
QEMU is greater than that of CINTs. This is partly due
to the translation ability of the current QEMU/TCG.
The current TCG translator does not emit floating point
instructions for the host machine. Instead, all floating
point instructions are emulated via helper function calls.
By using the LLVM compiler infrastructure, such helper
functions can be inlined and allow floating point host
instructions to be generated directly in the code cache.

Figure 5(c) to 5(e) illustrates the performance results
of ARM to x86-64, ARM to PPC64 and x86-32 to ARM
emulation over native execution (i.e. running binary
code natively). For PPC64 and ARM host, trace merging
is not used1. The performance results are similar to those
of x86-32 to x86-64 emulation – HQEMU-M is 2.5X and
2.9X faster than QEMU for CINT with ARM guest to
x86-64 and PPC64 host, respectively, and are about 31.2%
and 32.3% of the native speed, respectively. As for x86-32

1. We failed to enable hardware counters on these two platforms.
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Fig. 5: SPEC CPU2006 results of x86/32-x86/64, ARM-x86/64, ARM-PPC64 and x86/32-ARM emulation with reference inputs.

0%

20%

40%

60%

80%

100%

libquantum

astar
mcf

sjeng
bzip2

perlbench

h264ref

calculix

milc
soplex

lbm sphinx3

gamess

dealII
zeusmp

tonto

Im
p

ro
v
e

m
e

n
t

81.6

17.0

7.3 4.2 3.9 1.9 1.6

25.8

12.5 11.2 9.0
5.5 5.2

2.2 1.6 1.4

Fig. 6: Improvement of trace merging with x86 to x86-64
emulation for SPEC CPU2006 with reference inputs.

to ARM emulation, HQEMU-M achieves 2.8X speedup
over QEMU for CINT with reference inputs, and is about
37% of the native speed. The results show the retar-
getability of HQEMU and that the optimizations used
in HQEMU can indeed achieve performance portability.

The above results show that QEMU is suitable for em-
ulating short runs or programs with very few hot blocks
(Appendix C). The LLVM configuration is better for long
running programs with heavy reuse of translated codes.
HQEMU has successfully combined the advantages of
both QEMU and LLVM, and can efficiently emulate both
short- and long-running applications. Furthermore, the
trace formation and merging in HQEMU expand the
power of LLVM optimization to significantly remove
redundant loads/stores. With HQEMU, cross-ISA emu-
lation is getting closer to the performance of native runs.

6.1.3 Results of Trace Formation and Trace Merging

To evaluate the impact of trace formation and trace merg-
ing, we use x86-32 to x86-64 emulation with SPEC
CPU2006 benchmarks as an example to show how much
emulation overhead can be removed from reducing
code region transitions. In this experiment, the total
number of memory operations in each benchmark is
measured for (a) LLVM, (b) HQEMU with trace for-
mation only, and (c) HQEMU with both trace forma-

TABLE 2: Measures of traces with x86 to x86-64 emulation
for SPEC CPU2006 benchmarks with reference input. (Unit of
time: second. Unit of column six and seven: 1010 memory-ops.)

CINT2006
Benchmark # Trace Trans. Time # Mg. Ver. (b)-(a) (c)-(b)
perlbench 13102 20.9 (1.7%) 6 4 126.7 7.1
bzip2 3084 5.2 (0.5%) 43 4 224.0 27.3
gcc 159769 215 (25.4%) 40 5 210.6 3.1
mcf 276 .6 (0.6%) 13 3 31.3 9.0
gobmk 43228 54.5 (3.9%) 57 4 136.8 3.4
hmmer 938 1.9 (0.2%) 0 0 136.6 .0
sjeng 1438 1.8 (0.1%) 33 4 159.6 36.4
libquantum 221 .4 (0.1%) 2 1 24.8 319.4
h264ref 6308 12.6 (0.6%) 1 1 396.4 16.4
omnetpp 1773 3.4 (0.4%) 7 3 39.9 6.4
astar 1074 1.8 (0.3%) 37 8 87.2 34.8
xalancbmk 3220 7.4 (1.0%) 0 0 136.2 .0

CFP2006
Benchmark # Trace Trans. Time # Mg. Ver. (b)-(a) (c)-(b)
bwaves 364 1.3 (0.1%) 1 1 81.5 .7
gamess 10624 27.7 (1.2%) 61 5 402.9 27.1
zeusmp 1659 6.5 (0.6%) 25 6 163.5 9.5
cactusADM 977 2.2 (0.1%) 1 1 226.0 -9.3
namd 1085 3.3 (0.5%) 6 1 224.1 3.7
dealII 3911 6.3 (0.6%) 11 3 79.6 11.8
soplex 2461 6.3 (1.2%) 11 1 47.0 48.9
povray 1958 4.5 (0.6%) 1 1 76.9 -6.4
calculix 3484 6.8 (0.3%) 15 3 393.5 372.9
tonto 4997 12.0 (0.6%) 12 2 177.3 17.9
lbm 164 0.4 (0.1%) 1 1 78.3 13.6
wrf 5441 13.2 (0.7%) 20 2 349.0 7.4

tion and merging. The difference between (a) and (b)
represents the number of redundant memory accesses
eliminated by trace formation; the difference between (b)
and (c) represents the impact of trace merging. Hard-
ware monitoring counters are used to track the events,
MEM INST RETIRED:LOADS/STORES, and to collect
the total number of memory operations. Table 2 lists the
results of such measurements for CINTs and CFPs.

Column two in Table 2 presents the total number of
traces generated in each benchmark. Column three lists
the total translation time by the LLVM compiler and
its percentage over total execution time. Each trace is
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associated with a version number and is initially set
to zero. After trace merging, the version number of
the new trace is set to the maximum version number
of the traces merged plus one. The number of traces
merged and the maximum version number are listed in
column four and five, respectively. The reduced numbers
of memory operations after trace formation (b)-(a) and
trace merging (c)-(b) are listed in column six and seven,
respectively. The improvement rate by trace merging is
shown in Figure 6. From Table 2, we can see that most
redundant memory operations can be eliminated by
trace formation in almost all benchmarks. libquantum
has the most redundant memory operations eliminated
and the most significant performance improvement from
trace merging (see Figure 6).

As for libquantum, its hottest code region is com-
posed of three basic blocks, and its CFG is shown in
Figure 2(a). The code region is split into two separate
traces by the NET trace selection algorithm. During trace
transitions, almost all general-purpose registers of the
guest architecture need to be stored and reloaded again.
In addition, there are billions of transitions between
these two traces during the entire execution. Through
trace merging, HQEMU successfully merges these two
traces with its CFG shown in Figure 2(a). It keeps the
execution staying within this region. Thus, its perfor-
mance is improved by 82%. The analysis of translation
overhead and the breakdown of time with reference inputs
are presented in Appendix D.

6.2 Emulation of Multi-Thread Programs

In the following experiments, we evaluate the perfor-
mance of HQEMU for multi-threaded programs. PAR-
SEC [13] version 2.1 is used as the testing benchmarks.

6.2.1 Experimental Setup

The experiments are conducted on two systems: (1)
eight six-core AMD Opteron 6172 processors (48 cores
in total) with a clock rate of 2 GHz and 32 GBytes
main memory; (2) the ARM platform listed in Table
1. The PARSEC benchmarks are evaluated with the
native and simlarge input sets for x86-64 and ARM
platform, respectively. All benchmarks are parallelized
with the Pthread model and compiled for x86-32 guest
ISA with PARSEC default compiler optimization and
SIMD enabled. We compare their performance to native
execution with three different configurations: (1) QEMU,
(2) HQEMU (multi-thread mode), and (3) QEMU-Opt

which is an enhanced QEMU with IBTC optimiza-
tion and block chaining across page boundary. For all
configurations, atomic instructions are emulated with
lightweight memory transactions so that the benchmarks
can be emulated correctly.

6.2.2 Overall Performance of PARSEC

Figure 7 illustrates the performance results of all PAR-
SEC benchmarks with native input sets for x86 to x86-64
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emulation. The X-axis is the number of worker threads
created via the command line argument. The Y-axis is the
elapsed time measured in seconds with the time com-
mand. As shown in Figure 7(a) to 7(j), the performance
of QEMU does not scale well. In all sub-figures, the
execution time increases dramatically when the number
of guest threads increases from 1 to 8, then decreases
with more threads. It remains mostly unchanged as the
number of threads is above 16. The poor scalability
of QEMU is mostly due to the sequential translation
of branch targets within the QEMU dispatcher because
the mapping directory is protected in a critical section.
Since IBTC optimization is not used in QEMU, the
execution threads frequently enter dispatcher for branch
target lookups. Although the computation time can be
reduced through parallel execution with more threads,
the overhead incurred by thread contention can result in
significant performance degradation.

Figure 8 shows the breakdown of time for
blackscholes with simlarge input set for QEMU. Lock
and Other represent the average time of a worker thread
spent in critical sections (including wait and directory
lookup time) and for the remaining code portions,
respectively. As the figure shows, the time of Other
decreases linearly with the number of threads because
of increased parallelism. The time of Lock increases
significantly because the worker threads contend for
the critical section within the dispatcher where the
serialization lengthens the wait time. Moreover, the
time increased from such serialization outweighs the
reduced execution time when more worker threads are
added. Such high locking overhead dominates the total
execution time, and results in poor performance of the
parallel PARSEC benchmarks. We can see from several
benchmarks (e.g. blackscholes, bodytrack and
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Fig. 7: PARSEC performance results of x86 to x86-64 emulation using native input set. The unit of Execution Time in Y-axis is
second. X-axis shows the number of threads.
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Fig. 10: Comparison of using software memory transactions
and global lock scheme for canneal and fluidanimate. X-
axis shows the number of threads, and the unit of time for
Y-axis is in seconds.

swaptions in Figure 7) that emulating single thread
with the vanilla QEMU results in the best performance
compared to its multi-threaded counterparts.

With IBTC optimization, keeping the execution
threads staying in the code cache alleviates the large
overhead that includes the cost of context switching
and threads contention in the dispatcher. Performance
gains from IBTC can be observed by comparing QEMU-
Opt and QEMU. The trace formation of HQEMU fur-
ther improves the indirect branch prediction via indi-
rect branch inlining. It also eliminates a large amount
of redundant load/store instructions related to storing
and reloading the architecture states. Highly-optimized
host code generated by LLVM makes HQEMU achieve
significant performance improvement over both QEMU
and QEMU-Opt. The performance curve with HQEMU
is very similar to that of native execution.

Figure 9 shows the overall performance of QEMU,
QEMU-Opt and HQEMU over native execution with 32
guest threads. A significant improvement of about 6X
speedup on average is achieved with QEMU-Opt over
QEMU because of the IBTC optimization. This result
shows that the design of shared mapping directory in
the QEMU dispatcher is inadequate for emulating multi-
threaded guest applications. HQEMU achieves about
25X and 4X speedup over QEMU and QEMU-Opt, re-
spectively. It runs at 28.6% of the native speed on average
with 32 emulated threads.

6.2.3 Performance of Lightweight Memory Transactions

In this experiment, we evaluate performance of emulat-
ing atomic instructions by comparing lightweight memory
transactions with the global lock scheme. The comparison
is conducted using QEMU-Opt and HQEMU. Because
the global lock scheme could sometime cause deadlocks
while running PARSEC benchmarks, we annotate the

addresses that could cause data races and insert lock-
unlock pair while translating the instructions that ref-
erence these addresses. Figure 10 shows the results for
benchmark canneal and fluidanimate. As the figure
shows, the scalability is poor with the global lock scheme
for both QEMU-Opt and HQEMU. The performance
remains poor when emulating multiple threads, and the
performance of fluidanimate even starts to degrade
when the number of threads increases over 4 threads.
In contrast, the performance improves linearly with the
number of threads using lightweight memory transactions,
about 8X and 9X speedup over the global lock scheme with
32 threads for canneal. and fluidanimate, respec-
tively. Benchmark streamcluster also shows slight
improvement (2X with 32 threads) using lightweight
memory transactions. No significant improvement is
observed for the rest of benchmarks because they have
fewer thread contentions for shared memory locations at
runtime.

6.2.4 PARSEC Results for x86-32 to ARM Emulation

Figure 11 illustrates the results of three benchmarks for
x86-32 to ARM emulation with simlarge input sets. As
shown in Figure 11(a) and 11(b), the performance of
QEMU does not scale well for benchmark blacksholes
and swaptions. This is because larger number of
threads will likely cause serialization of threads in the
QEMU dispatcher. The performance of QEMU on the
ARM platform does not degrade as significantly as
that on the x86-64 platform (e.g. Figure 7(a)). This is
because synchronization on the ARM platform’s single
chip multiprocessor (CMP) is much less expensive than
that on the AMD Opteron machine whose 8 proces-
sors are based on the nonuniform memory architecture
(NUMA). For QEMU-Opt and HQEMU, the results are
similar to those on the x86-64 host. Figure 11(c) shows
the performance result of canneal compared with the
global lock scheme. In Figure 11(c), the result of native
run is not shown because canneal includes some code
written in assembly language, currently not supporting
the ARM architecture. The only way to run canneal on
the ARM platform is through binary translation. As the
figure shows, using lightweight memory transactions, it
also achieves better performance than the global lock
scheme, with about 26% improvement when emulating
4 execution threads with HQEMU.

7 RELATED WORK

Dynamic binary translation is widely used for many pur-
poses: transparent performance optimization [7], run-
time profiling [14], [15] and cross-ISA emulation [16].
With the advances of multicore architectures, several
multithreaded DBT systems exploiting multicore re-
sources for optimization have been proposed in the
literatures. However, most of them have very different
objectives and approaches in their designs.

A very relevant work to HQEMU is [17] which also
integrates QEMU and LLVM. In their system, the authors
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Fig. 11: PARSEC results of x86-32 to ARM emulation with simlarge input sets. X-axis shows the number of threads, and the
unit of time for Y-axis is in seconds.

target small programs with ARM to x86-64 emulation. It
sends one block at a time to LLVM when the TCG trans-
lator determines it is worthy of optimization. Hence, the
performance of the translated code was very poor. They
also did not consider the retargetability issue in their
DBT. It requires a different binary to LLVM translator
for each different ISA, instead of using TCG as an IR as
in HQEMU. Unlike their framework, HQEMU applies
sophisticated LLVM optimization on traces. Therefore, it
can benefit from the advantage of long traces. HQEMU
also exposes the opportunities to eliminate redundant
load/store instructions during code region transitions.

Brander et al. [18] also use LLVM for JIT compila-
tion. They perform hot region profiling with a much
higher threshold to keep the LLVM compile time low.
In contrast, we can use a low profiling threshold (i.e. 50)
because our LLVM translator runs on another thread,
i.e., it does not interfere with the execution threads, and
thus the translation overhead can be hidden.

Ha [19] and Bohm [20] proposed the strategy of
spawning one or multiple helper thread(s) for JIT trace
compilation so that concurrent interpretation and JIT
trace compilation can be achieved. Their approach used
trace profiling and prediction while interpreting guest
programs. Instead of using interpreter, our emulation
process is based on JIT compilation. We instrument trace
detection routine in the block binary code, and efficiently
redirect execution to trace cache as soon as the optimized
code is ready. They also did not use HPM to reduce
profiling overhead as in HQEMU during trace merging.

COREMU [10], a full-system emulator based on
QEMU. It emulates multiple cores by creating multiple
instances of sequential QEMU emulators. The system
is parallelized by assigning multiple QEMU instances
to multiple threads. With the same goal of COREMU,
PQEMU [21] takes a different approach to have only one
instance of QEMU but parallelizes it internally. Through
sophisticated arrangement of critical sections, PQEMU
achieves minimal overhead in locking and unlocking
shared data. The advantage of their approach is that the
performance of emulating multi-threaded programs can
be enhanced because each guest thread is handled by
a separate emulator thread. However, the emulation of
single-threaded program cannot benefit as much because
they did not try to optimize the target guest code in

each thread. In contrast, HQEMU assigns DBT function
to separate threads so very sophisticated optimizations
can be applied to each guest thread without incurring
overheads on the application threads. The performance
of both single-threaded and multi-threaded guest pro-
grams can be improved on multicore systems.

Hiniker et al. [6] addresses the trace separation prob-
lem in two trace selection algorithms, NET and LEI.
The authors focus on the issues of code expansion and
locality for same-ISA DBT systems. A software-based
approach for trace merging is also proposed. Davis and
Hazelwood [22] also use software-based approach to
solve trace separation problem by performing a search
for any loop back to the trace head. Our work targets
cross-ISA DBT systems and addresses issues of trace sep-
aration problem especially for performance and emula-
tion overhead. We reduce redundant memory operations
during region transitions and use a novel trace combi-
nation approach based on HPM sampling techniques.

Kistler and Franz [23], [24] proposed an optimiza-
tion framework which continually reoptimize programs
based on the execution profiles collected from instru-
mentation and hardware counters. Their system is based
on source code optimizations which reoptimize a high-
level and type-safe intermediate format. In contrast,
HQEMU operates on the binary images directly. ADORE
[25] is a lightweight dynamic optimization system based
on HPM. Using HPM sampling profiles, performance
bottlenecks of the running applications are detected and
optimized. Chen et al. [26] proposed some techniques
to improve the accuracy of HPM sampling profiles.
These work motivate us to exploit HPM-based sampling
techniques for our trace merge algorithm. However, [26]
and [25] are not multi-threaded DBTs.

Optimization for indirect branch handling in DBT
systems has been studied in several literatures [14], [16].
Pin [14] uses an indirect branch chain, and for each
indirect branch instruction, Pin associates it with one
chain list. Unlike Pin, we use a big per-thread hash
table shared by all indirect branches. Shadow stack [16]
is used to optimize the special type of indirect branch,
return, by using a software return stack. This approach
works fine for the guest architecture that has explicit
call and return instructions, but it does not work for
ARM because function return in ARM can be implicit. In
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contrast, we use IBTC for all indirect branch instructions,
including returns. Our approach is retargetable for any
guest architecture.

8 CONCLUSION

In this paper, we presented HQEMU, a multi-threaded
retargetable dynamic binary translator on multicores.
HQEMU runs a fast translator (QEMU) and an
optimization-intensive translator (LLVM) on different
processor cores. We demonstrated that such multi-
threaded QEMU+LLVM hybrid approach can achieve
low translation overhead and with good translated code
quality on the target binary applications. We showed that
this approach could be beneficial to both short-running
and long-running applications. We have also proposed a
novel trace merging technique to improve existing trace
selection algorithms. It can effectively merge separated
traces based on the information provided by the on-
chip hardware HPM and remove redundant memory
operations incurred from transitions among translated
code regions. It can also detect and merge traces that
have trace separation and early exit problems using
existing trace selection algorithms. We demonstrate that
such feedback-directed trace merging optimization can
significantly improve the overall code performance. We
also use the IBTC optimization and lightweight memory
transactions to alleviate the problem of thread contention
when a large number of guest threads are emulated.
They can effectively eliminate the huge contention over-
head incurred from indirect branch target lookups and
the emulation of atomic instructions.
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Algorithm 1: Trace profile and prediction

1: profile stub label:

2: jump < target >

3: if enable profile[i] = TRUE then

4: counter ← counter + 1
5: if counter ≥ threshold then

6: enable predict← TRUE

7: end if

8: end if

9: predict stub label:

10: if enable predict = TRUE then

11: if PC exists in recording list then

12: enable predict← FALSE

13: CompileTrace(recording list)

14: else

15: Add PC to recording list

16: end if

17: end if

Fig. 12: An example of trace detection and the pseudo code
of the profiling and prediction stubs.

APPENDIX A
TRACE FORMATION AND OPTIMIZATION

In the execution of the translated code from the code
caches, we may need to load and store guest registers
during code region transition. The problem is that DBT
usually translates one code region at a time, often at the
granularity of one basic block. Hence, it performs regis-
ter mapping only within one code region. To ensure the
correctness of emulation, the values of the guest registers
are required to be stored back to the memory before
control is transferred to the next code region, and be
reloaded at the beginning of the next code region. Even
if two code regions have a direct transition path (e.g.
through block chaining, shadow stack [16] or IBTC [8])
and also have the same guest to host register mappings,
values of the guest registers still need to be stored and
reloaded because we cannot be sure if any of these code
regions could be the jump target of an unknown code
region.

Because of these independently translated code re-
gions and the resulting frequent storing and reloading of
registers during code region transitions, the performance
could suffer significantly. Enlarging the code regions, i.e.
trace formation, can alleviate such overheads. A relaxed
version of Next Executing Tail (NET) [5] is chosen as
our trace selection algorithm, where trace formation is
terminated only when the same program counter (PC)
is executed again. This relaxed algorithm is similar to
the cyclic-path-based repetition detection scheme in [27].

In HQEMU, a trace is detected and formed by locating
a hot execution path through an instrumentation-based
scheme. Figure 12 gives an example of the trace detection
and formation scheme. Two small pieces of codes: a
profiling stub and a prediction stub, are inserted at the
beginning of each translated code region in the block-
code cache. The profiling stub determines whether a block
is becoming hot or not. The prediction stub will then
append a hot code block to a list, called recording list.
The code blocks on the recording list will be combined
into traces later. The pseudo code of these two stubs is
shown in Algorithm 1 in Figure 12.

To detect a hot trace for further optimization, we have
to locate the head code block of the candidate trace first.

During the emulation, the QEMU dispatcher gets the
starting PC of the next guest basic block to be executed.
The dispatcher looks up a directory to locate the trans-
lated host code block pointed to by this PC. If there is
a miss in the directory, the emulation module translates
the guest block and adds an entry to the directory. If it
is a hit, the basic block has been translated before and
a cyclic execution path is found. This basic block is a
potential trace head, and its associated profiling routine
is enabled. The counter is incremented each time this
block is executed. When the counter reaches a threshold,
the prediction routine is activated to record the blocks
following the head block executed in recording list. When
the prediction routine detects that a head block is already
in the recording list, a cyclic path is formed and the
trace prediction stops. A request is issued to the LLVM
translator through the optimization request FIFO queue.
The LLVM translator periodically checks whether there
are requests on the FIFO queue.

After optimizations by LLVM, the head block of the
trace is patched a direct jump (line 2 in Algorithm 1)
and the execution is redirected from the unoptimized
codes to the optimized codes. This jump patching is
processed asynchronously by the LLVM translator, and
is transparent to the executing threads. We use self-
branch patching mechanism proposed in [28] to ensure
the patching is performed correctly when a multi-thread
application is being emulated. The store/load of registers
to/from memory within a trace is optimized by pro-
moting these memory operations to register accesses (i.e.
LLVM Mem2Reg pass). Since a trace is formed because
of its hotness, significant block transition overhead is
avoided.

APPENDIX B
IMPLEMENTATIONS OF INDIRECT BRANCH

TRANSLATION CACHE (IBTC)

Figure 13 illustrates the implementation of our IBTC
hash table. The IBTC lookup is implemented as a helper
function. The function takes the guest address as its
parameter and returns the corresponding host address.
Each indirect branch instruction (the left box in Figure
13) is translated as calling the lookup routine and then
jumping indirectly (JMPr) to the address returned from
this lookup routine. The IBTC hash table is declared with
the __thread identifier. Thus, each execution thread
has its own private IBTC hash table and no table lock-
ing is required. This implementation has the following
advantages: (1) the use of helper function is portable
across different host architectures, (2) the threads incur
no locking overhead while performing table lookup, and
(3) Luk [14] and Kim [29] reported that the hardware BTB
prediction rate of the indirect jump will be poor if the
lookup’s indirect jump is shared by all indirect branches
in the application (i.e. all indirect jumps lead to the
same dispatch code and a single BTB entry is required
to provide all the target addresses). HQEMU does not
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GuestPC HostPC

IndirectBr: CALL LookupIBTC (PC)

JMPr %ret

Other indirect

jumps

return HostPC

IBTC hashtable

LookupIBTC: 

Code cache 

Fig. 13: Implementation of IBTC hash table lookup routine in HQEMU.

TABLE 3: Average search depth of Pin’s indirect branch chain for CINT2006 with reference inputs.

perl bzip2 gcc mcf gobmk hmmer sjeng libquan. h264ref omnetpp astar xalanc.
Tail 6.69 5.50 3.44 1.03 4.52 1.22 3.44 3.22 5.77 3.92 1.02 3.22

Head 7.15 5.25 5.27 1.47 7.81 3.02 5.42 1.36 5.67 4.23 1.01 3.56
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Fig. 14: Performance comparison of Pin’s indirect branch chain
with IBTC hash table for CINT2006 with reference inputs.

suffer such problem because we inline the IBTC lookup’s
indirect jump (i.e. the JMPr instruction in Figure 13) in
the code cache.

The performance of IBTC hash table depends on its
number of hash entries. In HQEMU, we set the number
of entry to 65536 and it can achieve more than 99%
lookup hit rate for all CPU2006 benchmarks with ref-
erence inputs. We also implemented another IBTC with
Pin’s indirect branch chain [14] for comparison purpose.
Figure 14 shows the performance of the indirect branch
chain approach (using the IBTC hash table approach as
the baseline for comparison) for CINT2006 benchmarks
with reference inputs. In this experiment, the maximum
chain length is set to 16. We made one change to original
Pin’s algorithm that when the list of chain reaches the
maximum chain length, the address comparison will go
to our IBTC hash table of replacement instead of using
another hashed comparison chain list. We also compare
the performance of attaching a new chain entry to the
tail or head of the chain list.

As Figure 14 shows, the indirect branch chain ap-
proach results in about 7% and 11% slowdown on
average with attachment in tail and head, respectively,
compared with IBTC hash table. Table 3 lists the average
search depth with indirect branch chain. The result
shows that the indirect branch chain approach requires
several steps to reach the matched chain entry. Since
HQEMU can achieve 99% hit rate (i.e. 99% indirect
branches executed requires only one comparison), we

demonstrate that our IBTC hash table can achieve better
performance.

APPENDIX C
PERFORMANCE OF SHORT-RUNNING PRO-
GRAMS FOR SPEC2006 BENCHMARKS

Figure 15 illustrates the overall performance of x86-32
to x86-64, ARM to x86-64, ARM to PPC64, and x86-32
to ARM emulations against the native runs with test
inputs. The Y-axis is the normalized execution time over
native execution time. Note that in all figures, we do not
provide the confidence intervals because there was no
noticeable performance variation among different runs.
Figure 15(a) and 15(b) shows x86/32 to x86/64 emula-
tion results for integer and floating point benchmarks,
respectively. In Figure 15(a), the slowdown factors of
QEMU over native execution range from 2.5X to 21X and
the geometric mean is 7.7X. Most performance results of
LLVM are better than or close to those in QEMU except
for four benchmarks: perlbench, gcc, libquantum
and xalancbmk. The reason that LLVM configuration
has large slowdowns in these four benchmarks is be-
cause too much translation overhead is incurred without
being sufficiently amortized. On the other hand, bench-
marks hmmer and h264ref are two of the cases in which
the benefit of optimized code outweighs the translation
overhead, so that the LLVM configuration outperforms
the QEMU configuration.

As for HQEMU-M, all benchmarks run faster than
in both QEMU and LLVM configurations, including the
four benchmarks that did not perform well in LLVM
configuration compared to QEMU. The performance
difference is significant. In Figure 15(a), the average
slowdown of CINT is 7.7X for QEMU, and 12.3X for
LLVM, while the slowdown to native run is only 3.8X
for HQEMU-M. In Figure 15(b), the average slowdowns
of CFP are both 9.5x for QEMU and LLVM, while the
slowdown is only 3.3X for HQEMU-M. Although the
performance of HQEMU-S is not as impressive as in
HQEMU-M, it still outperforms both QEMU and LLVM.
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Fig. 15: SPEC CPU2006 results of x86/32-x86/64, ARM-x86/64, ARM-PPC64 and x86/32-ARM emulation with test inputs.
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Fig. 16: x86 to x86-64 emulation performance of gcc with
different number of LLVM translation threads with reference
inputs. X-axis shows the number of LLVM threads.

Using small test inputs, fast translation becomes more
important, and QEMU outperforms LLVM, based on the
averaged slowdown numbers. However, many of the
benchmarks can still benefit from better optimized code
even with short runs (i.e. with test inputs). This is where
HQEMU shines. It benefits from quick start-up as in
QEMU, but when the code reuse is high, it switches
its execution to the optimized trace code. The longer
the code runs, the greater the benefit from optimized
traces. Similar results are also observed for ARM to x86-
64, ARM to PPC64, and x86-32 to ARM emulations from
Figure 15(c) to 15(e).

APPENDIX D
OVERHEAD OF TRACE FORMATION AND MERG-
ING

As shown in column three of Table 2 (see main pa-
per), most CPU2006 benchmarks spend less than 1%
of the total time conducting trace translation. gcc is

an exception. It has a lot of basic blocks, but no clear
hot regions. About 160 thousand traces were generated
at runtime that took about 215 seconds for emulating
the x86-32 guest architecture (280 seconds for emulating
ARM). The translation time is about 25% of the total
execution time. Thanks to the multi-threaded approach
in HQEMU, this significant translation overhead can be
hidden by running the translation thread on a different
core to minimize the impact to the emulation thread.
Compared to the block translation overhead, the QE-
MU/TCG spends only 3 seconds translating all basic
blocks (0.3% of the total execution time).

To evaluate the impact of using different numbers of
LLVM optimization threads, we conduct the x86-32 to
x86-64 emulation with reference inputs on the quad-core
i7 machine and vary the number of LLVM threads from 1
to 3. Since most benchmarks spend less time performing
trace translation, there is no noticeable performance dif-
ference with the change in the number of LLVM threads
for all benchmarks except for gcc. The performance
result of gcc is presented in Figure 16. As the result
shows, the normalized execution time is reduced to
2.46X when adding one more LLVM optimization thread
and further reduced to 2.41X with three threads (about
11% improvement compared with using only one LLVM
thread).

Figure 17 illustrates the breakdown of instructions the
emulation thread spends within block-code cache, trace
cache and dispatcher in the HQEMU-M configuration for
SPEC CPU2006 benchmarks with reference inputs. As
the figure shows, most of the instructions are executed
within the trace cache. On average, 90% and 95% of
the total instructions in CINT and CFP benchmarks
are executed within the trace cache, respectively. These
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Fig. 17: Breakdown of time with x86 to x86-64 emulation for
SPEC CPU2006 benchmarks with reference inputs.

results show that the optimized code from the LLVM
translator is effectively utilized by the emulation thread
most of the time in those benchmarks.

APPENDIX E
COMPARISON OF LLVM OPTIMIZATION LEVELS

To evaluate the impact of LLVM optimization, we com-
pare the performance of SPEC2006 benchmarks with two
different LLVM JIT optimization levels, -O0 and -O2. The
results of -O1 and -O3 are not shown because they use
the same set of optimization passes as the -O2 optimiza-
tion level and thus with the same performance. The -O0
level only applies a fast intra-block register allocation
algorithm and dead code/block elimination; the -O2
level applies greedy global register allocation together
with several optimizations such as LICM, machine code
sinking, instruction scheduling, peephole optimizations,
and sophisticated pattern matching for instruction se-
lection, etc. Figure 18 shows the performance speedup
of -O2 over -O0 for x86-32 to x86-64 emulation with
reference inputs on the quad-core i7 machine. As the
result shows, the performance is improved by about 2.7X
and 2.1X on average by applying such aggressive opti-
mizations for CINT and CFP benchmarks, respectively.
The performance gain mostly comes from better host
instructions selected and better register allocation, which
achieves minimal stack memory operations.
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Fig. 18: x86 to x86-64 emulation performance for
CPU2006 benchmarks with reference inputs with differ-
ent LLVM optimization levels.


