
Exploiting Longer SIMD Lanes in Dynamic Binary Translation

Ding-Yong Hong1, Sheng-Yu Fu2, Yu-Ping Liu2, Jan-Jan Wu1 and Wei-Chung Hsu2

1Institute of Information Science, Academia Sinica

Email: {dyhong,wuj}@iis.sinica.edu.tw
2Department of Computer Science and Information Engineering, National Taiwan University

Email: {d03922013,r04922005,hsuwc}@csie.ntu.edu.tw

Abstract—Recent trends in SIMD architecture have tended
toward longer vector lengths and more enhanced SIMD features
have been introduced in the newer vector instruction sets.
However, legacy or proprietary applications compiled with short-
SIMD ISA cannot benefit from the long-SIMD architecture,
which supports improved parallelism and enhanced vector prim-
itives, and thus only achieve a small fraction of potential peak
performance. This paper presents a dynamic binary translation
technique that enables short-SIMD binaries to exploit the benefits
of the new SIMD architecture by rewriting short-SIMD loop code.
We propose a general approach that translates loops consisting
of short-SIMD instructions to machine-independent IR, conducts
SIMD loop transformation/optimization at this IR level, and
finally translates to long-SIMD instructions. Two solutions are
presented to enforce SIMD load/store alignment, one for the
problem caused by the binary translator’s internal translation
condition and one general approach using loop peeling optimiza-
tion. The benchmark results show that an average speedup of
1.45X is achieved for NEON to AVX2 loop transformation.

Index Terms—Dynamic binary translation, SIMD, vectoriza-
tion, alignment, dynamic loop peeling.

I. INTRODUCTION

Dynamic Binary Translation (DBT) is a common technique

to execute an application binary of one guest ISA on a host

machine with a different ISA. It operates directly on the binary,

providing the powerful functionality to inspect and modify

the runtime behavior of the applications without source code

available. One important application of DBT is that it allows

for cross-ISA migration of legacy or proprietary applications.

For example, many Android applications are either compiled

for the ARM ISA or include libraries in ARM native code

in the APK package. Based on DBT technique, the widely

used Android emulator can run such ARM executables on x86-

based platforms. The emulation performance is the key to the

success of a cross-ISA DBT. Hence, optimizing the translated

code quality is important in the design of a cross-ISA DBT.

Single Instruction Multiple Data (SIMD) architectures are

emerging as an essential extension to modern microprocessors,

such as NEON for ARM, SSE/AVX for x86, and MSA for

MIPS. The execution of a SIMD instruction simultaneously

performs the same operation on multiple data, and is power-

and execution-efficient. Recent trends in SIMD architecture

development have also tended toward wider vector lengths.

For instance, the Intel x86 architecture has gone through

several generations: from 128-bit SIMD with SSE to 256-bit

with AVX, to the most recent extension, AVX-512, which is

supported in Intel Skylake Xeon platforms. In addition, more

enhanced SIMD features are introduced in the newer SIMD

ISA, e.g., fused multiply-and-add (FMA) and gather/scatter

instructions. Many applications have enabled SIMD compu-

tations and achieved performance improvements of several

orders of magnitude, such as multimedia processing and scien-

tific computing [1]–[3]. We can expect that more applications

utilizing SIMD ISA will be developed.

The importance of SIMD has increased the importance of

supporting efficient translation of SIMD instructions in a DBT

system. Several prior works have proposed solutions to support

translation of SIMD instructions in cross-ISA DBTs. QEMU

[4] and the Android emulator emulate a SIMD instruction by

using a sequence of scalar instructions instead of leveraging

the host SIMD instructions. Alternatively, [5]–[8] focus on

finding effective mappings of SIMD registers and instructions

between different guest and host SIMD architectures. In these

DBT systems, guest SIMD instructions are translated to equiv-

alent host SIMD instructions using the same number of lanes

(e.g., ARM NEON instruction vadd.i32 is translated to x86

SSE paddl, both are for four-integer vector addition).

Unfortunately, for legacy application binary to run on host

architectures with longer SIMD lanes, these works still trans-

late guest SIMD instructions to host SIMD instructions for the

same SIMD width. As a result, these approaches cannot benefit

from the improved parallelism provided by the longer SIMD

lanes. Only a small fraction of the potential peak performance

can be achieved for the applications.

This paper seeks to exploit full parallelism of the longer

host SIMD lanes to accelerate the execution of guest SIMD

instructions. We propose a DBT system that enables short-

SIMD binaries to exploit the long-SIMD architecture by rewrit-

ing the short-SIMD binaries. We aim to transform a short-

SIMD loop into an equivalent long-SIMD loop optimized with

long-SIMD instructions. By increasing the number of SIMD

elements processed in each loop iteration, the execution time

can be shortened. This work focuses on rewriting loops that

consist of short-SIMD instructions; the loops before and after

the transformation are respectively denoted as short-SIMD and

long-SIMD loops. We also improve the translated code quality

by exploiting new SIMD features in our DBT.

Designing such loop transformation involves several issues

when being applied to a longer vector. First, how will the

loop control be managed? This includes the adjustment of the

long-SIMD loop iteration and the situation if the number of

short-SIMD loop iteration is not divisible by that of the long-

SIMD loop. Second, there is a legality issue where in that the

short-SIMD loop is not always re-writable to the long-SIMD

loop due to memory dependence conflicts. This issue is more

challenging in a DBT than in a static compiler because a DBT

usually translates small granularity binary segments. Based on

the limited information from the input code segment, a DBT

may not always be able to determine whether the transforma-

tion would violate the dependence at time of translation. Third,

the SIMD architecture usually requires that data be aligned to

certain boundary for efficient memory access, usually based

on the vector length. This causes the problem that memory

accesses aligned in the original binary may become misaligned

when using long-SIMD instructions. Hence, how to enforce

SIMD load/store alignment remains a challenging issue. The

main contributions of this paper are as follows:

• We present the dynamic binary translation technique to

rewrite short-SIMD code to long-SIMD instructions. We

propose a general approach that translates the short-SIMD

binary to machine-independent IR, conducts SIMD loop

transformation at this IR level, and finally translates to

host long-SIMD instructions.

• We identify the alignment problem in which aligned

memory accesses can become misaligned when translated

to long-SIMD instructions. Two solutions, one for the

problem caused by the DBT internal translation condition

and one general approach using loop peeling optimiza-

tion, are presented to enforce SIMD load/store alignment.

• We implemented the proposed SIMD loop transformation

in a cross-ISA DBT. The effectiveness of the approach

is evaluated with translations from the short-SIMD ISA

(NEON) to two long-SIMD ISAs (AVX2, AVX512).

Benchmark results show that an average speedup of

1.45X can be achieved by doubling the vector length.

The rest of this paper is organized as follows. Section

II presents the approach of short-SIMD to long-SIMD loop

transformation. Section III describes the alignment problem

and our solutions. Section IV reports the experimental results.

Section V lists related work and Section VI concludes.

II. SHORT-TO-LONG SIMD LOOP TRANSFORMATION

The SIMD loop transformation is designed in HQEMU [9],

a DBT that integrates QEMU and an LLVM JIT compiler.

When a hot loop is detected, the loop binary is converted to

QEMU IR which is then converted to LLVM IR for optimiza-

tion. Since loops are usually good vectorization candidates

for traditional compilers and our DBT also selects loops for

LLVM optimization, this work focuses on loops as the SIMD

transformation candidates. We perform the transformation on

LLVM IR. The goal is to transform the IR of a short-SIMD

loop to an equivalent long-SIMD loop representation. As a

result, host long-SIMD instructions are emitted and advantages

of the host SIMD architecture can be exploited.

A. An Example of Short-to-Long SIMD Loop Transformation

Figure 1 shows the transformation from a short-SIMD loop

(ARM32 NEON) to a long-SIMD loop (x86-64 AVX2). Fig.

1(a) lists the loop source code. The source code is compiled

by GCC to a scalar loop, a NEON vector loop and a runtime

pointer check block in the binary. The assembly code of

the NEON vector loop body is shown in Fig. 1(b). In this

example, the base pointers of array x, y and z are respectively

mapped to registers %r1, %r2 and %r3. Four consecutive

single-precision floating-point data elements are executed at

a time with NEON. Fig. 1(c) shows the short-SIMD loop IR

translated from the NEON loop binary by the DBT.

From the source code in Fig. 1(a), we can observe that

the loop can also be vectorized with AVX2. Since AVX2 can

simultaneously operate 8 float data elements, we would like

to transform the short-SIMD loop to execute 8 elements at

a time instead of 4 in the original binary. The AVX2 vector

length is twice the width of the NEON vector. Thus, ideally

we will double the number of vector elements of each IR

vector type, modify the increasing value of the index from 16

to 32, and adjust the end iteration of vector loop. The finalized

long-SIMD loop IR is shown in Fig. 1(d).

The example in Fig. 1 shows that several issues have to be

solved for the transformation:

First, as the vector length is widened, the long-SIMD loop

will compute more data elements in a single loop iteration.

This implies that the number of loop iterations should be

reduced. Moreover, there are situations in which the short-

SIMD loop iterations cannot be completely consumed by the

long-SIMD loop. For instance, the last index the long-SIMD

loop can reach is 1024 instead of 1028 (i.e., 4096 instead

of 4112 in byte units). The remaining iterations still need to

be handled by the short-SIMD loop. This raises the issue of

managing loop controls of both short- and long-SIMD loops.

Second, traditional compilers need to consider memory de-

pendence when performing vectorization. Such legality issue

also needs to be verified in our loop transformation. This

issue is more challenging especially in a DBT compared with

traditional compilers because a DBT usually translates binary

code segments of a small granularity (e.g., a basic block or

a trace). Based on the limited information from the code

segment, a DBT may not always be able to determine whether

the transformation would violate dependence at translation

time. Moreover, a DBT usually has difficulty to recover such

semantic information because the information could be lost

in the binary level or the overhead of information recovery

is unacceptable for a DBT. Thus, a conditional translation

approach using runtime check for memory pointers is required

if the dependence cannot be verified at translation time. For

example, the pointer addresses of SIMD loads/stores in Fig.

1(c) are all unknown. If the addresses that are passed by

parameter z and x have a dependence distance of 16 bytes,

the translated AVX2 loop (vector size is 32 bytes) should not

be executed and an additional check must be done to prevent

it execution.

Third, the SIMD architecture usually requires that data be

aligned to a certain boundary for efficient memory accesses,

usually based on the vector length. As a result, the memory

accesses with the short vector are restricted to a small value

void

foo (float *x, float *y, float *z)

{

 for (int i = 0; i < 1028; i++)

 z[i] += x[i] * y[i];

}

L1:
(a) Source code

L1:

 vld1.32 {d16-d17}, [r3]

 vld1.32 {d18-d19}, [r1]!

 vld1.32 {d20-d21}, [r2]!

 vmla.f32 q8, q10, q9

 vst1.32 {d16-d17}, [r3]!

 cmp r3, r0

 bne L1

(b) ARM32 NEON assembly

Long-SIMD Loop

Short-SIMD Loop

Long-SIMD Epilog

Short-SIMD Loop

Peeling

Runtime Memory

Check

Long-SIMD Prolog

ShortSIMDLoop (SSL):

%ptr1 = phi [%r1, %Entry], [%ptr1.next, %SSL]

%ptr2 = phi [%r2, %Entry], [%ptr2.next, %SSL]

%ptr3 = phi [%r3, %Entry], [%ptr3.next, %SSL]

%vec1 = load <4 x float> * %ptr1 // x[i:i+4]

%ptr1.next = add %ptr1, 16

%vec2 = load <4 x float> * %ptr2 // y[i:i+4]

%ptr2.next = add %ptr2, 16

%vec3 = load <4 x float> * %ptr3 // z[i:i+4]

%vec4 = fmul <4 x float> %vec1, %vec2

%vec5 = fadd <4 x float> %vec3, %vec4

store %vec5, <4 x float> * %ptr3

%ptr3.next = add %ptr3, 16

%cond = icmp eq %ptr3.next, %end.4112

br %cond, label %Exit, label %SSL

(c) Short-SIMD loop IR

LongSIMDLoop (LSL):

%ptr1 = phi [%r1, %Entry], [%ptr1.next, %LSL]

%ptr2 = phi [%r2, %Entry], [%ptr2.next, %LSL]

%ptr3 = phi [%r3, %Entry], [%ptr3.next, %LSL]

%vec1 = load <8 x float> * %ptr1 // x[i:i+8]

%ptr1.next = add %ptr1, 32

%vec2 = load <8 x float> * %ptr2 // y[i:i+8]

%ptr2.next = add %ptr2, 32

%vec3 = load <8 x float> * %ptr3 // z[i:i+8]

%vec4 = fmul <8 x float> %vec1, %vec2

%vec5 = fadd <8 x float> %vec3, %vec4

store %vec5, <8 x float> * %ptr3

%ptr3.next = add %ptr3, 32

%cond = icmp eq %ptr3.next, %end.4096

br %cond, label %Exit, label %LSL

(d) Long-SIMD loop IR

Fig. 1: An example of NEON to AVX2 loop transformation. (Vector length is doubled)

Fig. 2: Block organization.

of the alignment boundary but the long vector needs a larger

value. Thus, memory accesses which are aligned in the orig-

inal binary may become misaligned after transformation. For

example, assume the situation where input array x is aligned

at the 16-byte boundary but not at the 32-byte boundary. The

accesses to x in the short-SIMD loop are always aligned, but

those with a long-SIMD load (AVX2) are always misaligned

because x is not aligned at the 32-byte boundary. Such a

misalignment penalty could nullify the performance gain from

the enhanced parallelization of the long-SIMD loop.

In the following subsections, we present the approaches for

control management and legality checking. The details of the

alignment problem are discussed in Section III.

B. Approach of the SIMD Loop Transformation

The input of the SIMD loop transformation is IR of a short-

SIMD loop. We first scan the IR to see if SIMD memory

patterns are contiguous. This work only considers contiguous

memory accesses and we leave the optimization of interleaved

data accesses for future work. After the IR is verified, the

short-SIMD loop IR can be transformed to the long-SIMD

loop, though it might not be executed due to violation of the

memory dependence. In front of the short-SIMD loop body,

we add five additional basic blocks: RuntimeMemoryCheck,

LongSIMDProlog, ShortSIMDLoopPeeling, LongSIMDLoop-

Body and LongSIMDEpilog. Figure 2 shows the block dia-

gram and control flow of the transformed blocks.

In the following description, we use the terms ShortV S and

LongV S to respectively represent the vector size of the short

and long vectors. Expand represents the expanded vector

factor which is computed from

Expand = LongV S / ShortV S.

Before generating the long-SIMD loop, we must compute the

start and end iteration of the long-SIMD loop. From analyzing

the indexing variable (i.e., a PHI node) of the short-SIMD

loop, we can retrieve three values – ShortStart, ShortEnd

and ShortStep which are respectively the start iteration, end

iteration and step value of the short-SIMD loop. The three

values LongStart, LongEnd and LongStep of the long-

SIMD loop can be computed with

LongStart = ShortStart,

LongEnd = ShortEnd− ((ShortEnd− ShortStart)%LongV S),

LongStep = LongV S,

and the calculations are inserted in LongSIMDProlog. Now,

the long-SIMD loop body is populated by replicating the

IR instructions of the short-SIMD loop with the following

adjustments: the iteration of the long-SIMD loop is replaced

with the computed three values, and the number of vector

elements is multiplied by Expand for each vector type.

Using the motivating example in Fig. 1(c), with transfor-

mation from NEON to AVX2 the value Expand is 2 (i.e.,

32-byte/16-byte). The short-SIMD loop’s three values (%r3,

%end.4112, 16) are found by scalar evolution analysis with

the indexing variable, %ptr3. The long-SIMD loop (Fig. 1(d))

is generated with the new three values, (%r3, %end.4096, 32),

and the number of vector elements is updated to 8.

In the LongSIMDProlog block, in addition to computing the

three values of the long-SIMD loop, we add a small test for

the number of iterations, LongEnd − LongStart. We force

the execution directly going to the short-SIMD loop instead

of the long-SIMD loop if the iteration count is too small.

In the LongSIMDEpilog block, we need to calculate the

resuming iteration from which the short-SIMD loop will start.

This resuming value can be either ShortStart if it comes

directly from LongSIMDProlog or the remaining iteration,

LongEnd, from the long-SIMD loop. The short-SIMD loop

float x[1024], y[1024], z[1024];

void foo() {

 for (int i = 0; i < 1024; i++)

 z[i] += x[i] * y[i];

}

(a) Source code

L1:

 movaps 0x80496c0(%eax), %xmm0

 add $16, %eax

 mulps 0x804a6d0(%eax), %xmm0

 addps 0x804b6f0(%eax), %xmm0

 movaps %xmm0, 0x804b6f0(%eax)

 cmp $4096, %eax

 jne L1

(b) x86-32 SSE assembly code

L1:

 vld1.64 {d16-d17}, [r3 :64]

 vld1.64 {d18-d19}, [r1 :64]!

 vld1.64 {d20-d21}, [r2 :64]!

 vmla.f32 q8, q10, q9

 vst1.64 {d16-d17}, [r3 :64]!

 cmp r3, r0

 bne L1

#define ALIGN32
(c) ARM32 NEON assembly code

Fig. 3: A loop example of global arrays compiled with x86-32 SSE and ARM32 NEON.

will resume from this value or just skip if the long-SIMD loop

has finished all loop iterations. In the example of Fig. 1(d),

the long-SIMD loop can only run until the end value 4096 is

reached, and the short-SIMD loop will finish the last iteration.

The aforementioned indexing variable is also an induction

variable. For inductions other than the indexing variable,

e.g., %ptr1 and %ptr2, the rewriting scheme is similar to

that of the indexing variable. Vector reduction variables are

handled similarly to traditional compilers for scalar to vector

transformation. The rewriting scheme is as follows: (1) A long-

SIMD variable is initialized in LongSIMDProlog for each

long-SIMD reduction, and its initial value is set up by the

initial value of the corresponding short-SIMD reduction. (2)

The long-SIMD loop performs vector reduction operations

on such long-SIMD variables. (3) In LongSIMDEpilog, the

resultant long-SIMD reduction is split into partial short-SIMD

reductions. The final result is computed by performing short-

SIMD reduction operations on all partial reductions. (4) The

resuming reduction value of the short-SIMD loop is updated

with the final result computed in (3).

C. Runtime Memory Verification

Considering memory dependence, a runtime memory check

of pointers is required if the DBT cannot determine from

the short-SIMD loop IR whether the transformed long-SIMD

loop can be executed or not. For such a case, checking codes

are inserted in the RuntimeMemoryCheck block to conduct

memory dependence verification. Given a group of SIMD

store pointers and a group of SIMD load pointers collected

from the short-SIMD loop, the distance of each load-and-

store address pair is checked against the long-SIMD vector

length, LongV S. Any violation to the dependence will force

the execution to jump directly to the short-SIMD loop.

The runtime memory check can be optimized out if the DBT

can compute the distances at translation time. For example,

different from the source code in Fig. 1(a), the arrays in Fig.

3(a) are global arrays. In this case, the base addresses of

such global arrays are directly encoded in the x86 instructions

within the SSE loop, as shown in Fig. 3(b). By analyzing the

short-SIMD loop IR instructions, the DBT can compute access

patterns of the memory pointers, e.g., 0x80496c0+%eax,

0x804a6e0+%eax and 0x804b700+%eax, and conclude that

the dependence distances are always of fixed large values and

never violated. The short SSE loop can be safely transformed

to AVX2 without inserting any runtime check code.

Figure 3(c) shows the ARM32 NEON binary compiled from

the same loop source code. Different from SSE binary, array

base addresses are not encoded in the ARM instructions be-

cause such address encoding is not supported by the addressing

mode of NEON load/store instructions. Instead, the addresses

are loaded into general-purpose registers before entering the

loop body (e.g., %r1, %r2, and %r3 in this case). As a result,

address information of the arrays is missing in the short-SIMD

loop IR. The DBT cannot verify the dependence distance at

translation time, and thus runtime memory check is needed.

III. ALIGNMENT PROBLEM

Recall that during the SIMD loop transformation, the short-

SIMD load/store instructions are rewritten to long-SIMD

load/store instructions by expanding the access size. However,

the long-SIMD loads/stores can incur a significant perfor-

mance penalty if the accessed data is not properly aligned with

the long-SIMD ISA. This is because most SIMD architectures

are designed with alignment constraint, usually based on the

vector length, e.g., 16-byte boundary for NEON/SSE and 32-

byte for AVX2. The accessed data of the short-SIMD binary

are aligned according to the short-SIMD alignment constraint.

When running on a long-SIMD machine, the data are very

likely to be placed at memory locations with old alignment

constraints and may not satisfy the alignment constraints of

the long-SIMD ISA. Hence, data accesses with long-SIMD

loads/stores become misaligned.

This misalignment situation can be relieved if the data of the

source program are placed at a larger alignment boundary on

the long-SIMD machines. As the data’s alignment can satisfy

the long-SIMD platform’s alignment requirement, the trans-

formed long-SIMD loads/stores will not cause any misaligned

accesses. For example, the programmer can force data to align

at 64-byte boundaries. The transformed binary can run on

AVX2 and AVX512 machines (the alignment boundaries are

32- and 64-byte, respectively) without incurring misaligned

accesses. To verify this scenario, we perform an experiment

on a nested loop with NEON to AVX2 translation. The source

code is listed in Fig. 4(a). In the source code, the global

arrays are aligned at the 32-byte boundary which matches the

alignment constraint of AVX2. The transformed long-SIMD

loop should ideally have no misaligned memory accesses to the

global arrays. Surprisingly, the long-SIMD loads/stores are all

misaligned (profile data is listed in Section IV-C). The details

of this problem are described in the next subsection.

#define ALIGN32
 __attribute__((aligned(32))

float x[1024] ALIGN32;
float y[1024] ALIGN32;
float z[1024] ALIGN32;
void foo() {
 for (int j = 0; j < 1024; j++) {
 for (int i = 0; i < 1024; i++)
 z[i] += x[i] * y[i];
 }
}

(a) Source code

S0: ldr r2, [pc, #52]

S1: movw r3, #51008

S2: movt r3, #6

S3: add r1, r2, #4096

S4: vld1.64 {d16-d17}, [r3 :64]

S5: vld1.64 {d18-d19}, [r1 :64]!

S6: vld1.64 {d20-d21}, [r2 :64]!

S7: vmla.f32 q8, q10, q9

S8: vst1.64 {d16-d17}, [r3 :64]!

S9: cmp r3, r0

S10: bne S4

S11: subs ip, ip, #1

S12: bne S0

(b) ARM32 NEON assembly code

S0

S1

S2

S3

S4

S5

…

S10

S4

S5

…

S10

(c) Code fragments decoded by DBT

Fig. 4: A nest loop example with transformation from NEON to AVX2.

A. DBT Termination Condition

When an un-translated binary code is encountered, a DBT

starts to decode and translate a fragment of binary code. In the

decode phase, a DBT has to decide when the binary decoding

should be terminated. A DBT usually stops decoding binary

code when a control transfer instruction is encountered, e.g., a

branch, call, or return instruction. Such a termination condition

based on control transfer instructions is widely applied in

many DBTs. Fig. 4(b) shows the ARM32 NEON assembly

code of the nested loop in Fig. 4(a). As Fig. 4(b) shows, the

inner loop is composed of the instructions from S4 to S10,

and the outer loop is from S0 to S12. The DBT first decodes

the outer loop starting from S0 until the first control transfer

instruction, S10, is reached—thus the first code fragment, S0

to S10, is translated. Then, the instruction S10 branches to S4

(i.e., head of the inner loop) and the second code fragment, S4

to S10, is decoded because the code starting from S4 is not yet

translated. The second code fragment forms a loop since S4 is

a branch target of instruction S10, but the first code fragment

is not because it jumps to the middle of the fragment. The two

code fragments and their control flows are illustrated in Fig.

4(c). Since the second code fragment is a loop, it is further

optimized with our SIMD loop transformation.

We can see from Fig. 4(c) that both code fragments consist

of the binary code of the inner loop (S4 to S10). When the

execution starts from the outer loop, one iteration of the inner

loop is executed by the first code fragment. As a result, the

second code fragment, which is transformed to a long-SIMD

loop, will execute the inner loop starting from the second

iteration. Hence, the actual addresses accessed by long-SIMD

loads/stores are shifted by one short-SIMD vector length. The

memory accesses become misaligned even though the global

arrays are aligned at the long-SIMD alignment boundary.

Such a misalignment is caused by code duplication of

the inner loop, and it can be overcome by preventing code

duplication. The solution is to let a DBT stop binary decoding

if it tries to decode an inner loop in the middle of a code

fragment. For example, the decoding stops at point S3 with

the example code. In the binary level, however, it is not easy

for a DBT to determine whether the next instruction to decode

is at a loop head or not. Even though the loop head information

can be retrieved (e.g., with compiler annotation), this solution

works well only when the data layout of the short-SIMD

binary satisfies the alignment constraint of the long-SIMD

ISAs. It cannot solve cases in which data are aligned at a

smaller alignment boundary than the minimum constraint of

the long-SIMD ISAs. Hence, a general approach is called for.

B. Dynamic Loop Peeling

A general solution to enforce the alignment of the long-

SIMD loop is to dynamically peel the short-SIMD loop until

the memory references are aligned with the long-SIMD align-

ment constraint before entering the long-SIMD loop. Hence,

we create a block, ShortSIMDLoopPeeling, in front of the

long-SIMD loop body. The ShortSIMDLoopPeeling block is

populated by replicating IR instructions from the short-SIMD

loop. The next step is to decide the number of iterations for

short-SIMD loop peeling. The peeling count is calculated with

a voting algorithm as follows:

All SIMD load/store pointers are collected from the short-

SIMD loop. For each memory pointer, the distance between

the referenced address and next long-SIMD alignment bound-

ary is computed; the peeling count is the value of the distance

divided by the short-SIMD vector length, as the formula

PeelCount = (LongV S − P % LongV S) / ShortV S,

where P is the referenced address. Then peeling counts of

all memory pointers are conducted by the voting process to

find the majority, which is the number of short-SIMD loop

iterations to be executed in ShortSIMDLoopPeeling. With

this voting scheme computed in RuntimeMemoryCheck, we

can ensure that as many long-SIMD loads/stores as possible

are aligned. The algorithm is listed in Algorithm 1.

IV. PERFORMANCE EVALUATION

All experiments are performed on a system with one 6-

core Intel Haswell Core i7-5930k 3.50 GHz processor. The

host machine has 16 GB of main memory and the operating

system is 64-bit Gentoo Linux with kernel 3.6.15. We conduct

the SIMD loop transformation from the guest ISA, ARM32

NEON, to two long-SIMD host ISAs, x86-64 AVX2 and x86-

64 AVX512. The LLVM compiler in our DBT only supports

AVX512 of Knights Landing and no hardware is currently

available to execute the Knights Landing binary, hence, we

Algorithm 1: Dynamic Loop Peeling

input : A list of basic blocks B in loop body, short-SIMD
vector length w, long/short SIMD expanded factor s.

output: The number of iteration to peel k.
1 K ← array of size s with zero initial values.
2 foreach Basic block b ∈ B do
3 foreach Memory reference p ∈ b do

4 k ← (sw − (p mod (sw)))
/

w
5 K[k]← K[k] + 1
6 end
7 end
8 return argmaxk K[k]

run the AVX512 experiments using the Intel Software Devel-

opment Emulator (SDE) version 7.31.0.

Twelve benchmarks are selected from two popular loop

benchmark suites, Livermore loops (LL) [10] and the TSVC

benchmark suite [11]. These two benchmark suites have of-

ten been used to evaluate vectorizing compilers. The SPEC

benchmark suite is not selected in the experiment because its

vectorization ratio is very low. All benchmarks are compiled

using the ARM GCC 4.8.4 with flags “-marm -march=armv7-

a -mtune=cortex-a8 -static -O3 -fno-unroll-loops -mfpu=neon

-ffast-math -ftree-vectorize.” Since ARM32 NEON does not

support double-precision floating-point SIMD operations, the

benchmarks are configured with single precision for floating-

point data type. For comparison, we use the binary translation

without SIMD loop transformation as our performance base-

line. In the baseline translation, ARM32 NEON instructions

are translated to x86-64 SSE instructions on the host machine.

A. Performance Results with AVX2

Figure 5 shows the speedup of NEON to AVX2 loop

transformation. With FMA instruction generation disabled

in LLVM JIT, the performance of NEON to AVX2 loop

transformation achieves an average speedup of 1.41X com-

pared with that without SIMD loop transformation. Many of

the benchmarks exhibit an improvement in excess of 50%,

while two benchmarks, LL-inner and LL-PIC_1D, show

the least performance gain. The performance which can be

achieved after loop transformation is related to two factors: (1)

the percentage of time executed in the short-SIMD loop over

total execution time, and (2) the composition of instructions in

the short-SIMD loop. For instance, the benchmark LL-inner

computes the inner product of two arrays. The offline compiler

splits this computation into two loops: the first loop multiplies

corresponding elements of the two input arrays and stores the

results in an output array; the second loop iterates over each

element of the output array and computes the final sum. Of

the two loops, only the first loop is vectorized by the compiler

and the second loop has no SIMD operations.

We profile the execution of LL-inner without applying

SIMD loop transformation. The profile data reports the first

loop contributes to only about 15% of the total execution time,

which is the maximum performance gain our optimization can

achieve. Moreover, the first loop is composed of only one

vector multiplication and three vector loads/stores. For SIMD

0.0

0.5

1.0

1.5

2.0

2.5

LL-hydro

LL-inner

LL-ADI

LL-int_pred

LL-diff_pred

LL-first_diff

LL-PIC_1D

TSVC-s231

TSVC-s235

TSVC-s3251

TSVC-s2275

TSVC-vbor

geomean

S
p

e
e

d
u

p

1.41

1.45

AVX2 AVX2-FMA

Fig. 5: Performance of NEON to AVX2 loop transformation.

memory accesses, since the array size of the benchmark is

fixed, the number of outstanding memory access requests is the

same regardless of whether the SIMD load/store instructions

are translated with SSE or AVX2. For SIMD computation

instructions, rewriting them improves the performance with

longer SIMD lanes, however, the amount of SIMD computa-

tions in the loop is not sufficient. As a result, the performance

is bounded by the SIMD loads/stores due to the high memory

stall cycles. There is very little room for improvement on

the first loop, thus no performance improvement is achieved

after transformation. Similar behavior is also observed with

benchmark LL-PIC_1D. In contrast, benchmarks such as

LL-first_diff, LL-hydro and TSVC-s3251 achieve

significant performance improvements because their short-

SIMD loops consist of a high ratio of SIMD computations.

To evaluate the impact of the host machine’s multiply-

and-add instruction, we compare the performance of en-

abling/disabling the FMA code emission in the LLVM JIT

compiler. Note that there is no special FMA IR instruction

supported in LLVM IR. Therefore, although the ARM32

NEON ISA supports the FMA feature, a multiply-and-add

instruction in the ARM guest binary is translated into two

LLVM IR instructions—a multiply instruction followed by an

add instruction. The LLVM instruction selection pass can find

such patterns and map them to one host FMA instruction.

Figure 5 also illustrates the transformation results from

NEON to AVX2 with FMA code emission enabled. Per-

formance improvement can be expected if the short-SIMD

loop consists of multiply-and-add operations. LL-hydro and

TSVC-vbor have the most significant performance gain with

FMA because they are the benchmarks with the greatest

number of multiply-and-add operations, and improve by about

13%. The overall benchmark performance is further improved

to 1.45X on average with benefits from host FMA instructions.

The results in this subsection show the effectiveness of

our DBT system: not only can we exploit the improved

parallelism from long-SIMD architectures with our SIMD loop

transformation, but we also allow the applications to use new

SIMD features with the DBT technique.

B. Performance Results with AVX512

This experiment evaluates the loop transformation perfor-

mance from NEON to AVX512, running with the Intel SDE

functional emulator. Since the Intel SDE does not provide tim-

 0

 20

 40

 60

 80

 100

LL-hydro

LL-inner

LL-ADI

LL-int_pred

LL-diff_pred

LL-first_diff

LL-PIC_1D

TSVC-s231

TSVC-s235

TSVC-s3251

TSVC-s2275

TSVC-vbor

geomean

D
y
n

a
m

ic
 I

n
s
tr

u
c
ti
o

n
 R

a
ti
o

 (
%

) AVX2
AVX512

Fig. 6: Ratio of dynamic instructions with NEON to

AVX2/AVX512 loop transformation.

ing information and no cycle-accurate simulator is currently

available for AVX512, the number of dynamic instructions

executed is measured here as the evaluation metric. Figure

6 shows the results normalized to the baseline performance

(i.e., dynamic instruction count of NEON to SSE translation).

Lower results are better. The results of the NEON to AVX2

transformation are also provided for comparison. The results

show that fewer instructions are executed when a longer

vector is used. On average, AVX2 and AVX512 respectively

reduces the numbers of dynamic instructions executed to 60%

and 39% of that without loop transformation. The dynamic

instruction ratios of LL-inner and LL-PIC_1D are only

slightly reduced. This is because the SIMD loop only con-

tributes to a small proportion of the total instruction count.

The dynamic instruction results of these two benchmarks also

explain the results in Fig. 5 where no noticeable performance

improvement is observed for either benchmark.

C. Comparison of Alignment Adjustment Approaches

We compare the performance of the SIMD loop transforma-

tion with three configurations: (1) no alignment adjustment,

(2) optimized DBT termination condition, and (3) dynamic

loop peeling. The experiment is conducted with NEON to

AVX2 loop transformation. Because the alignment constraints

of the guest and host SIMD ISA are different, we manually

align source arrays at the addresses based on guest alignment

constraint (i.e., NEON with 16-byte boundary but not 32-

byte boundary) or on host alignment constraint (i.e., AVX2

with 32-byte boundary), and compare their performance. Since

the alignment requirement is the 32-byte boundary for the

host AVX2 ISA, we profile the benchmarks to see if the

transformed AVX2 vector loads/stores are properly aligned at

this boundary. We measure the misalignment ratio as

Ratio =
Number of misaligned SIMD accesses

Number of total SIMD memory accesses
.

Table I lists the misalignment ratio of the three configura-

tions. When source arrays are aligned based on the host AVX2

constraint (i.e., the 32-byte boundary), the vector loads/stores

in the long-SIMD loop ought to be aligned. However, the pro-

file data show a 100% misalignment ratio for all benchmarks

without applying any alignment adjustment approach. These

surprising results are caused by the DBT code duplication

problem and all accessed addresses become misaligned by

0.0

0.5

1.0

1.5

2.0

2.5

LL-hydro

LL-inner

LL-ADI

LL-int_pred

LL-diff_pred

LL-first_diff

LL-PIC_1D

TSVC-s231

TSVC-s235

TSVC-s3251

TSVC-s2275

TSVC-vbor

geomean

S
p

e
e

d
u

p

1.10
1.10

Termination Peeling

Fig. 7: Comparison of alignment optimization approaches.

one NEON vector length. By optimizing the DBT termination

condition, most misaligned memory accesses are eliminated.

The dynamic loop peeling approach also produces the same

good results as the DBT termination condition optimization.

Both approaches can achieve the least misalignment ratio.

In Table I, there are still misaligned accesses, e.g., an 86%

misalignment ratio with benchmark LL-ADI. The reason is

that those SIMD load/store patterns originally misaligned in

the guest binary remain misaligned after the SIMD loop trans-

formation, e.g., a vector load that always accesses at 4-byte

aligned addresses. They cannot be eliminated by our align-

ment adjustment approaches. Figure 7 shows the performance

speedup of two alignment adjustment approaches against that

without adjustment based on the AVX2 alignment constraint.

Benchmark LL-diff_pred achieves a 70% performance

improvement with alignment adjustment and an average 10%

improvement is achieved for all benchmarks.

When source arrays are aligned based on the guest NEON

constraint (16-byte boundary), one expects that the trans-

formed long-SIMD loads/stores will be misaligned. However,

the code duplication caused by DBT coincidentally causes

misaligned accesses to become aligned. On the contrary, ap-

plying the optimized DBT termination condition reverses this

situation. We can see from Table I that the misalignment ratio

of the optimized DBT termination condition is higher than

that without adjustment for several benchmarks. With dynamic

loop peeling, the DBT always adjusts long-SIMD loops to

start accessing arrays from aligned addresses. Therefore, the

dynamic loop peeling approach can achieve the minimum

misalignment ratio regardless of whether the source arrays are

aligned with the guest or host SIMD alignment constraint.

Table II further demonstrates the benefit of dynamic loop

peeling. In this experiment, the NEON to AVX512 loop

transformation is conducted. We do not force the alignment of

source arrays, but rather allow the guest compiler to determine

the placement of source arrays. The misalignment ratios of the

three configurations are listed in Table II. As the vector length

of the host SIMD increases to 4 times that of the guest, the

optimal peeling problem becomes more complex than a simple

“peeling or not” decision as in the case of the NEON to AVX2

transformation. Therefore, changing the terminating condition

is not as helpful since the available peeling distance becomes

k = {0, 1, 2, 3} in AVX512. It has only a 0.25 probability

instead of 0.5 to “guess” the optimal one, while the dynamic

TABLE I: Misalignment ratio of (1) no adjustment, (2) optimized DBT termi-
nation condition and (3) loop peeling with NEON to AVX2 loop transformation.

Aligned with NEON constraint Aligned with AVX2 constraint
(16-byte boundary) (32-byte boundary)

Benchmark NoAdjust Term. Peeling NoAdjust Term. Peeling

LL-hydro 75% 75% 75% 100% 50% 50%

LL-inner 67% 33% 33% 100% 0% 0%

LL-ADI 86% 95% 86% 100% 86% 86%

LL-int pred 0% 100% 0% 100% 0% 0%

LL-diff pred 0% 100% 0% 100% 0% 0%

LL-first diff 67% 67% 67% 100% 33% 33%

LL-PIC 1D 0% 100% 0% 100% 0% 0%

TSVC-s231 0% 100% 0% 100% 0% 0%

TSVC-s235 75% 25% 25% 100% 0% 0%

TSVC-s3251 43% 71% 43% 100% 14% 14%

TSVC-s2275 75% 25% 25% 100% 0% 0%

TSVC-vbor 43% 57% 43% 100% 0% 0%

TABLE II: Misalignment ratio with NEON to
AVX512 loop transformation.

Benchmark NoAdjust Term. Peeling

LL-hydro 75% 75% 50%

LL-inner 67% 33% 33%

LL-ADI 92% 92% 87%

LL-int pred 100% 100% 0%

LL-diff pred 100% 100% 0%

LL-first diff 67% 67% 67%

LL-PIC 1D 100% 100% 0%

TSVC-s231 100% 100% 0%

TSVC-s235 100% 100% 75%

TSVC-s3251 86% 86% 57%

TSVC-s2275 100% 100% 75%

TSVC-vbor 86% 86% 57%

peeling algorithm always selects the optimal k̂ ∈ k. The profile

data listed in Table II show that the dynamic loop peeling

approach can achieve the minimal misalignment ratio.

V. RELATED WORK

Pajuelo et al. [12] proposed a DBT system which conducts

auto-vectorization from scalars to vectors. Their system re-

quires new hardware support to speculatively execute vec-

torized code and fall back to scalar code when an invalid

vectorization is detected by the hardware. In contrast, our

DBT conducts translation from short-SIMD to long-SIMD,

which is a pure software solution. A closely related work

is [13] which also uses a dynamic binary rewriting technique

to convert short-SIMD binary to long-SIMD code. Their work

is implemented in a same-ISA DBT for the x86 architecture.

If a short-SIMD memory operation could become misaligned

in a long-SIMD form, their DBT system does not emit a

long-SIMD memory instruction but use multiple short-SIMD

memory accesses with packing. In contrast, our approach is

designed in a retargetable DBT that supports cross-ISA trans-

lation. Our new contribution is that we propose using a general

machine-independent IR layer for SIMD loop transformation

and optimization. A general approach to dynamic loop peeling

is proposed to enforce the alignment of long-SIMD memory

accesses. Our work is more portable than a same-ISA DBT.

VI. CONCLUSION

In this paper, we present an approach of short-SIMD

to long-SIMD loop transformation using a dynamic binary

translation technique. We propose a general approach that

translates the short-SIMD binary to machine-independent IR,

conducts SIMD loop transformation at this IR level, and finally

translates to long-SIMD instructions. We also identify the

alignment problem where memory accesses aligned in the

original binary may become misaligned when using long-

SIMD instructions. The code duplication problem caused by

DBT can further exacerbate the misalignment. The proposed

approach of changing DBT decode termination conditions

relieves such misalignment. A general solution using dynamic

loop peeling is also presented, which can minimize misalign-

ment. We demonstrate that the SIMD loop transformation can

significantly improve the performance of short-SIMD binaries,

not only from better parallelism of the long-SIMD architec-

tures but from exploiting new SIMD hardware features. The

proposed concept can also be applied to same-ISA DBTs,

static binary translators and other JIT systems.

ACKNOWLEDGMENT

This work is supported in part by Ministry of Science and

Technology of Taiwan under grant number MOST-104-2218-

E-002-032 and MOST-102-2221-E-001-034-MY3.

REFERENCES

[1] A. Peleg, S. Wilkie, and U. Weiser, “Intel mmx for multimedia pcs,”
Communications of the ACM, vol. 40, no. 1, pp. 24–38, 1997.

[2] A. J. C. Bik, Software Vectorization Handbook, The: Applying Intel

Multimedia Extensions for Maximum Performance. Intel Press, 2004.
[3] M. Hassaballah, S. Omran, and Y. B. Mahdy, “A review of simd

multimedia extensions and their usage in scientific and engineering
applications,” The Computer Journal, vol. 51, no. 6, pp. 630–649, 2008.

[4] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX

Annual Technical Conference, 2005, pp. 41–46.
[5] J. Li, Q. Zhang, S. Xu, and B. Huang, “Optimizing dynamic binary

translation for simd instructions,” in International Symposium on Code

Generation and Optimization, 2006, pp. 269–280.
[6] L. Michel, N. Fournel, and F. Petrot, “Speeding-up simd instructions

dynamic binary translation in embedded processor simulation,” in Pro-

ceedings of the 2011 Design, Automation & Test in Europe Conference

& Exhibition, 2011, pp. 1530–1591.
[7] N. Clark, A. Hormati, S. Yehia, S. Mahlke, and K. Flautner, “Liquid

simd: Abstracting simd hardware using lightweight dynamic mapping,”
in IEEE International Symposium on High Performance Computer
Architecture, 2007, pp. 216–227.

[8] S.-Y. Fu, D.-Y. Hong, J.-J. Wu, P. Liu, and W.-C. Hsu, “Simd code
translation in an enhanced hqemu,” in IEEE International Conference

on Parallel and Distributed Systems, 2015, pp. 507–514.
[9] D.-Y. Hong, C.-C. Hsu, P.-C. Yew, J.-J. Wu, W.-C. Hsu, Y.-C. Chung,

P. Liu, and C.-M. Wang, “HQEMU: A multi-threaded and retargetable
dynamic binary translator on multicores,” in International Symposium
on Code Generation and Optimization, 2012, pp. 104–113.

[10] F. H. McMahon, “The livermore fortran kernels: A computer test of the
numerical performance range,” Tech. Rep., 1986.

[11] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua, “An
evaluation of vectorizing compilers,” in International Conference on

Parallel Architectures and Compilation Techniques, 2011, pp. 372–382.
[12] A. Pajuelo, A. Gonzalez, and M. Valero, “Speculative dynamic vector-

ization,” in International Symposium on Computer Architecture, 2002,
pp. 271–280.

[13] N. Hallou, E. Rohou, P. Clauss, and A. Ketterlin, “Dynamic re-
vectorization of binary code,” in International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation, 2015, pp.
228–237.

