
Extracting Citation Metadata from Online Publication
Lists Using BLAST

I-Ane Huang1, Jan-Ming Ho1, Hung-Yu Kao1, Wen-Chang Lin2

1Institute of Information Science, Academia Sinica, Taiwan
2Institute of Biomedical Sciences, Academia Sinica, Taiwan

hia@iis.sinica.edu.tw, hoho@iis.sinica.edu.tw,

 bobby@iis.sinica.edu.tw, wenlin@ibms.sinica.edu.tw

Abstract. Scientific research reports require a great deal of citation, therefore
an automatic citation tool would be of great use. Due to numerous models, it is
difficult to automatically transform semi-structured citation data into structured
citations. Some digital library institutes, like ResearchIndex (CiteSeer) or Op-
Cit, have attempted automatic citation parsing. In order to recognize citation
metadata, we use gene sequence alignment tool to recognize citation data in our
method. Known semi-structured citation data are transformed into protein se-
quences, and saved in a template database. To parse new semi-structured cita-
tion data, we can translate it into a protein sequence. We then use BLAST (Ba-
sic Local Alignment Search Tool), a sequence alignment tool, to find the most
similar template to the protein sequence from the template database previously
constructed. We can then parse metadata according to the template. Using the
2,500 templates generated by our template generating system as the template
database and parsing all of the 2,500 citation using our parsing system, we ob-
tain 89% precision rate. Using the same template database, ParaTools obtains
79% precision rate. ParaTools contains about 400 templates in the system. Us-
ing the default template database, ParaTools only obtains 30% precision rate.

1. Introduction

It is difficult for a computer to automatically parse citations because there are a lot
of different citation formats. Citations always include author, title, and publication
information. Publication information format varies according to publication type, e.g.,
books, journals, conference papers, research reports, and technical reports. Publica-
tion information can include publication name, volume, number, page number, year
published, month published, and publisher’s address. Citations can be presented in
either structured or semi-structured form. Semi-structured citation form is more flexi-
ble, so bibliographies created by different people may have different citation forms.
Metadata order may be different as well as their attributes. Bibliographies on the
Internet are usually in semi-structured form. If we want to use their data, we must
first transform the semi-structured bibliography into structured bibliography. We
have to analyze the metadata of each citation, and build up an index for bibliography

searches and citing statistics. In this paper, we discuss how to transform semi-
structured bibliographies into uniform structured data, the core problem of citation
data processing.

CiteSeer [1][2][3][4], which use heuristics to extract certain subfields, can “find
the titles and authors in citations roughly 80% of the time and page numbers roughly
40% of the time” [1]. Another system, ParaTools [5][6][7][8] (short for ParaCite
Toolkit) is a collection of Perl modules used for reference parsing. It uses a template-
based reference parser to extract metadata from references. Our approach is similar to
ParaTools in that we also use a template-based reference parser, but we found a better
alignment from BLAST [9][10].

There are about 30 billion nucleotides in a human genome, and for about every
1,000 base pairs, there will be a nucleotide difference in genomes. We can use
BLAST to compare sequence to identify whether the sequences belong to the same
person. We realized that we could use this method to identify citation. In our system,
we use a form translation program to translate citations into a form that we can proc-
ess more easily. The form we use is a protein sequence because we can use BLAST, a
well-developed protein sequence matching program, to process it. BLAST needs a
scoring table to search for most similar sequences in a protein sequence database.
This database stores the templates of known citations that have been translated into
protein form. After finding the most similar sequence template, we use a pattern ex-
traction program to parse the citation metadata according to the template. Once the
metadata are correctly parsed, we manually validate them and add them into our
knowledge database.

The rest of the paper is organized as following. Section 2 is system architecture
and design. Section 2.1 introduces the BLAST. Section 2.2 defines the tokens that we
use. Section 2.3 tells how the tokens translated to amino acids. Section 2.4 and 2.5 are
the template generating system and citation parsing system. In section 3, we do some
experiment here. Section 4 is conclusion and future works.

2. System Architecture and Design

As shown figure 1, we can divide our system into two subsystems: a template gen-
erating system and a citation parsing system. For the template generating system, we
manually crawl BibTeX files on the web to obtain our template generating data. From
the BibTeX file, our system can find out the titles, and then use these titles automati-
cally obtain semi-structured citations from the CiteSeer web site. Now we have both
semi-structured data from CiteSeer and structured data from BibTeX files. Since the
semi-structured and structured data are the same but presented in different forms, this
system can use these two forms to automatically make a template database. After the
template database is constructed, the system begins the parsing process. In the parsing
system, BLAST is used to compare strings. We transform a citation into protein form,
and use BLAST to search for the most similar sequence in the template database. We
can then parse the citation according to the template that BLAST finds.

Fig. 1. The architecture of this system.

2.1 BLAST

BLAST is a similarity search tool developed by Altschul et al. (1990), it is based
on dynamic programming. It is used to search for optimal local alignments between
sequences. BLAST breaks the query and database sequences into fragments (words).
It searches the matches for the word of length W that scores at least T. Matches are
extended to generate an alignment with a score exceeding the threshold of S. The
quality of each pair-wise alignment is represented as a score. Scoring matrices are
used to calculate the score of the alignment amino acid by amino acid. The signifi-
cance of each alignment is computed as a P value or an E value [10].

2.2 Tokens

Before explaining the architectures of the template generating and citation parsing
systems, we have to identify the tokens they use. We use regular expression to pre-
cisely define the tokens. Tokens are classified into three types: numerical, general,
and punctuation as follows:
• Numerical tokens: [0-9]+

We reclassify the numerical token again as a year number, or general num-
ber. The regular expressions are as follows:

- Year: [12][0-9][0-9][0-9]
- General number: Otherwise

• General tokens: [a-zA-Z]+

BLAST

Template
database

Form trans-
lation

Pattern
extraction

Knowledge
database

Human
validation

Metadata

Citation

Protein
form

Similar
template

BibTeX

CiteSeer

Citation

Template
generator

We reclassify the general token to key words that often appear in citations,
like page, number, volume, month, name or unknown. The regular expres-
sions are as follows:

- Number:
[Nn][Oo]
|[Nn][Nn]
| [Nn][Uu][Mm][Bb][Ee][Rr]

- Page:
[Pp][Pp]
| [Pp][Aa][Gg][Ee]([Ss])?

- Volume:
[Vv][Oo]
| [Vv][Oo][Ll]([Uu][Mm][Ee])?

- Month:
[Jj][Aa][Nn]([Uu][Aa][Rr][Yy])?
| [Ff][Ee][Bb]([Rr][Uu][Aa][Rr][Yy])?
| [Mm][Aa][Rr]([Cc][Hh])?
| [Aa][Pp][Rr]([Ii][Ll])?
| [Mm][Aa][Yy]
| [Jj][Uu][Nn]([Ee])?
| [Jj][Uu][Ll]([Yy])?
| [Aa][Uu][Gg]([Uu][Ss][Tt])?
| [Ss][Ee][Pp][Tt]([Ee][Mm][Bb][Ee][Rr])?
| [Oo][Cc][Tt]([Bb][Ee][Rr])?
| [Nn][Oo][Vv]([Ee][Mm][Bb][Ee][Rr])?
| [Dd][Ee][Cc]([Ee][Mm][Bb][Ee][Rr])?

- Name: We have a database that stores about 2,000 name tokens. If the
token appears in the name database, it is identified as a name token.

- Unknown: If the general token is not classified above, it is classified
as unknown.

• Punctuation tokens: [\"\'.\(),:;\-!\?]

2.3 Protein Sequence Translation

In order to identify tokens, we use regular expression to describe the tokens in the
last section. We can translate the token into a protein sequence according the follow-
ing rules:

Y: Match to Year
N: Match to General number
S: Match to Number
P: Match to Page
V: Match to Volume
M: Match to Month
A: Match to Name
NULL: Match to Unknown

G: Match to Punctuation token “ or ‘
D: Match to Punctuation token . or ; or ?
I: Match to Punctuation token (
K: Match to Punctuation token)
R: Match to Punctuation token ,
Q: Match to Punctuation token : or – or !

When the tokens translate to the amino acids, the combinations of the amino acids
become a protein sequence. We call this sequence a prototype protein sequences, and
use it to represent the citation. We can use this sequence to search for the most similar
template in the database. We also use it to construct the template database. The cita-
tion in Figure 2(a) can transform into Figure 2(b) by translating the tokens according
to the rules described above.

2.4 Template generating system

In the template generating system, we construct a template database that contains
the templates that represent most citation formats. Because BibTeX files are widely
used in bibliographies, we retrieve BibTeX files from the Internet. BibTeX format
was designed by Oren Patashnik and Leslie Lamport. It is field based, so we can
parse the data of each field easily. We use the title field to search the citations in
CiteSeer. We get the metadata of the citations found on the web by parsing the corre-
sponding BibTeX files to construct the templates. We begin with the method de-
scribed in section 2.3 to create the prototype protein sequence. Since we have found
the metadata of each field, we can find the data in the CiteSeer citation and then mod-
ify the sequence by adding A (author), L (journal), and T (title) into the correct posi-
tion in the sequence. We then change N to their corresponding amino acids. An
amino acid N may become F (value of volume) or W (value of number). This is illus-
trated in Figure 2(c). It is now a completed protein sequence, and the template is
finally constructed. We store this template in the template database.

2.5 Parsing System

After transforming the citation into a prototype protein sequence, we search for the
most similar sequence in the template database by using BLAST. The parsing system
is like a reverse process of the template generating system. After we find a template,
we use it to extend the prototype protein sequence into a complete protein sequence.
Now the metadata can be parsed. If we want to parse the citation shown in Figure
2(a), we must transform it into prototype protein sequence as figure 2(b). By entering
this sequence into BLAST, we find the template
AAAAAAAAARGTTTTTTTTTGRLLLLLLLRVDFRSDWRMDYD. In this tem-
plate, author is in the first position. The field of author and the field of title are sepa-
rated by RG. (punctuation marks), as are the title and journal fields. Modifying Figure
2(b) according this template, we get Figure 2(c). Then, by checking the original cita-
tion, we can parse out all the metadata correctly.

Yieh-Ran Huang and Jan-Ming Ho, “Distributed Call Admission Control for a Heterogeneous PCS Network”
, to appear IEEE Trans. On Computers, Vol. 51, no. 11, Nov. 2002.

Fig. 2(a). The original citation we want to parse.

Fig. 2(b). The citation in the Fig. 2(a) transforms into its protein sequence as
QAMQARGGRDRVDNRSDNRMDYD. Each blank in the table represents a
token in the citation.

Fig. 2(c). We transform the citation sequence into its protein sequence. The template of the
citation is AAAAAAAAARGTTTTTTTTTGRLLLLLLLRVDFRSDWRMDYD

3. Experiment Results

Ideally, all of the metadata in the BibTeX should be consistent with the metadata
in the citations searched from CiteSeer. Unfortunately, only a few data are consistent.
We experimented with 2,500 article citations, but only 100 citations were consistent
with BibTeX. To overcome this problem, we create a precision evaluation method to
test whether the data is correctly parsed. We define the precision of each subfield as:

])[(#
])[(#precision Subfield

BibTeX
subfield
word

subfield
Number

subfield
BibTex

subfield
word

subfield
Number

TokenTokenToken
TokenTokenToken

∩+
∩+

=
(1)

subfield
NumberToken : denotes the number tokens that appear in the parsed subfield.
subfield
wordToken : denotes the general word tokens that appear in the parsed subfield.
subfield
BibTexToken : denotes the tokens that appear in the specific subfield in the BibTeX

file.

Q A Q R G G

R D R V D N R S D N R M D Y D

AM

A R G G

R R V D F R S D W R M D Y D

AA A A A A A A T T T T T T T T T

L L L L L L L

BibTeXToken : denotes all of the tokens that appear in the BibTeX file.

The denominator of subfield precision represents the number of the tokens which

exist both in the citation file and in the BibTeX file. The numerator of the subfield
precision represents the number of the tokens which are correctly parsed. We then
define the total precision of a citation as the average of subfield precisions. Using the
2,500 templates generated by our template generating system as the template database
and parsing all of the 2,500 citation using our parsing system, we obtain 89% preci-
sion rate. Using cross-validation to validate the precision of our system, we divide the
citations into 10 subsets, and get an average precision rate of 84.8%. The precision
distribution chart of the first 100 citation is shown in Figure 3. Parsing results are
adequate because 85% of the citations achieve a precision rate of 70% or higher.
Although the precision calculated here is not actually precision, the disparity between
this precision here and actual precision is small. The actual precision of the parsed
result is roughly 80%. BLAST needs a scoring table to evaluate the alignment result.
In our system, we use a scoring shown in Figure 4. We had also tried a lot of different
scoring table to parse the citation. The diagonals of all the various scoring matrices
were always positive, and the variation in the percision of the parsing results because
of a particular choice of scoring table was less than 3%. Both ParaTools and our sys-
tem are template-based reference parsers. The completeness of the template database
is an important factor to template-based parsing systems. We illustrate the effect of
template completeness on precision in Figure 5. Our system performs better than
ParaTools for all tested template completeness. In Table 1, we present the quality of
parsing result. Our quality is better than ParaTools’. The parsing results will be used
in the future. If the quality is not good, it is insignificant for reusing.

Fig. 3. Precision rates of the first 100 citations. The X axis is the assigned number of one cita-
tion, and the Y axis is the precision of that citation.

Fig. 4. The scoring table we use this scoring table to evaluate the alignment score of
the protein sequences

0

20

40

60

80

100

0 25 50 80 90 100

Completeness of template (%)

S
y
s
t
e
m

p
r
e
c
i
s
i
o
n

(
%
)

ParaToolsOur system

Fig. 5. For varied template database, different precision rates are achieved.

Table 1. Divide the data into k sets, and do cross-validation. The quality of the parsing result is
defined good if the precision rate of the parsing result is better than 70%. The good results also
contain perfect results which precisions rates are 100%.

Quality of the parsing result
Percent

Value of k Description OpCit Our system
 10

Perfect 21 71

Good (>70%) 26 85
 Not good(<70%) 74 15
 5

Perfect 21 59

Good(>70%) 26 76
 Not good(<70%) 74 24

 2
Perfect 6 37

Good(>70%) 6 52
Not good(<70%) 94 48

4. Conclusion and Future Works

It is flexible for a template-based system to deal with citations. We not only can
add new citation templates easily, but also can search the most similar template to
rapidly parse the metadata. The precision of parsing result will be different for the
completeness of template database. ParaTools contains about 400 templates in the
system, but it does not fit the 2,500 data well. The precision rate for ParaTools to run
the data is only 30%. Although ParaTools also use template-based method to parse
metadata, our system performs better in the same template. We think that it is con-
tributed by the string comparison tool, BLAST. In the future, we will create more
templates to match most citation formats. We will use more Bioinformatics tools to
resolve the problems happened in the computer category.

Acknowledgment

The comments of Shian-Hua Lin and Ming-Jing Hwang2 during the preparation of
this paper were very helpful. We thank for their help.

Reference

[1] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence, "CiteSeer: An Automatic Ci-
tation Indexing System," Digital Libraries 98 Pittsburgh PA USA.

[2] Kurt D. Bollacker, Steve Lawrence, and C. Lee Giles, "CiteSeer: An Autonomous
Web Agent for Automatic Retrieval and Identification of Interesting Publications,"
2nd International ACM Conference on Autonomous Agents, pp. 116-123, ACM
Press, May, 1998.

[3] Steve Lawrence, C. Lee Giles and Kurt D. Bollacker, "Autonomous Citation
Matching," Proceedings of the Third International Conference on Autonomous
Agents, Seattle, Washington, May 1-5, ACM Press, New York, NY, 1999.

[4] Steve Lawrence, C. Lee Giles and Kurt D. Bollacker, "Digital Libraries and
Autonomous Citation Indexing," IEEE Computer, Vol. 32, No. 6, pp. 67-71, 1999.

[5] Harnad, Stevan and Carr, Leslie, "Integrating, Navigating and Analyzing Eprint
Archives Through Open Citation Linking (the OpCit Project)," Current Science
(special issue honour of Eugene Garfield), Vol. 79, pp. 629-638, 2000.

[6] Donna Bergmark, "Automatic Extraction of Reference Linking Information from
Online Documents," Cornell University Technical Report, TR 2000-1821, Novem-
ber, 2000.

[7] Donna Bergmark and Carl Lagoze, "An Architecture for Automatic Reference
Linking," Cornell University Technical Report, TR 2000-1820, October, 2000.

[8] Mike Jewell, "ParaTools Reference Parsing Toolkit - Version 1.0 Released," D-Lib
Magazine, Vol. 9, No.2, Feb., 2003.

[9] S. F. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman, "A basic local align-
ment search tool," J. Mol. Biol., Vol. 215, pp. 403-410, 1990.

[10] http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/similarity.html

