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Abstract 

This paper presents an intelligent Internet information system, Automatic Classifier for the Internet 

Resource Discovery (ACIRD), which uses machine learning techniques to organize and retrieve 

Internet documents. ACIRD consists of a knowledge acquisition process, document classifier and 

two-phase search engine. The knowledge acquisition process of ACIRD automatically learns 

classification knowledge from classified Internet documents. The document classifier applies learned 

classification knowledge to classify newly collected Internet documents into one or more classes. 

Experimental results indicate that ACIRD performs as well or better than human experts in both 

knowledge acquisition and document classification. By using the learned classification knowledge 

and the given class lattice, the ACIRD two-phase search engine responds to user queries with 

hierarchically structured navigable results (instead of a conventional flat ranked document list), 

which greatly aids users in locating information from numerous, diversified Internet documents. 

Index Terms : Document Classification, Data Mining, Information Retrieval, and Search Engine. 

1. Introduction 

The explosive growth of the Internet has revolutionized working and living patterns as it has evolved 

into a major source of information and communication medium. However, the huge amount of 

information on the Internet has created the information overflow phenomenon. To alleviate this 

problem, many Internet search engines and topic directories have become are available to users. 

Search engines, such as AltaVista and InfoSeek, are able to retrieve Internet documents in response to 

a user’s query. Alternatively, topic directories e.g. Yahoo!, allow users to search relevant documents 

by browsing a topic hierarchy. Search Engines are designed to efficiently organize and access a large 

collection of documents. Since the number of documents available on the Internet is huge, thousands 

of documents may be retrieved by a search engines for a query with one or two terms1. For example 2, 

                                                 

1 The average query length is 1.3 terms, as reported by [37]. 
2Experiments were performed in October 1998. All the “facts” given in this paper reflect the situation then. 
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given the query “education and university,” there were 87,368,493 hits by AltaVista, 7,379,086 hits 

by Infoseek, and 237,902 hits by WebCrawler. Ranking a large number of documents using very few 

terms is unlikely to produce an order of documents that meets the user’s information needs. 

Consequently, the user must retrieve many uninteresting documents before obtaining the desired 

information. Several search engines have applied relevance feedback [32] to expand and/or refine the 

query based on documents selected by the user. However, relevance feedback may be ineffective 

since grasping the user’s true intention from the selected documents is extremely difficult. 

The conceptual gap between document developers and users enlarges the difference between retrieval 

results and user expectations. Due to the richness of language and culture on the Internet, web 

developers and users may use different terms and expressions to represent the same concept, or use 

the same term to describe different things. Therefore, term-based search engines frequently retrieve  

documents, virtually thousands, not desired by users, while the desired documents may not be 

retrieved. For instance, term-based search engines do not match the term “airline schedule” in 

documents with the term “flight schedule” in a query, whereas both terms are considered to have the 

same meaning. Consulting a thesaurus may resolve the problem. Another problem arises in which a 

term may have different meanings in different contexts, such as the term “bank.” Building a thesaurus 

for each specific domain can solve this problem. However, no static thesaurus can handle the shifting 

semantics of terms in the Internet environment owing to its diversity and dynamic nature. 

Current topic directory systems suffer from the bottleneck of manual classification of newly collected 

documents. For example, Yahoo!, the largest directory system on the Internet, contains roughly 1.2 

million links in its topic hierarchy, and more than 150 editors are needed to classify web pages3. The 

total number of documents in the directory systems is much less than the database used by search 

engines. The focus of directory systems is assigning the Internet documents to the right topics, instead 

of the speeding up or increasing the size of the database. 

From the traditional measures of information retrieval, i.e., precision and recall, search engines have 

low precision rates because too many results are retrieved, while topic directories suffer from low 

recall rates because of their small databases. To achieve balanced precision/recall rates and allow 

users to access needed documents rapidly, organizing documents according to a set of classes is a 

prerequisite for efficient ly managing and retrieving Internet documents [14]. The system ACIRD4 

(Automatic Classifier for the Internet Resource Discovery) [21, 22, 23] was designed to achieve 

                                                 

3 http://searchenginewatch.com/reports/directories.html in October 1998. 
4 http://YamNG.iis.sinica.edu.tw/Acird/class.htm 
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efficient and effective Internet document organization and retrieval. The system learns classification 

knowledge from classified documents. It also mines the association rules among terms to explore the 

implicit term semantics, and infers from the term associations in order to refine the classification 

knowledge of classes in a class lattice. To facilitate the Internet search, the system uses a two-phase 

search mechanism that presents a hierarchically navigable view to the user. 

The rest of this paper is organized as follows. Section 2 reviews related works. Section 3 introduces 

the functions of ACIRD. In Section 4, we introduce the conceptual model and define the terminology 

used in this paper. Section 5 discusses the ACIRD learning model in detail. Next, Section 6 presents 

experiments on automatic classification of documents to justify the design decisions of ACIRD. 

Section 7 then introduces the two-phase search method. Contributions of this work and areas for 

future work are finally presented in Section 8. 

2. Related Work 

This section reviews works related to this study on Internet information retrieval, document 

classification and data mining. 

Internet Information Retrieval 

Previous studies on Information Retrieval (IR) systems focused mainly on improving retrieval 

efficiency by using term-based indexing [8, 11, 28, 37] and query reformulation [32] techniques. 

Term-based document processing initially extracts terms from documents using a pre-constructed 

dictionary, stop words and stemming rules [10, 28, 30]. Once terms are extracted, a widely used 

method called TF×IDF (or its variations) [31, 33] is applied to determine the weights of terms. A 

document can thus be represented by a set of terms and their weights. The similarity measure between 

a query and a document is the direct product of their corresponding term vectors, the cosine value 

between the two vectors in a multi-dimensional vector space. To indicate the degree of relevance of 

documents and queries, retrieved documents are presented as a ranked list based on the measure. 

Alternatively, the string-based indexing approach indexes strings and all possible sub-strings instead 

of terms as in term-based approach, which is particularly useful for arbitrary- length string search, 

such as string matching (e.g. address matching) and character-based language search (including many 

oriental languages, such as Chinese and Japanese). Notably, the storage requirement of the 

string-based indexing approach is much higher than that of the term-based indexing approach. In 

addition, their complicated data structures take more time for retrieval. While superior in retrieving 
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exactly matched strings, the string-based indexing approach is inappropriate for Internet information 

discovery tasks in which users only give conceptual descriptions, instead of exact strings. Many 

investigations have developed string-based indexing technologies, including PAT-tree [4] and 

signature files [7], to enhance the performance of various search functions, such as prefix searching, 

range searching, longest repetition searching, most significant and most frequent searching, regular 

expression searching, etc [10]. However, these search functions are rarely found on the Internet. 

While current search engines employ a variety of IR techniques, the differences among them are 

related to indexing, representation, querying and implementation. 

Indexing. Search engines gather Internet HTML documents (i.e. web pages) from user submissions  or 

by means of automatic Internet robots (also called spiders or crawlers). As conventional IR systems, 

search engines index a set of words or phrases for efficient retrieval. Some search engines attempt to 

determine and index concepts in documents. For example, Excite5 knows that a relationship exists 

between related concepts like “elderly people” and “senior citizens.” Based on the rich format of 

HTML, search engines can enhance weights of terms according to the significance of tags. 

Representation. Most search engines employ full text indexing for fast matching between queries and 

documents where documents are represented by a set of term-weight pairs as the case with 

conventional IR systems. Most topic directory systems also provide key word search functions so that 

they represent web pages as term-weight indexes. In addition, they store pages into a topic hierarchy 

developed and maintained manually.  

Querying. Search engines employ several functions to refine the numerous search results. For 

example, most search engines provide Boolean operators to derive precise results. Other functions, 

such as exact phrase matching, sorting pages by corresponding sites and restricting search from 

specified sites, are also useful for refining search results. 

Implementation. Both Internet search engines and topic directory systems need to cope with the 

dynamic Internet environment, in contrast with the stable context of IR systems. Web pages are 

created, modified and deleted frequently, which requires systems equipped with dynamic storage 

structures and efficient indexing mechanisms. Implementation of intelligent Internet robots is yet 

another challenging issue for Internet web page collection. 

Currently, there are hundreds of search engines that apply the technologies of IR to the Internet. 

Popular search engines are famous for their rich indexes and fast response. In general, most search 

                                                 

5 http://www.excite.com/info/search_help/ 
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engines borrow indexing and ranking methods from IR and improve their performance by adding 

advanced hardware and sophisticated software. User satisfaction suffers not when no matched 

documents are returned by search engines, but when too many documents are returned. To learn more 

about the current status of popular web search engines, readers can refer to Search Engine Watch6. 

Document Classification and Data Mining 

Many approaches used to classify documents can be divided into two main camps, manual 

classification and automatic classification. Manual classification of documents is time consuming 

and expensive, which makes it infeasible for handling the huge number of Internet documents. For 

automatic classification, classification knowledge can be acquired from domain experts or learned 

automatically from training documents [3]. Acquiring knowledge from domain experts, while 

relatively effective, is expensive in terms of time and knowledge maintenance. Furthermore, the 

acquired knowledge may be incomplete, which will require the use of complicated models and 

theories to apply it. On the contrary, classification knowledge automatically learned from training 

documents is efficient, but its accuracy is constrained by the employed learning model and training 

data. 

Many text categorization studies have focused on information retrieval [3, 9, 14, 15, 16, 17, 19, 20, 

35]. Herein, “document classification” instead of “text categorization” is used since this work focuses 

on Internet HTML [18] documents rather than general texts. Document classification involves the 

automatic grouping of documents. Many studies have addressed this issue by adopting 

similarity-based document retrieval [35], relevance feedback [32], text filtering [25], text 

categorization [3, 17, 20], and text clustering [12, 19]. For example, ExpNet [35] uses similarity 

measurement as the category ranking method to determine the best category for the input document. 

SIFTER [25] uses a vector space model for document representation, unsupervised learning for 

document classification, and reinforcement learning for user modeling to filter documents based on 

content and user specific interests. INQUERY [17] employs three different classification techniques: 

a k-nearest-neighbor approach using belief scores as the distance metric, Bayesian independence 

classifiers, and relevance feedback. Goldszmidt and Sahami proposed document clustering based on 

the probabilistic overlap between documents and document clusters [12]. 

Previous machine learning studies developed many algorithms that have been well tested and used in 

many fields, such as medicine and finance. Widely used algorithms, including ID3 [26], C4.5 [27], 

                                                 

6 http://searchenginewatch.com/  
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CN2 [5], and AQ algorithm [24], have been applied to structured training data instead of 

non-structured textual data in the document classification problem. Correspondingly, many 

approaches to document classification use feature sets to characterize documents and apply 

algorithms such as Bayesian classifiers [19], k-nearest-neighbor method [9, 11], rule-based induction 

algorithms [3], and mixed approaches (e.g. INQUERY [17]) to classify documents. While 

concentrating on the document classification process and learning algorithms, those systems ignore 

the diversity of documents in the use of terms and their semantics. In many learning applications, the 

characterized feature is an attribute-value pair with the assumption of fixed semantics. However, the 

semantics of a feature varies with different domains. For example, the document feature “apple” has 

different meanings for the domains “computer” and “food.” 

Mining association rules [1, 2, 34] are applied to discover important associations among items of 

transactions. A conventional application of mining item associations is finding an optimal item 

arrangement in a supermarket so as to allow customers to gather their groceries conveniently. In this 

study, we apply mining association rules to explore the semantics of features in a document. 

3. The ACIRD System 

ACIRD [21 22, 23] automatically collects and classifies Internet documents for efficient, effective 

management and retrieval. ACIRD initially focuses on improving the expensive and time-consuming 

manual classification process used by many Internet search engines. By employing classification 

knowledge learned from manually classified Internet documents, ACIRD automatically classifies 

newly collected Internet documents. Classification knowledge together with the given class lattice 

enables two-phase searching, which presents the search results in a hierarchical view instead of a 

ranked document list as in conventional Internet document retrieval. All the design decisions, such as 

measurement metrics, aim to reach the integral goal of ACIRD, i.e. auto- learning, auto-classification 

and two-phase searching. This section provides an overview of ACIRD, and the subsequent sections 

present the details of each component. 

Fig.  1 schematically shows the workflow in ACIRD. The domain expert provides a class lattice as the 

worldview of the document domain and a set of training data, which are Internet documents with 

manually assigned classes. The Classification Learner learns from the training data and generates the 

classification knowledge (or so called class indexes) of the classes in the class lattice. The Internet 

Robot automatically collects documents from the Internet, and the Preprocessing Process extracts the 

features from the documents. The Document Classifier proceeds to assign one or more most 

appropriate classes to the incoming documents. When Internet users query ACIRD, the Two-Phase 
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Search Engine matches the queries with knowledge of documents, and classes and presents a 

hierarchical view to the users to facilitate the information discovery job. In this study, we focus on 

Internet HTML documents only, referred to herein as objects. Each object is assigned a unique ID and 

parsed into a document index, a set of terms with weights, which is stored in the database. The set of 

term and weight pairs form the feature vector representing the object knowledge. Inverted indexes 

pointing to the occurring objects from terms are generated for efficient access during learning and 

accessing. 
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Fig. 1. The Major Components  and Workflow in ACIRD.  

The given class lattice presents the worldview to ACIRD. In the lattice, each node represents a class, 

and every parent node is a super set of its child node. Nodes with no parent nodes besides the 

universal node are referred to as the most general nodes, and nodes with no child node besides the 

null node as most specific nodes. The automatic learning and classification process of ACIRD 

consists of two phases: a training phase and a testing phase. In the training phase, the training data 

consist of a set of manually classified documents. The learning process learns the classification 

knowledge in the sequence from the most specific classes to the most general classes of the given 

class lattice. For the most specific classes, the classification knowledge is generalized from the 

knowledge of objects in the class. For the other classes, the knowledge is generalized from their child 

classes and direct objects (i.e. the objects belong to the class, but not to any of its child classes). After 

the knowledge of classification is learned, the technique of mining association rules is employed to 

discover term associations inside each class so as to enhance the classification knowledge. As term 



 8

associations highly depend  on the class domain, the best scope to apply term associations to refine the 

classification knowledge is a single class. Our previous study [22] demonstrated that the mined term 

association can enhance the term semantics dramatically. In the testing phase, the classifier employs 

the learned classification knowledge to assign classes to the test documents (usually the newly 

collected documents), and the assignments are compared with the classes assigned by human experts 

to verify the quality of the learned knowledge. 

ACIRD provides a two-phase search engine that allows users to efficiently and effectively retrieve 

interesting documents via interactive navigation of the returned class hierarchy, rather than via a 

sequence of ranked documents. During the two-phase search, each user query string is parsed and 

formulated as a sequence of terms, called query term vector. Similarity matching based on the vector 

space model is applied to determine the relevance between the query and the classes in the class 

lattice as well as stored objects. Note that both class and object knowledge are also represented as 

term vectors. During the first phase, a class-level search is performed in which the query term vector 

is used to determine the qualified classes that form a shrunken view of the class lattice. If the user 

decides to further explore a qualified class in the returned class hierarchy, the query term vector is 

again employed to calculate the relevance of the  subclasses of the selected class. When the user 

decides to explore the objects in a class, which is called object-level search, ACIRD matches and 

retrieves qualified documents in the class. The two-phase search not only reduces the search domain, 

but also presents a hierarchical conceptual view to aid the user in locating interesting information. 

4. ACIRD Conceptual Model 

In this section, we define the terminology used herein and introduce the conceptual model of ACIRD 

[22]. An entity is denoted by a lower case letter, and a set or series of entities by an upper case letter. 

For example, let c  denote a class and C  represent a set of classes. In the following, we describe the 

system entities with their notations in parentheses beginning from the high level concepts and 

continuing to the low level ones. 

− The ACIRD Lattice ( ),( RCLACIRD ) is the given class lattice that consists of a set of classes C as 

nodes and a set of relations R as edges that connect two nodes in C. The parent node of an edge is 

a super set of its child node. The total number of classes is denoted by L . 

− Class ( c ) is a class node of ACIRDL  that possesses knowledge generalized from the subclasses and 

direct objects in the class. The number of intermediate subclasses and objects is c . 
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− Object (o ) is an HTML document that consists of paragraphs ( pg ) enclosed by HTML tags. An 

object o  belongs to one or several classes in ),( RCLACIRD .  

− Paragraph ( pg ) consists of a series of sentences ( S ) that subsequently consists of terms. A 

paragraph pg  is informative if it is enclosed by informative HTML tags, which will be defined 

later.  

− Term (t) is a word (excluding stop words) extracted from the sentences of an informative 

prargraph. Each term has a support value for the object  in which it appears. The support (
ot

sup
,

) 

of t  to o is calculated using the term frequency and the weight of HTML tags, which quantifies 

the importance of t to o. 

− Object Knowledge ( oKnow ) is a set of selected terms (T ) with supports for the object 
ot

sup
,

. 

oKnow  can be represented by the Term Support Graph ( ),,( EoTTSG ), in which each directed 

edge in E from it  (in T) to o  has a label oti
sup , . The number of extracted terms in oKnow  is 

denoted by oKnow . 

− Classification Knowledge of class c ( cKnow ) is a set of terms T in which each term it  has a 

support value ctsup ,  to c . cKnow  is generalized from oKnow  of its direct objects and from 

classification knowledge of its child classes. Similar to oKnow , cKnow  can be represented as a 

graph ),,( EcTTSG , in which each directed edge in E from it  (in T) to c is labeled cti
sup , . The 

number of terms in cKnow  is denoted by cKnow . 

− For each class c, the process of mining association rules is applied to mine associations among 

terms of cKnow . The mined rules are called term associations, and for each pair of terms, it  and 

jt , there is a corresponding confidence (
ji ttconf → ). A strongly connected graph Term Association 

Graph ( ),( ETTAG ) can be generated by considering terms of T  as nodes and term associations 

as edges labeled 
ji ttconf → . 

− For each class c, the Term Semantics Network ( ),,( EcTTSN ) is constructed as the union of 

),,( EcTTSG  and ),( ETTAG . TSN is used to represent the semantics of the class and the 

relations among the terms in the class. 
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− The Perfect Term Support (PTS) algorithm [22] is applied to promote cti
sup ,  of the edges in 

),,( EcTTSN . The algorithm obtains an optimal path ( *
,ctp ) from t  to c , where *

,ctp  is a path 

with the maximum value among all the possible paths ( ctP , ) from t  to c  in ),,( EcTTSN . The 

value associated with a path ctp ,  is the product of the confidence values of the edges in the path 

and the support of the term Zt  at the end of the path to c, 

( cttttttt zzykjj
supconfconfconf ,... ×××× →→→ ). The optimal support of t to c (denoted as *

,ctsup ) is 

defined as the value of *
,ctp .  

− A keyword (k ) is a term that passes Filtering Process, which filters out terms based on some 

pre-specified conditions. For a keyword, its *
,ctsup  is defined as the membership grade ( ctMG , ) 

of t  to c . Application of PTS and Filtering Process refines cKnow  to produce Refined 

Classification Knowledge ( *
cKnow ). *

cKnow  is the knowledge base employed by the two-phase 

search engine and automatic classifier of ACIRD. 

5. ACIRD Learning Model 

In this section, we describe the learning model of ACIRD in detail. In the training phase, ACIRD 

adopts supervised learning techniques and treats previously classified documents as training objects. 

The testing phase is described in Section 6. ACIRD applies machine learning techniques to learn 

classification knowledge as shown in Fig. 2. The learning method is applied to each class of ACIRD 

lattice from the most specific classes to the most general ones. Each document is preprocessed into a 

weighted term vector. The dimension of the vector is then reduced by the Feature Selection Process in 

order to reduce the complexity of learning. For the most specific class, knowledge of the class cKnow  

is generalized from the knowledge of all the objects in the class, which can be represented by the 

Term Support Graph (TSG). For classes other than the most specific classes, the learning process is 

the same except that the initial weighted term vectors originate from its subclasses and direct objects. 

The mining association algorithm is then applied to mine associations of terms in TSG, which can be 

represented by the Term Association Graph (TAG). Combining TSG and TAG derives the Term 

Semantic Network (TSN). TSN can be further refined to produce TSN*, i.e., *
cKnow  of the class. In 

each iteration of the refinement process, some terms may be promoted. As the promoted terms may be 

used to promote other terms, the promotion process is applied recursively until the stable state is 

reached.  
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Fig. 2. The Learning Model of ACIRD. 

5.1 Preprocessing Process and Knowledge Representation 

The preprocessing process consists of two parsers, the HTML Parser and Term Parser. The HTML 

parser parses an object into paragraphs and determines their weights by judging their associated 

HTML tags. The Term Parser partitions the paragraphs into sentences and extracts terms from 

sentences. The Term Parser also calculates term supports using the weight assigned by the HTML 

Parser and the term frequency. 

HTML Parser 

An HTML document consists of paragraphs in which the associated HTML tags [18] indicate their 

importance and provide meta- level information. Web developers highlight the contents using HTML 

tags, such as titles or headings. In addition, META tags allow developers to add extra information 

such as “CLASSIFICATIONS” and “KEYWORDS” to the document. Apparently, the implications  

of tags must be considered while indexing documents. In ACIRD, human experts assign and adjust 

the weights of HTML tags  by observing the outcomes of numerous experiments in order to improve  

the classification accuracy. HTML tags are classified into four types: 

� Informative. Paragraphs enclosed by tags, such as CLASSIFICATION and KEYWORD in 

META, TITLE, Hn, B, I, and U, consist of either the meta knowledge of the documents or 

significant contents provided to users. Thus, the informative tags have the highest weights.  
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� Skippable. Tags, such as BR and P, do not affect the semantics of the document and are omitted. 

� Uninformative. Contents enclosed by tags, such as AREA, COL, SCRIPT, and COMMENT, are 

invisible to users. Thus, these tags and their corresponding contents are excluded. 

� Statistical. Contents enclosed by tags, such as !DOCTPYE, APPLET, OBJECT, SCRIPT, etc., 

are stored in a database for statistical purposes.  

The HTML Parser is implemented with two stacks: one for HTML tags and the other for paragraphs. 

The algorithm is executed in one document scan with computational complexity )( oKnowO . 

Term Parser 

The Term Parser partitions a paragraph into sentences, extracts terms from the sentences, and counts 

the term frequency (TF) of each term.  After a term t  is extracted from an object o , the support value 

otsup ,  is measured based on TF and HTML weight, as defined in equation (5.1). This value, 

normalized in the range of [0, 1], indicates the importance of a term in representing the object: 

    (5.1)                                                   1]. [0,  tonormalized is   where,
}'{

'

; in  tag weightedmaximum  theis  ,  tags

by   dhighlighte sentence  thein  offrequency   term theis    where,'

, in 

,
,

jj

,

sup
supMAX

sup
sup

TwandT

ttfwtfsup

otot

ot
ot

T

iij
T

Tijot

i
i

i

i

j

j

ji

=

⋅= ∑

Since a sentence may have more than one tag, the maximum weight of the tags is used to calculate the 

term support. In ACIRD, TF and the maximum tag weight are used to calculate the term support 

instead of using the TF×IDF weighting approach. The Inverted Document Frequency (IDF), designed 

to enhance the discriminating capability of high frequency terms, is not critical in our hierarchical 

learning model and two-phase search discovery model. In ACIRD, a high frequency term is 

considered to represent its class and may be generalized to classification knowledge of its parent  class, 

instead of being used as a discriminator of objects in the class [31]. 

Designed to handle multi- lingual documents, ACIRD currently supports English and Chinese only. 

With English, each extracted term is stemmed [31]. With a character-based language like Chinese, a 

sentence is segmented into meaningful multi-character terms. As there may be no apparent stop 

characters in a sentence, the Term Parser uses a pre-constructed term base structured as a B-tree [6] to 

quickly match and extract meaningful terms. The Term Parser extracts Chinese terms based on the 

heuristics of “long term first” to resolve ambiguity. That is, for two terms, one of which is a part of the 

other, the Term Parser extracts the longer one. In addition, the rules for Chinese term segmentation 
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are provided to handle segmentations ambiguity between conflicting candidate terms. The 

complexity of term extraction is )( 2nO , where n is the length of the input  sentence. Including the 

linear time complexity of the HTML Parser, the complexity of the Preprocessing Process is 

)(
2

oKnowO . 

5.2 Feature Selection Process 

After preprocessing, the object knowledge obtained is represented as a vector of attribute-value pairs, 

)},(),...,,(),,{( ,,2,1 21 otnotot n
suptsuptsupto = . Theorectically, the induction process can be applied 

immediately to learn classification knowledge from the object knowledge. However, the complexity 

of the learning process is exponentially increased by the the vector size, which requires use of the 

Feature Selection Process to reduce the vector size and, thus, the complexity. A common practice is to 

adopt a pre-defined threshold of support sθ  in order to discard less important terms, and the  

remaining terms are used to represent the object knowledge oKnow . In this manner, the problem of 

feature selection is reformulated to the problem of selection of sθ .  
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Fig. 3. The distribution of term supports of training data. 

A high sθ  discards more terms, so the remaining terms may not be sufficient to represent oKnow . In 

contrast, a low sθ  only has a slight effect in the feature selection process. In ACIRD, the selection of 

sθ  is adapted to the emperical experiments. For instance, analysis of the distribution of term supports 

based on the training data as shown in Fig. 3 reveals that more than one-half of them are in the range 

[0, 0.2]. If we choose 2.0=sθ  as the threshold value, then the average number of terms in an object is 

reduced from 28.64 to 11.61, which is approximately the minimum number of terms needed to 

produce acceptable learning results in experiments. It is obvious that the computational cost of 
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feature selection is mainly due to the grouping of terms from all the objects, which can be done by 

means of a sorting process. Hence, the complexity is ))( ( cc KnowLlogKnowLO ××× . 

5.3 Learning Classification Knowledge  

The process of learning classification knowledge first generalizes the object knowledge oKnow  to the 

knowledge of most specific class cKnow  using induction learning, and then generalizes the obtained 

class knowledge to its upper classes. The learning process is applied beginning with the most specific 

classes and continuing to the most general classes. In conventional learning methods, the values of 

features of training objects are either TRUE or FALSE, i.e. whether or not the term occurs in the 

object; all the terms are assumed to be equally important so that the degree of term support for the 

object or class can be neglected. To amend this shortcoming, we define the support of t  to c , denoted 

as ctsup , , in equation (5.2). Similar to (5.1), ctsup ,  is also normalized to [0, 1]: 
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The support of term to a non-most specific class can be obtained from the support of term to the direct 

objects and child classes, as shown in Eq. (5.3). Note that the number of objects in a child class affects 

the contribution of that class to the super class: 

1]. [0, in    tonormalized is ' i.e., ,
}'{

'

(5.3); in objects ofnumber   theis  and , class of class childa  is                

 ,ofobject direct a  iso  where,'

,,
,

,
,

j,,,

ctct
ct

ct
ct

jjj

c
ctj

o
otct

ii

i

i

i

j

ji

j

jii

supsup
supMAX

sup
sup

cccc

csupcsupsup

=

×+= ∑∑

 

The algorithm of the Classification Knowledge Learner is described in the following. 

1. From the most specific classes to the most general classes, apply the preprocessing and feature 
selection processes to the objects. 

2. For the most specific cla ss, calculate the term support for the class based on Eq. (5.2). The 
computational complexity is the complexity of grouping terms from all the objects of the class, 
i.e. the sorting complexity, ) ( cc KnowlogKnowO × . 

3. For all other classes, calculate the term support for the class based on Eq. (5.3). By regarding its 
child classes as direct objects, the complexity is the cost of grouping terms of child classes and 
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objects, ) ( cc KnowlogKnowO × . Thus, the complexity of the special-general learning process 

is ) ( cc KnowlogKnowLO ×× . 

Due to the diversity of Internet documents, the number of terms in a class is large, and their term 

support is generally low. For instance, in Fig. 4, each line represents the distribution of term support 

of a class. From the learning results, there are about 472 terms per class on average, and support is 

fairly low. This figure reveals that most term supports are located in the low support range (e.g., [0, 

0.3]). Therefore, a feature selection process is needed to reduce the low support terms in cKnow . 

Given a threshold cθ = 0.1, on average, there are 47 remaining terms per class, 24 terms with 2.0=cθ , 

and 20 terms with 3.0=cθ , after filtering. However, a filtering process may remove meaningful, but 

with low supports, terms, such as aliases, and terms closely related to high support terms. To alleviate 

this problem, we propose a method that uses the mining association technique to discover the term 

associations in a class and then apply the result to enhance supports of the otherwise filtered out 

terms. 

 

Fig.4. The distribution of term supports of all the classes from the training data. 

5.4 Mining Term Association  

The feature selection process at the class level is more sophisticated than that at the object level. First, 

cKnow  is generally larger than oKnow  since cKnow  is generalized from much classification 

knowledge and object knowledge. Second, terms in an object are more consistent in both semantics 

and representation than are those in a class. Since an object is typically written by one web developer, 

a simple filtering method using a threshold value can perform satisfactorily. On the other hand, the 
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objects in a class are collected from many web servers and written by a variety of web developers, 

which adds diversity to the term wording and usage. Applying a filtering algorithm that uses a 

threshold value cθ  directly to cKnow  may remove representative terms but with low support values. 

Consequently, the recall rate on cKnow  is likely to be low. Therefore, the system must identify and 

consolidate terms related to the important concepts before applying the filtering process. In ACIRD, 

we apply the mining term association technique and the perfect term support algorithm [22] to 

promote low support, representative terms. According to the association rule defined in [1], the 

association rule problem is defined as follows: 

Let I ii im={,,, }1 2K  be a set of items, and let D be a set of transactions (i.e., the transaction 

database) in which each transaction T is a set of items such that T I⊆ . An association rule is an 

implication of the form X Y→ , where X I⊂ , Y I⊂ , and X Y∩ = φ . The rule X Y→  

holds in the transaction set D with confidence c if c% of transactions that contain X  also 

contain Y . The rule X Y→  has support s in the transaction set D if s% of transactions contain 

X Y∪ . 

When the above definitions are adopted, two critical issues should be addressed before implementing 

the data mining process: (a) the granularity of transactions used to mine associations and (b) the 

domain used to generate association rules. 

Granularity of mining associations 

In [13], the authors proposed restricting the granularity for generating associations to 3-10 sentences 

per paragraph in order to reduce the computational complexity. This restriction is impractical for web 

documents since a paragraph may have hundreds of meaningful sentences. In addition, the 

importance of a sentence in a web document depends on the associated HTML tags, not its position. 

Therefore, the granularity of mining term association is the whole informative paragraph. 

Domain for generating association rules 

As Internet documents are published by various web developers, it is common for a term to have 

different meanings that its semantics depends on both the developer and context. For example, when 

a document has “apple computer” in a paragraph, the semantics of “apple” are not likely to be “apple 

of fruit or food.” Most likely, the phrase indicates “Macintosh” in the class of “Computer.” Similarly, 

apple in “apple pie” implies the apple of fruit in the class of “Food.” The above observation supports 

restricting the domain of mining term associations within the boundary of a class. On the other hand, 
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it is also common to observe a meaning has many forms of representations that make its associations 

a promising candidate for mining. For these reasons, ACIRD applies the mining association rule 

process to mine term associations based on the following assumptions: 

(i) Term corresponds to item. 

(ii) Informative paragraph corresponds to transaction. 

(iii) Class corresponds to transaction database. 

Document

Term Semantic
Network (TSN)

Extracting
Terms

Mining
Association

Rules

Terms

Term Association
Graph(TAG)

Term Support
Graph(TSG)

   Class

Term

Document Document Document

Learning
Classification

Knowledge

 

Fig. 5. Construction of the Term Semantic Network. 

Concentrating on the objects of a class instead of all the classes has the merit of low computational 

complexity due to the resulting small database size. When the size of the database is not large, a 

simple mining association algorithm, such as Apriori [2], can be efficient ly applied. In this study, we 

only consider one-to-one term associations, where the cost of the mining term associations of a class 

is )(
2

cKnowO  [22]. 

We define confidence (conf) and support (sup) of term association ji tt →  as follows: 

; and  contain that documents ofnumber   theindicates )( and  , term

 contain that documents ofnumber  for the stands  )(  where,)(
)(

jijici

ic
ic

jic
tt

ttttdft

tdftdf
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ji

∩
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=>−  
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. class in documents ofnumber  for the stands   where,
)(

cD
D

ttdf
sup c

c

jic
tt ji

∩
=→  

Confidence is considered to be the degree of association between terms and is employed by the 

Classification Knowledge Refiner to refine cKnow  to *
cKnow . Support is the percentage of 

transactions supporting the associated rules, and is considered to be a metric of the correctness of the 

rules. For example, cKnow  of class Art contains the following term supports: 13.0, =Artexhibitionsup  

and 1, =Artartsup . exhibitiont  may be filtered out from cKnow  due to its low support value. After mining 

the term associations of the class Art, ACIRD identifies the term association artexhibition →  with 

826.0=→artexhibitionconf  and 1.0=→artexhibitionsup . Assume that a rule with 10% support is considered to 

be useful. Following the definition of *sup  defined in the previous section, *
, Artexhibitionsup  is increased 

from 0.13 to 0.826 (i.e., *
, Artexhibitionsup  = artexhibitionconf → × Artartsup ,  = 0.826×1 = 0.826). The inference 

process promotes the support value of exhibitiont  to 0.826 to pass through the filter. 

After the term associations of a class are mined, TSN is obtained, as shown in Fig. 5. TSG denotes the 

term supports of a class, TAG represents the term associations in a class, and TSN represents the 

union of TSG and TAG, i.e., ),(),,(),,( ETTAGEcTTSGEcTTSN ∪= . 

5.5 Refinement of Classification Knowledge  

As the term associations are asymmetric and exist for every pair of terms, both TAG and TSN form 

strongly connected digraphs. To determine *sup  of a term, all the possible paths from the term to the 

class node must be considered. For a TSN, the total number7 of possible paths from terms to the class 

is ∑
−

=

−⋅
1

1

1
n

i

n
iPn , where n is the number of terms. In the experiments, the average number of terms for a 

class was found to be 472, which makes exhaustive search infeasible. Although the support value of 

term association can be employed as a filter to remove rarely used terms, it is still computationally 

expensive for a small number of terms. For instance, a class with ten terms creates about 8103.2 ×  

possible paths. Therefore, an efficient algorithm is deemed necessary. 
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Herein, we present a novel PTS algorithm to locate *
,cti

sup ’s for all the terms in a class in polynomial 

time. According to the definition }...{ ,
*
, ctttttttct zzykjj

supconfconfconfMAXsup ××××= →→→ , where 

conf  and sup  range in [0, 1], a larger number of edges in the path ),,,...,,,( ctttttp zykj  implies a 

smaller value for their product. Restated, a sub-path of an optimal path must be an optimal path as 

well. The proposed greedy heuristics and algorithm are as follows: 

Heuristics. Divide the terms in TSN into two groups T  and *T . Initially, T  contains all the terms, 

and *T  is empty. Each time, find a term t with the maximum *
,ctsup  in T and move t  from T  to *T . 

Repeat the above until T  is empty. 

Perfect Term Support (PTS) Algorithm 

1. [Initial state: This step initializes all *
,ct j

sup  and partitions the terms into two groups: *T  

contains the term with maximum *sup , and T  contains all others.]  
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2. [This step updates every *
,ct j

sup  in T  if necessary, where lastt  denotes the latest term added into 
*T .] 
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3. [This step locates the term with maximum *
,ctsup  from T  and inserts it into *T .] 
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In [22], we proved that the PTS algorithm always obtains the optimal solution with computation 

complexity )(
2

cKnowO . PTS can efficiently promote some non-representative terms by exploring 

their associations with representative terms. Fig. 6 illustrates the effect of PTS. On the left-hand side, 

there are four non-representative terms in TSN. After refinement using PTS, on the right-hand side of 

the graph, three terms are promoted to be representative for their associations with the representative 

terms. All other non-representative terms and corresponding associations are eliminated to reduce the 

learning complexity.  
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Fig. 6. PTS Refinement on TSN. 

Effects of the Knowledge Refinement Process 

An experiment was designed to compare cKnow  and *
cKnow  based on U

cKnow , which includes class 

keywords selected by ten human experts. For every class, ten human experts selected terms 

considered representative of the class from a given set of Internet documents. Those selected terms 

were sorted based on the number of times they were selected and used as the basis for judging the 

quality of learned knowledge. The precision and recall rates are defined as follows:  

Precision of cKnow  = ;
c

U
cc

Know
KnowKnow ∩

. 

Recall of cKnow  = U
c

U
cc

Know
KnowKnow ∩

. 

The experiment results indicate that the Knowledge Refining Process indeed refines the knowledge 

contents of classification knowledge. The trade-off between precision and recall based on different 

feature selection criteria was examined as well. Two types of criteria were used to evaluate the 

outcomes of the experiment results. 

� Top n. All the *
,ctsup  are sorted in a descending order. The first n terms are selected as keywords 

of *
cKnow . 

� Threshold = ? . This criterion is used to select terms with .*
, θ≥ctsup  

Table 1 summarizes the experiment results. Before PTS was applied, the lowest precision was 0.76, 

due to the high selection standards. However, the recall was low for the same reason. This 

observation implies that the Induc tion Process does not learn the implicit association among terms 

although it correctly generalizes the knowledge of objects to classes. In contrast to the case where 

PTS was not applied, PTS increased both precision and recall for the Top n criterion as it promotes 
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important but non-representative terms at the expense of removing less important terms (as the Top n 

criterion selected a fixed number of terms). For the “Threshold = ?” criterion, PTS dramatically 

increased recall while decreasing precision since it increased the number of keywords while 

promoting the terms. The experimental results confirm that the Induction Process and Knowledge 

Refining Process discover the hidden semantics among terms. Our results further demonstrate that an 

acceptable compromise between precision and recall can be achieved with a carefully chosen 

selection criterion. 

Since each component of the ACIRD learning model can be executed in polynomial time and 

knowledge refinement can be achieved in a finite number of iterations, the total complexity is also 

polynomial. 

Table 1. The performance of the PTS algorithm on classification knowledge. 

 Before PTS algorithm After PTS Algorithm 

Selection Criterion Precision Recall Precision Recall 

Top 10 0.76 0.27 0.91 0.38 

Top 20 0.78 0.53 0.85 0.62 

Threshold = 0.5 0.97 0.10 0.73 0.97 

Threshold = 0.7 0.96 0.07 0.79 0.83 

6. Evaluation of ACIRD Automatic Classification 

In this section, we describe the testing phase of the learning process. Based on the learned knowledge, 

the ACIRD Classifier automatically categorizes newly collected Internet objects. For each object, the 

classifier assigns one or more classes, which are compared with the classes assigned by human 

experts to evaluate the classification accuracy. A series of experiments and analyses revealed that 
*
cKnow  provides high quality suggestions in classifying Internet documents. 

Similarity Measurement 
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The ACIRD Classifier uses the conventional similarity measurement, the cosine value of feature 

vectors of documents and classes, defined in equation (6.1): 

Owing to the imprecise nature of the class concept, the class assignment of an object cannot be 

exactly “true” or “false.” In addition,  categorizing an object to one class will be impractical since an 

object may be conceptually related to several classes. Therefore, for an input object, the ACIRD 

Classifier gives the best N classes that are closest to the intention of the object. Classification 

accuracy is estimated based on the criterion in which the expert-assigned class of a testing object is 

located in the set of best N matched classes.  

Experiment Results 
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Fig. 7. The classification accuracy of assigning 8,855 testing objects to 386 most specific classes. 

This experiment used 512 classes in ACIRDL  with 386 most specific classes, 9,778 training objects and 

8,855 testing objects, where both sets of objects were disjoint and manually classified. Before the 

learning process, ten human experts extracted the keywords from each class for use as the 

classification knowledge benchmark, denoted as U
cKnow . Fig. 7 summarizes the results of the testing 

processes run on U
cKnow , *

cKnow , and cKnow , denoted as “10 Users,” “With PTS,” and “Without 

PTS,” respectively. The result obtained from a naive Bayes classifier, denoted as “Naive Bayes,” was 

also included for comparison, as it is widely used in text classification. According to these results, 
*
cKnow  has quality on a par with the manually extracted classification knowledge U

cKnow  in terms of 

the accuracy of class assignment of objects, while both perform better than the naive Bayes classifier. 
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However, the classification accuracy for all the cases is unsatisfactorily low. Closely examining the 

training and testing sets reveals that many classes contain insufficient training objects, and that some 

training and testing objects contain very few keywords because they are non-text pages or link-only 

pages. Thus, another experiment was designed to circumvent this situation. The same testing process 

was performed based on the twelve most general classes8 of ACIRDL , and the resulting classification 

accuracy is shown in Fig. 8. The “Top 1” accuracy of *
cKnow  increased from 0.139 to 0.595. This 

increase was due to the sufficient number of training objects in the testing classes, and the total 

number of testing classes was reduced from 512 to 12. 
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Fig. 8. The classification accuracy of assigning 8,855 testing objects to the 12 most general classes. 

Table 2 lists the number of objects and keywords of the twelve most general classes. From this table, 

the distribution of the numbers of objects is skewed, and some classes still exhibit the problem of 

insufficient training objects and keywords. To further investigate this problem, we performed another 

set of experiments on classes with a sufficient number of training objects and keywords only. In the 

experiment, every testing class had at least forty training objects. The number of testing classes was 

reduced from 512 to 48. Since the classes contained a sufficient number of training objects, these 

classes are referred to herein as well-trained classes and their refined classification knowledge as 

well-trained classification knowledge. In Fig. 9, the “Top N” classification accuracy is markedly 

higher. This figure also reveals that, when the classes contained a sufficient number of training 

objects, our learning model could learn more accurate classification knowledge than could the human 

                                                 

8 They are  “Arts,” “Humanities,” “Social Sciences,” “Society and Culture,” “Natural Sciences,” “Computer and Internet,” 
“Health,” “News and Information,” “Education,” “Government and State,” “Companies,” and “Entertainment and 
Recreation.” 
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experts. Intuitively, the number of classes is a factor that affects classification accuracy. However, 

according the results shown in Fig. 8 and 9, the accuracy of classification of the twelve most general 

classes and forty-eight well- trained classes were comparable. For instance, Top 1 accuracies were 

0.539 and 0.486, and Top 6 were 0.861 and 0.936, respectively. This result is interesting since it 

shows that the number of classes is not the only major factor. 

Table 2. The distribution of training objects in the most general classes. 

Class Name Objects Keywords 
Companies 2702 (27.88%) 950 (22.83%) 

Entertainment and Recreation 2577 (26.59%) 1084 (26.05%) 
Computer and Internet 1199 (12.37%) 471 (11.32%) 

Education 1169 (12.06%) 589 (14.15%) 
Society and Culture 502 (5.18%) 226 (5.43%) 
Government and State 384 (3.96%) 241 (5.79%) 
News and Information 288 (2.97%) 162 (3.89%) 

Health 280 (2.89%) 180 (4.32%) 
Arts 223 (2.30%) 115 (2.76%) 

Social Science 208 (2.15%) 92 (2.21%) 
Natural Science 106 (1.09%) 44 (1.06%) 

Humanities 53 (0.55%) 8 (0.19%) 
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Fig. 9. The classification accuracy of well-trained classes. 

7. Two-Phase Search Engine 

Most search engines reply to user queries with a list of ranked documents, which makes it time 

consuming and inconvenient for users to retrieve the needed documents. ACIRD provides the 

two-phase search that allows users to perform both class-level searching and object-level searching. 

By utilizing the two-phase search, users can relate their information needs to the classes in ACIRDL , 
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navigate among the classes, and locate and retrieve needed documents. The above procedure can be 

executed iteratively until the user obtains the needed information. Ensuring the effectiveness of the 

two-phase search requires that the terms of user queries be in some *
cKnow ; thereby, applying 

class- level search to *
cKnow  can return relevant classes. The conjecture “most query terms are in 

*
cKnow ” was investigated by means of the following analysis of the user query log.  

Analysis on User Query Log 

Internet queries were analyzed based on a user log collected in October 1997. Terms were extracted 

from queries, and their frequencies were counted. There were 9,644 distinct terms in the user log, 

denoted by the set logCT , in 648,006 queries. If a keyword in *
cKnow  was also in logCT , its reference 

count was assigned as the reference count of the term in logCT ; otherwise, the reference count of the 

keyword was 0. The reference count is applied to measure the recall rate. The number of retained 

keywords of *
cKnow  served as a measure of the index rate, i.e. the rate of coverage of *

cKnow  to logCT . 

Regarding the references and query terms of the query log as the baseline, the recall rate and index 

rate are defined as follows: 

    Recall rate = total reference count of *
cKnow  / total references of logCT ; 

    Index rate = number of keywords in *
cKnow  / number of query terms in logCT . 

Table 3. Total reference counts (recall rate) vs. the number of keywords (index rate). 

Based Line: Query Terms in User Log 648006 (100%) 9644 (100%) 

Filter Threshold for *
cKnow  Total References Needs  Number of Keywords 

Th = 0.0 628065 (96.92%) 18076 (187.43%) 
Th = 0.1 477906 (73.75%) 3775 (39.14%) 
Th = 0.2 470277 (72.57%) 3446 (35.73%) 
Th = 0.3 465396 (71.82%) 3260 (33.8%) 
Th = 0.4 458468 (70.75%) 3090 (32.04%) 
Th = 0.5 452897 (69.89%) 2981 (30.91%) 
Th = 0.6 440661 (68.00%) 2723 (28.24%) 
Th = 0.7 421649 (65.07%) 2498 (25.90%) 
Th = 0.8 404615 (62.44%) 2277 (23.61%) 
Th = 0.9 389439 (60.10%) 2015 (20.89%) 
Th = 1.0 378249 (58.37%) 1905 (19.75%) 

 

To observe the change of the recall and index rates, the keyword selection process uses different 

thresholds denoted by “Th = x.x.” Table 3 lists the reference counts (recall rate) and the number of 

keywords (index rate) for each test. From the table, in the case of “Th = 0” (i.e., no keyword was 
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eliminated), indexed keywords covered 96.92% of the information needs with about double the index 

size of query terms. When “Th = 0.5”, the remaining keywords covered 69.89% of the information 

needs with an index rate of 30.91%. With a sufficiently high recall rate, two-phase search is able to 

shrink the searching domain to a reduced class lattice for efficient and effective searching without 

compromising user’s information needs. 

Two-Phase Search Method 
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Fig. 10. Processing Flow of Two-Phase Search.  

The above analyses show the likelihood of performing a class- level search without much information 

loss. Besides class- level searching on a structured presentation, ACIRD also provides conventional 

searching, including object- level searching and searching of all-objects as an “escape” for users. 

After briefly reviewing the return of a class- level search, the user can navigate down or up along the 

class lattice or choose to apply object-level search to a particular class. Fig. 10 shows a block diagram 

of Two-Phase Search. The operations are described below. 

1. Process query string : Parse the query string into a sequence of keywords. 

2. Perform a Class-Level Search: Examine the sub-classes of the designated class (initially, the 
root), calculate the relevance scores and sort the classes based on the scores in descending order. 
Return only the more general classes (i.e., if both parent and child classes satisfy the query, return 
only the parent class) to the user. Generate and present the result in HTML format. 

3. Execute an Object-Level Search in a class: Retrieve objects in the designated class associated 
with the query terms, calculate each object’s relevance score, and sort the objects according to 
the scores in descending order. Generate and present the findings in HTML format. 
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4. Search all objects: Retrieve all objects related to query terms, calcula te each object’s relevance 
score, and sort the objects based on the scores in decreasing order. Present the findings in HTML 
format. 

Examples of Two -Phase Search 

The user gives the query “interesting technical magazine” to search for desired objects using 

Two-Phase Search. 

 

Fig. 11. Class-level Search (Query Result: Matched Classes). 

 

Fig.12. Search All Objects in a Class (Query Result: All the objects in a class). 

Fig. 11 presents the query returns, which are the 8 highest level classes satisfying the query, obtained 

by class- level search. In the figure, the column “Refined Search in Class” presents the class names 

that user can resume the same query on the class by clicking on the class name. The column “Object 

In Class” shows two links, “All” and “Direct.” The former lists all the objects in the class (including 

the objects in its subclasses), as shown in Fig. 12, which are all the objects in the class Technical 

Journals; the latter lists the class’s direct objects only, as shown in Fig. 13.  “MG (membership 

grade)” indicates the normalized relevance score.  
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Fig.13.  Object-level Search (Query Result: Direct objects of a class). 

If the user was interested in the class “Technical Journal” and clicked on it to perform object- level 

search, the search findings were those shown in Fig. 14. The column “In Class” presents the classes 

the object belongs to that the class hyperlink links back to the class node. 

 

Fig. 14. Object-Level Search (Query Result: Objects in designated Classes). 

Fig. 15 summarizes the results of “Search All Objects,” as used by conventional search engines. This 

example contains a total of 746 relevant objects. In comparison with the 8 relevant classes returned by 

a class- level search, visiting and locating information in 746 links is extremely inefficient. 
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Fig. 15. Search All Objects (Query Result: All Objects).  

8. Conclusions and Future Work 

This paper has presented a class-based Internet document management and access system: ACIRD. 

Our results demonstrate that machine learning and data mining techniques are capable of generating 

accurate classification knowledge. Based on the classification knowledge, the classifier can 

automatically and satisfactorily classify Internet documents into classes in a class lattice. According 

to analysis of the user query log, the classification knowledge can serve as a meta-index to shrink the 

searching domain to enable retrieval of potentially desirable documents efficiently. In addition,  

class- level search returns with a comprehens ible organization of classes. Users can associate their 

queries with the presented classes, navigate among the classes and finally perform object- level search 

to obtain their desired documents. In this manner, the system helps users discover information in a 

large number of Internet documents. 

In the future, the learning model should be extended to incrementally learn the changes of the Internet. 

In addition, the classification accuracy of the learning methods and of the classifier still has room for 

further improvement. Some related issues are also worth closer examination and further study. For 

example, future work should examine the feasibility of extending the use of mining term associations 

in classes to automatically construct a thesaurus, which corresponds to the semantics of terms in the 

specific domain. Also, analyzing the user query log will allow the system to learn and extract new 

terms that cannot be found in thesauruses, such words like “MP3,” “ICQ,” and “CGI,” in order to 

expand the term base of ACIRD. 
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