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Abstract

This paper presents an intelligent Internet information system, Automatic Classifier for the Internet
Resource Discovery (ACIRD), which uses machine learning techniques to organize and retrieve
Internet documents ACIRD mnsists of a knowledge acquisition process, document classifier and
two-phase search engine. The knowledge acquisition process of ACIRD automatically learns
classification knowledge from classified Internet documents The document classifier applies learned
classification knowledge to classify newly collected Internet documents into one or more classes.
Experimental results indicate that ACIRD performs as well or better than human experts in both
knowledge acquisition and document classification. By using the learned classification knowledge
and the given class lattice, the ACIRD two-phase search engine responds to user queries with
hierarchically structured navigable results (instead of a conventional flat ranked document list),

which greatly aids users in locating information from numerous, diversified Internet documents.

Index Terms: Document Classification, Data Mining, Information Retrieval, and Search Engine.

1. Introduction

The explosive growth of the Internet has revolutionized working and living patterns as it has evolved
into a major source of information and communication medium. However, the huge amount of
information on the Internet has created the information overflow phenomenon To alleviate this
problem, many Internet search engines and topic directories have become are available to users.
Search engines, such as AltaVistaand InfoSeek, are ableto retrieve Internet documentsin response to
auser's query. Alternatively, topic directories e.g. Y ahoo!, allow users to search relevant documents
by browsing a topic hierarchy. Search Engines are designed to efficiently organize and access a large
collection of documents. Since the number of documents available onthe Internet is huge, thousands

of documents may be retrieved by a searchengines for a query with one or two terms:. For example?,

! The average query length is 1.3 terms, as reported by [37].
2Experiments were performed in October 1998. All the “facts” given in this paper reflect the situation then.
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given the query “education and university,” there were 87,368,493 hits by AltaVista, 7,379,086 hits
by Infoseek, and 237,902 hits by WebCrawler. Ranking a large number of documents using very few
terms is unlikely to produce an order of documents that meets the user’s information needs.
Consequently, the user must retrieve many uninteresting documents before obtaining the desired
information. Several search engines have applied relevance feedback [32] to expand and/or refine the
guery based on documents selected by the user. However, relevance feedback may be ineffective
since grasping the user’s true intention from the selected documents is extremely difficult.

Theconceptual gap between document devel opersand usersenlargesthe difference betweenretrieval
results and user expectations. Due to the richness of language and culture on the Internet, web
developers and users may use different terms and expressions to represent the same concept, or use
the same term to describe different things. Therefore, term-based search engines frequently retrieve
documents, virtually thousands, not desired by users while the desired documents may not be
retrieved. For instance, term-based search engines do not match the term “airline schedule” in
documents with the term “flight schedule” inaquery, whereas both terms are considered to have the
same meaning. Consulting a thesaurus may resolve the problem. Another problem arises in whicha
term may have different meaningsin different contexts, such asthe term “bank.” Building a thesaurus
for each specific domain can solve this problem. However, no static thesaurus can handle the shifting

semantics of terms in the Internet environment owing to its diversity and dynamic nature.

Current topic directory systems suffer from the bottleneck of manual classification of newly collected
documents. For example, Y ahoo!, the largest directory system on the Internet, contains roughly 1.2
million links in its topic hierarchy, and more than 150 editors are needed to classify web pages®. The
total number of documents in the directory systems is much less than the database used by search
engines. Thefocus of directory systemsis assigning the Internet documents to the right topics, instead

of the speeding up or increasing the size of the database.

From the traditional measures of information retrieval, i.e., precision and recall, search engines have
low precision rates because too many results are retrieved, while topic directories suffer from low
recall rates because of their small databases. To achieve balanced precision/recall rates and allow
users to access needed documents rapidly, organizing documents according to a set of classesis a
prerequisite for efficiently managing and retrieving Internet documents [14]. The system ACIRD?

(Automatic Classifier for the Internet Resource Discovery) [21, 22, 23] was designed to achieve

3 http://searchenginewatch.com/reports/directories.html in October 1998.
4 http://Y amNG.iis.sinica.edu.tw/Acird/class.htm



efficient and effective Internet document organization and retrieval. The system learrs classification
knowledge from classified documents. It also mines the association rules among terms to explore the
implicit term semantics, and infers from the term associations in order to refine the classification
knowledge of classes in a class lattice To facilitate the Internet search, the system uses a two-phase

search mechanism that presents a hierarchically navigable view to the user.

The rest of this paper is organized as follows. Section 2 reviews related works. Section 3 introduces
the functions of ACIRD. In Section 4, we introduce the conceptual model and define the terminology
used in this paper. Section 5 discusses the ACIRD learning model in detail. Next, Section 6 presents
experiments on automatic classification of documents to justify the design decisions of ACIRD.
Section 7 then introduces the two-phase search method. Contributions of this work and areas for

future work are finally presented in Section 8.

2. Rdated Work

This section reviews works related to this study on Internet information retrieval, document

classification and data mining.

Internet I nformation Retrieval

Previous studies on Information Retrieval (IR) systems focused mainly on improving retrieval
efficiency by using termbased indexing [8, 11, 28, 37] and query reformulation [32] techniques.
Term-based document processing initially extracts terms from documents using a pre-constructed
dictionary, stop words and stemming rules [10, 28, 30]. Once terms are extracted, a widely used
method called TF" IDF (or its variations) [31, 33] is applied to determine the weights of terms. A
document can thus be represented by a set of terms and their weights. The similarity measure between
a query and a document is the direct product of their corresponding term vectors, the cosine value
between the two vectors in a multi-dimensional vector space. To indicate the degree of relevance of

documents and queries, retrieved documents are presented as a ranked list based on the measure.

Alternatively, the string-based indexing approach indexes strings and all possible sub-strings instead
of terms as in term-based approach, which is particularly useful for arbitrary-length string search,
such as string matching (e.g. address matching) and character-based |language search (including many
oriental languages, such as Chinese and Japanese). Notably, the storage requirement of the
string-based indexing approach is much higher than that of the term-based indexing approach. In

addition, their complicated data structures take more time for retrieval. While superior in retrieving



exactly matched strings, the string-based indexing approach is inappropriate for Internet information
discovery tasks in which users only give conceptual descriptions, instead of exact strings. Many
investigations have developed string-based indexing technologies, including PAT-tree [4] and
signature files [7], to enhance the performance of various search functions, such as prefix searching,
range searching, longest repetition searching, nmost significant and most frequent searching, regular

expression searching, etc [10]. However, these search functions are rarely found on the Internet.

While current search engines employ a variety of IR techniques, the differences among them are

related to indexing, representation, querying and implementation.

Indexing. Search engines gather Internet HTML documents (i.e. web pages) from user submissions or
by means of automatic Internet robots (also called spiders or crawlers). As conventional IR systems,
search engines index a set of words or phrases for efficient retrieval. Some search engines attempt to
determine and index concepts in documents. For example, Excite® knows that a relationship exists
between related concepts like “elderly people’” and “senior citizens.” Based on the rich format of

HTML, search engines can enhance weights of terms according to the significance of tags.

Representation. Most search engines employ full text indexing for fast matching between queries and
documents where documents are represented by a set of termweight pairs as the case with
conventional IR systems. Most topic directory systems also provide key word search functions so that
they represent web pages as term-weight indexes. In addition, they store pages into a topic hierarchy

developed and maintained manually.

Querying. Search engines employ several functiors to refine the numerous search results. For
example, most search engines provide Boolean operators to derive precise results. Other functions,
such as exact phrase matching, sorting pages by corresponding sites and restricting search from

specified sites, are also useful for refining search results.

Implementation. Both Internet search engines and topic directory systems need to cope with the
dynamic Internet environment, in contrast with the stable context of IR systems. Web pages are
created, modified and deleted frequently, which requires systems equipped with dynamic storage
structures and efficient indexing mechanisms. Implementation of intelligent Internet robots is yet

another challenging issue for Internet web page collection.

Currently, there are hundreds of search engines that apply the technologies of IR to the Internet.

Popular search engines are famous for their rich indexes and fast response. In general, most search

® http://www.excite.com/info/search_help/



engines borrow indexing and ranking methods from IR and improve their performarce by adding
advanced hardware and sophisticated software. User satisfaction suffers not when no matched
documents are returned by search engines, but when too many documents are returned. To learn more

about the current status of popular web search engines, readers can refer to Search Engine Watch’.

Document Classification and Data Mining

Many approaches used to classify documents can be divided into two main camps, manual
classification and automatic classification. Manual classification of documents is ime consuming
and expensive, which makes it infeasible for handling the huge number of Internet documents. For
automatic classification, classification knowledge can be acquired from domain experts or learned
automatically from training documents [3]. Acquiring knowledge from domain experts, while
relatively effective, is expensive in terms of time and knowledge maintenance. Furthermore, the
acquired knowledge may be incomplete, which will require the use of complicated models and
theories to apply it. On the contrary, classification knowledge automatically learned from training
documents is efficient, but its accuracy is constrained by the employed learning model and training

data.

Many text categorization studies have focused on information retrieval [3, 9, 14, 15, 16, 17, 19, 20,
35]. Herein, “ document classification” instead of “text categorization” is used since thiswork focuses
on Internet HTML [18] documents rather than general texts. Document classification involves the
automatic grouping of documents. Many studies have addressed this issue by adopting
similarity-based document retrieval [35], relevance feedback [32], text filtering [25], text
categorization [3, 17, 20], and text clustering [12, 19]. For example, ExpNet [35] uses similarity
measuremert as the category ranking method to determine the best category for the input document.
SIFTER [25] uses a vector space model for document representation, unsupervised learning for
document classification, and reinforcement learning for user modeling to filter documents based on
content and user specific interests. INQUERY [17] employs three different classification techniques:
a k-nearest-neighbor approach using belief scores as the distance metric, Bayesian independence
classifiers, and relevance feedback. Goldszmidt and Sahami proposed document clustering based on

the probabilistic overlap between documents and document clusters[12].

Previous machine learning studies developed many agorithms that have been well tested and used in
many fields, such as medicine and finance. Widely used algorithms, including 1D3 [26], C4.5 [27],

® http://searchenginewatch.com/



CN2 [5], and AQ agorithm [24], have been applied to structured training data instead of
non-structured textual data in the document classification problem. Correspondingly, many
approaches to document classification use feature sets to characterize documents and apply
agorithms such as Bayesian classifiers [19], k-nearest-neighbor method [9, 11], rule-based induction
algorithms [3], and mixed approaches (e.g. INQUERY [17]) to classify documents While
concentrating on the document classification process and learning algorithms, those systems ignore
the diversity of documentsin the use of terms and their semantics |n many learning applications, the
characterized feature is an attribute-value pair with the assumption of fixed semantics. However, the
semantics of a feature varies with different domains. For example, the document feature “ apple”’ has
different meanings for the domains “ computer” and “food.”

Mining association rules [1, 2, 34] are applied to discover important associations among items of
transactions. A conventional application of mining item associations is finding an optimal item
arrangement in a supermarket so as to allow customers to gather their groceriesconveniently. In this

study, we apply mining association rules to explore the semantics of features in a document.

3. TheACIRD System

ACIRD [21 22, 23] automatically collects and classifies Internet documents for efficient, effective
management and retrieval. ACIRD initialy focuses on improving the expensive and time-consuming
manual classification process used by many Internet search engines. By employing classification
knowledge learned from manually classified Internet documents ACIRD automatically classifies
newly collected Internet documents. Classification knowledge together with the given class lattice
enables two-phase searching, which presents the search results in a hierarchical view instead of a
ranked document list asin conventional Internet document retrieval. All the design decisions, such as
measurement metrics, am to reach the integral goal of ACIRD, i.e. auto-learning, auto-classification
and two-phase searching. This section provides an overview of ACIRD, and the subsequent sections

present the details of each component.

Fig. 1schematically shows the workflow in ACIRD. The domain expert provides a classlattice asthe
worldview of the document domain and a set of training data, which are Internet documents with
manually assigned classes. The Classification Learner learns from the training data and generates the
classification knowledge (or so caled class indexes) of the classes in the class lattice. The Internet
Robot automatically collects documents from the Internet, and the Preprocessing Process extracts the
features from the documents. The Document Classifier proceeds to assign one or more most

appropriate classes to the incoming documents. When Internet users query ACIRD, the Two-Phase
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Search Engine matches the queries with knowledge of documents, and classes and presents a
hierarchical view to the users to facilitate the information discovery job. In this study, we focus on
Internet HTML documentsonly, referred to herein asobjects. Each object isassigned auniqueID and
parsed into a document index, a set of terms with weights, which is stored in the database. The set of
term and weight pairs form the feature vector representing the object knowledge. Inverted indexes

pointing to the occurring objects from terms are generated for efficient access during learning and
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Fig. 1. The Mgor Components and Workflow in ACIRD.
The given class lattice presents the worldview to ACIRD. In the lattice, each node represents a class,

and every parent node is a super set of its child node. Nodes with no parent nodes besides the
universal node are referred to as the most general nodes, and nodes with no child node besides the
null node as most specific nodes. The automatic learning and classification process of ACIRD
consists of two phases. a training phase and a testing phase. In the training phase, the training data
consst of a set of manualy classified documents. The learning process learns the classification
knowledge in the sequence from the most specific classes to the most general classes of the given
class lattice. For the most specific classes, the classification knowledge is generalized from the
knowledge of objectsin the class. For the other classes, the knowledge is generalized from their child
classes and direct objects (i.e. the objects belong to the class, but not to any of its child classes). After
the knowledge of classification is learned, the technique of mining association rules is employed to

discover term associations inside each class so as to enhance the classification knowledge. As term



associatiors highly depend on the class domain, the best scopeto apply term associationsto refine the
classification knowledge is a single class. Our previous study [22] demonstrated that the mined term
association can enhance the term semantics dramatically. In the testing phase, the classifier employs
the learned classification knowledge to assign classes to the test documents (usualy the newly
collected documents), and the assignments are compared with the classes assigned by human experts

to verify the quality of the learned knowledge.

ACIRD provides a two-phase search engine that allows users to efficiently and effectively retrieve
interesting documents via interactive navigation of the returned class hierarchy, rather than via a
sequence of ranked documents. During the two-phase search, each user query string is parsed and
formulated as a sequence of terms, called query term vector. Similarity matching based on the vector
space model is applied to determine the relevance between the query and the classes in the class
lattice as well as stored objects. Note that both class and object knowledge are also represented as
term vectors. During the first phase, a class-level searchis performed in which the query term vector
is used to determine the qualified classes that form a shrunken view of the class lattice. If the user
decides to further explore a qualified class in the returned class hierarchy, the query term vector is
again employed to calculate the relevance of the subclasses of the selected class. When the user
decides to explore the objects in a class, which is called object-level search, ACIRD matches and
retrieves qualified documents in the class. The two-phase search not only reduces the search domain,

but also presents a hierarchical conceptual view to aid the user in locating interesting information.

4. ACIRD Conceptual Model

In this section, we define the terminology used herein and introduce the conceptual model of ACIRD
[22]. An entity is denoted by alower case letter, and a set or series of entitiesby an upper case letter.
For example, let ¢ denoteaclassand C represent a set of classes. In the following, we describe the
system entities with their notations in parentheses beginning from the high level concepts and

continuing to the low level ones.

- The ACIRD Lattice ( L, rp (C,R)) isthe given class lattice that consists of a set of classes C as
nodes and a set of relations Ras edges that connect two nodesin C. The parent node of an edgeis

asuper set of its child node. The total number of classes is denoted by ||L||.

- Class(c)isaclassnodeof L,y that possesses knowledge generalized from the subclasses and

direct objects in the class. The number of intermediate subclasses and objectsis |c| .



Object (0) isan HTML document that consists of paragraphs ( pg ) enclosed by HTML tags. An

object 0 belongsto one or severa classesin L, (C,R).

Paragraph ( pg) consists of a series of sentences (S) that subsequently consists of terms. A
paragraph pg isinformative if it is enclosed by informative HTML tags, whichwill be defined
later.

Term (t) is a word (excluding stop words) extracted from the sentences of an informative

prargraph. Each term has a support value for the object in which it appears. The support (supt . )

of t too is calculated using the term frequency and the weight of HTML tags, which quantifies

the importance of t to o.

Object Knowledge (Know, ) is a set of selected terms (T ) with supports for the object sup .
Know, can be represented by the Term Support Graph (TSG(T, 0, E)), in which each directed
edgein E from t, (in T) to o0 hasalabel sup, ,. The number of extracted terms in Know, is

denoted by |Know,||.

Classification Knowledge of dass ¢ (Know,) is a set of terms T in which each term t has a
support value sup, . to ¢. Know, is generdized from Know, of its direct objects and from
classification knowledge of its child classes. Similar to Know,, Know, can be represented as a
graph TSG(T,c, E) , in which each directed edge in E from t; (in T) to c is labeled sup, .. The

number of termsin Know, is denoted by |Know|.

For each class c, the process of mining association rules is applied to mine associations among

termsof Know,. The mined rules are called term associations, and for each pair of terms, t. and
t;, thereisacorresponding confidence( confti®ti ). A strongly connected graph Term Association

Graph (TAG(T, E) ) can be generated by considering termsof T as nodes and term associations

as edges labeled confti®tj .

For each class c, the Term Semantics Network (TSN(T,c,E)) is constructed as the union of
TSG(T,c,E) and TAG(T,E) . TSN is used to represent the semantics of the class and the

relations among the terms in the class.



- The Perfect Term Support (PTS) algorithm [22] is applied to promote sup, . of the edges in
TSN(T,c,E) . The agorithm obtains an optimal path ( p;.) from t to ¢, where p;, is a path
with the maximum value among all the possible paths (R ) from t to ¢ in TSN(T,c,E). The
value associated with apath p, . isthe product of the confidence values of the edges in the path
and the support of the teem t, a the end of the pah to c,
(confie, ’ conf, 4, T conf, o, " sup, . )- The optimal support of t to ¢ (denoted as sup;,.) is

defined as the value of ;.

- A keyword (k) is aterm that passes Filtering Process, which filters out terms based on some

pre-specified conditions. For a keyword, its sup:’C is defined as the membership grade (MG, )
of t to c. Application of PTS and Filtering Process refines Know, to produce Refined

Classification Knowledge ( Know, ). Know, is the knowledge base employed by the two-phase

search engine and automatic classifier of ACIRD.

5. ACIRD Learning Model

In this section, we describe the learning model of ACIRD in detail. In the training phase, ACIRD
adopts supervised learning techniques and treats previously classified documents as training objects.
The testing phase is described in Section 6. ACIRD applies machine learning techniques to learn
classification knowledge as shown inFig. 2. The learning method is applied to each class of ACIRD
lattice from the most specific classes to the most general ones. Each document is preprocessed into a
weighted term vector. The dimension of the vector isthen reduced by the Feature Selection Processin

order to reduce the complexity of learning. For the most specific class, knowledge of the class Know,

is generalized from the knowledge of all the objects in the class, which can be represented by the
Term Support Graph (TSG). For classes other than the most specific classes, the learning process is
the same except that the initial weighted term vectors originate from its subclasses and direct objects.
The mining association algorithm is then applied to mine associations of termsin TSG, which can be
represented by the Term Association Graph (TAG). Combining TSG and TAG derives the Term
Semantic Network (TSN). TSN can be further refined to produce TSN*, i.e., Know, of theclass. In

each iteration of the refinement process, some terms may be promoted. Asthe promoted terms may be
used to promote other terms, the promotion process is applied recursively until the stable state is
reached.
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Fig. 2. The Learning Model of ACIRD.

5.1 Preprocessing Process and Knowledge Representation

The preprocessing process consists of two parsers, the HTM L Parser and Term Parser. The HTML
parser parses an object into paragraphs and determines their weights by judging their associated
HTML tags. The Term Parser partitions the paragraphs into sentences and extracts terms from
sentences. The Term Parser also calculates term supports using the weight assigned by the HTML
Parser and the term frequency.

HTML Parser

An HTML document consists of paragraphs in which the associated HTML tags [18] indicate their
importance and provide meta-level information Web developers highlight the contents using HTML
tags, such as titles or headings. In addition, META tags alow developers to add extra information
such as “CLASSIFICATIONS’ and “KEYWORDS’ to the document. Apparently, the implications
of tags must be considered while indexing documents. In ACIRD, human experts assign and adjust
the weights of HTML tags by observing the outcomes of numerous experiments in order to improve

the classification accuracy. HTML tags are classified into four types:

* Informative Paragraphs enclosed by tags, such as CLASSIFICATION and KEYWORD in
META, TITLE, Hn, B, I, and U, consist of either the meta knowledge of the documents or

significant contents provided to users. Thus, the informative tags have the highest weights.

11



* Sippable. Tags, such as BR and P, do not affect the semantics of the document and are omitted.

* Uninformative. Contents enclosed by tags, such as AREA, COL, SCRIPT, and COMMENT, are

invisible to users. Thus, these tags and their corresponding contents are excluded.

* Satistical. Contents enclosed by tags, such as IDOCTPYE, APPLET, OBJECT, SCRIPT, etc.,
are stored in a database for statistical purposes.

The HTML Parser isimplemented with two stacks: one for HTML tags and the other for paragraphs.

The algorithm is executed in one document scanwith computational complexity O([Know, ).

Term Parser

The Term Parser partitions a paragraph into sentences, extracts terms from the sentences, and counts

theterm frequency (TF) of eachterm After aterm t isextracted from an object o, the support value

sup,, is measured based on TF and HTML weight, as defined in equation (5.1). This value,

normalized in the range of [0, 1], indicates the importance of atermin representing the object:

sup', , = é tf; W where tf;; is the term frequency of t; in the sentence highlighte d by

T

tags T;, and w; isthe madimum weighted tag in T;;

__ sup,
SJpt o f
" MAX{sup’, , }

tjino

, Where sup is normdized to[O0, 1]. (5.2)

Sincea sentence may have more than one tag, the maximum weight of the tagsis used to calculate the
term support. In ACIRD, TF and the maximum tag weight are used to calculate the term support
instead of usingthe TF" IDF weighting approach The Inverted Document Frequency (I1DF), designed
to enhance the discriminating capability of high frequency terms, is not critical in our hierarchical
learning model and two-phase search discovery model. In ACIRD, a high frequency term is
considered to represent its class and may be generalized to classification knowledge of its parent class,

instead of being used as a discriminator of objectsin the class[31].

Designed to handle multi-lingual documents, ACIRD currently supports English and Chinese only.
With English, each extracted term is stemmed [31]. With a character-based language like Chinese, a
sentence is segmented into meaningful multi-character terms. As there may be no apparent stop
charactersin a sentence, the Term Parser uses apre-constructed term base structured as a B-tree [6] to
quickly match and extract meaningful terms. The Term Parser extracts Chinese terms based on the
heuristicsof “long term first” to resolve ambiguity. That is, for two terms, one of which isa part of the

other, the Term Parser extracts the longer one. In addition, the rules for Chinese term segmentation

12



are provided to handle segmentations ambiguity between conflicting candidate terms. The
complexity of term extraction is O(n?), where n is the length of the input sentence. Including the
linear time complexity of the HTML Parser, the complexity of the Preprocessing Process is

O([Know, ).

5.2 Featur e Selection Process
After preprocessing, the object knowledge obtained is represented as a vector of attribute- vaue pairs,
o ={(t,, sup, ,), (t;, sup, ), (t,, SUp, ,)} . Theorecticaly, the induction process can be applied

immediately to learn classification knowledge from the object knowledge. However, the complexity
of the learning process is exponentially increased by the the vector size, which requires use of the
Feature Sel ection Process to reducethe vector sizeand, thus, the complexity. A common practice isto

adopt a pre-defined threshold of support g, in order to discard less important terms, and the
remaining terms are used to represent the object knowledge Know;, . In this manner, the problem of

feature selection is reformulated to the problem of selection of q.
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Fig. 3. The distribution of term supportsof training data.

A high q, discards more terms, so the remaining terms may not be sufficient to represent Know, . In
contrast, alow ¢, only hasaslight effect in the feature selectionprocess. In ACIRD, the selection of
g, isadapted to the emperical experiments. For instance, analysis of the distribution of term supports
based on the training data as shown in Fig. 3 reveals that more than one-half of themare in the range
[0,0.2]. If wechoose g, = 0.2 asthethreshold value, then the average number of termsin an object is
reduced from 28.64 to 11.61, which is approximately the minimum number o terms needed to

produce acceptable learning results in experiments. It is dovious that the computational cost of
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feature selection is mainly due to the grouping of terms from all the objects, which can be done by

means of a sorting process. Hence, the complexity is O(|L|" [Know,

“lag L] [Know))

5.3 Learning Classification Knowledge

The process of learning classification knowledge first generalizes the object knowledge Know, to the
knowledge of most specific class Know, using induction learning, and then generalizes the obtained
class knowledge to its upper classes. The learning process is applied beginning with the most specific
classes and continuing to the most general classes. In conventional learning methods, the values of
features of training objects are either TRUE or FALSE, i.e. whether or not the term occurs in the
object; all the terms are assumed to be equally important so that the degree of term support for the
object or class can be neglected. To amend this shortcoming, we define the support of t to ¢, denoted
as sup, ., in equation (5.2). Similar to (5.1), sup, . isalso normalized to [0, 1]:

sup', . = a sup, , , SUp, ,, isthe term support of t; too;,and o, is an object in the class c;

0j

(5.2)

Sup’
SUp,,

= ,i.e, sup', . isnormdized tosup, . in [0, 1].
” MAX{SJp't“C} pt“ ptl, [ ]

The support of term to a non- most specific class can be obtained from the support of term to the direct
objects and child classes, as shown in Eq. (5.3). Note that the number of objectsin achild class affects

the contribution of that class to the super class:
sup', . = é sup, o, +5°1 ||cj|| sup, ., where o is adirect object of c,
OJ CI

c, isachild class of class c,and ”CJ" is the number of objects in c;; (5.3

_ sup’,
Sth. c f
" MAX{sup’, .}

e, sup', isnormdized to sup, in [0, 1].

The agorithm of the Classification Knowledge Learner is described in the following.

1. From the most specific classes to the most general classes, apply the preprocessing and feature
selection processes to the objects.

2. For the most specific class, calculate the term support for the class based on Eq. (5.2). The
computational complexity is the complexity of grouping terms from all the objects of the class,

i.e. the sorting complexity, O(|Know,||” log|[Know,|).

3. For all other classes, calculate the term support for the class based on Eq. (5.3). By regarding its
child classes as direct objects, the complexity is the cost of grouping terms of child classes and

14



objects, O(|Know||" log||Know,|)). Thus, the complexity of the special- general learning process
is O(|L|" [Know,|" log|Know,]).
Due to the diversity of Internet documents, the number of terms in a class is large, and their term
support is generally low. For instance, inFig. 4, each line represents the distribution of term support
of a class. From the learning results, there are about 472 terms per class on average, and support is
fairly low. Thisfigure reveals that most term supports are located in the low support range (e.g., [0,

0.3]). Therefore, a feature selection process is needed to reduce the low support terms in Know, .
Given athreshold g, = 0.1, on average, there are 47remaining terms per class, 24 termswith g, =0.2,

and 20 termswith g, = 0.3, after filtering. However, a filtering process may remove meaningful, but
with low supports, terms, such as aliases, and terms closely related to high support terms. To alleviate
this problem, we propose a method that uses the mining association technique to discover the term
associations in a class and then apply the result to enhance supports of the otherwise filtered out

terms.

Parcertage

[O.o-o1) [0.1-0.2) [02-0.3) 03204 [0.40.5) [0.5-0.6) [DE-0.7) 0708 [0.2-09) [0.8-1.0]
Eanges of Temn Supports h Classes

Fig.4. The distribution of term supports of all the classes from the training data.

5.4 Mining Term Association
The feature selection process at the class level is more sophisticated than that at the object level. First,
|[Know,| is generally larger than |Know,|| since Know, is generalized fom much classification

knowledge and object knowledge. Second, terms in an object are more consistent in both semantics
and representation thanare thosein aclass Since an object istypically written by oneweb devel oper,
a simple filtering method using a threshold value can perform satisfactorily. On the other hand, the
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objects in a class are collected from many web servers and written by a variety of web developers,
which adds diversity to the term wording and usage. Applying afiltering algorithm that uses a

threshold value g, directly to Know, may remove representative terms but with low support values.
Consequently, the recall rate on Know, is likely to be low. Therefore, the system must identify and

consolidate terms related to the important concepts before applying the filtering process. In ACIRD,
we apply the mining term association technique and the perfect term support algorithm [22] to
promote low support, representative terms. According to the association rule defined in [1], the

association rule problemis defined as follows:

Let | ={i,,i,,..,i,,} beasetof items, and let D be a set of transactions (i.e., the transaction

database) in whicheach transaction T isaset of itemssuchthat T | | . Anassociationruleisan

implication of the foom X ® Y ,where X 1 | ,Y I | ,and X CY =f . Therue X ® Y
holds in the transaction set D with confidence c if c% of transactions that contain X also
contanY . Therule X ® Y hassupport sin the transaction set D if % of transactions contain
XEY.

When the above definitions are adopted, two critical issues should be addressed before implementing

the data mining process: (@) the granularity of transactions used to mine associations and (b) the

domain used to generate association rules.

Granularity of mining associations

In[13], the authors proposed restricting the granularity for generating associations to 3-10 sentences
per paragraphin order to reduce the computational complexity. Thisrestrictionisimpractical for web
documents since a paragraph may have hundreds of meaningful sentences. In addition the
importance of a sentence in aweb document depends on the associated HTML tags, not its position.

Therefore, the granularity of mining term association is the whole informative paragraph

Domain for generating association rules

As Internet documents are published by various web developers it is commonfor aterm to have
different meanings that its semantics depends on both the developer and context. For example, when
adocument has “ apple computer” in a paragraph the semantics of “ apple” are not likely to be “ apple
of fruit or food.” Most likely, the phrase indicates “Macintosh” in the class of “Computer.” Similarly,
applein “apple pie” implies the apple of fruit in the classof “Food.” The above observation supports
restricting the domain of mining term associations within the boundary of a class. On the other hand,
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it is a'so common to observe a meaning has many forms of representations that make its associations
a promising candidate for mining. For these reasons, ACIRD applies the mining association rule

process to mine term associations based on the following assumptions:
(i) Term corresponds to item.
(i) Informative paragraph corresponds to transaction.

(iii) Class corresponds to transaction database.

Term Semantic
Network (TSN)

N\
/%-\ Mining

Association
Rules

Term Support Term Association
GraT(TSG) O Cl as Sraph(TAG)

O Term

Learning .
Classification
Knowledge

O O Q O O Ter ms

Extracting
Terms

Fig. 5. Construction of the Term Semantic Network.
Concentrating on the objects of a class instead of al the classes has the merit of low computational

complexity due to the resulting small database size. When the size of the database is not large, a
simple mining association algorithm, such as Apriori [2], can be efficiently applied. In this study, we

only consider one-to-one term associations, where the cost of the mining term associations of a class

is O([Know|") [22].

We define confidence (conf) and support (sup) of term association t; ® t; asfollows:

confq_ﬂb (8 Ct% (t_),where df . (t;) stands for the number of documents that contain

teemt;, and df (t; C t;) indicates the number of documents that contain t, and t;;
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df (t Ct)) :
ST :—||D | =, where | D.||stands for the number of documents in dlass c.
Confidence is considered to be the degree of association between terms and is employed by the
Classification Knowledge Refiner to refine Know, to Know, . Support is the percentage of

transactions supporting the associated rules, and is considered to be a metric of the correctness of the

rules. For example, Know, of class Art contains the following term supports: sup,,.siionat = 0-13

and sup, ¢ =1.t may be filtered out from Know, due to its low support value. After mining

exhibition
the term associations of the class Art, ACIRD identifies the term association exhibition ® art with
conf ipitiomart = 0-826 @A SUPiniiomart = 0-1. Assumethat arule with 10% support is considered to

be useful. Following the definition of sup” defined in the previous section, SUP_isitonar 1S INCreased
from 0.13 to 0.826 (i.e., S‘Jp;xhibition At = CONfio@art. SUPaar = 0.826 1 = 0.826). The inference

process promotes the support vaue of t to 0.826 to pass through the filter.

exhibition

After the term associations of aclass are mined, TSN is obtained, as shownin Fig. 5. TSG denotesthe
term supports of a class, TAG represents the term associations in a class, and TSN represents the
union of TSG and TAG, i.e., TSN(T,c,E) =TSG(T,c,E) E TAG(T,E) .

5.5 Refinement of Classification Knowledge

As the term associations are asymmetric and exist for every pair of terms, both TAG and TSN form

strongly connected digraphs. To determine sup™ of aterm, al the possible paths from the term to the

class node must be considered. For a TSN, the total number” of possible paths from terms to the class
n-1

is n>g R™*, wheren is the number of terms. I n the experiments, the average number of terms for a
i=1

class was found to be 472, which makes exhaustive search infeasible. Although the support value of

term association can be employed as a filter to remove rarely used terms, it is still computationally

expensive for a small number of terms. For instance, a class with ten terms creates about 2.3" 10°

possible paths. Therefore, an efficient algorithm is deemed necessary.

A - DI - | - Dl n1 - I
7 nxg(n- i+ (n- Dt (n- 1t ...+—(n L g: nxg P"*, where P"* -_(n-Ht 1).' .
é 1 2 (n-2)g i=1 (n-1-1)!
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Herein, we present anovel PTS agorithm to locate sup: . sfor al thetermsin aclass in polynomial
time. According to the definition sup;, = MAX{conf, s ’ (:onftj®tk T confty® . sup, .}, where
conf and sup range in [0, 1], a larger number of edges in the path p(t,t;,t,,...,t,,t,,c) impliesa

smaller value for their product. Restated, a sub-path of an optimal path must be an optimal path as
well. The proposed greedy heuristics and algorithm are as follows:

Heuristics. Divide the terms in TSN into two groups T and T . Initialy, T contains all the terms,
and T" isempty. Each time, find aterm t with the maximum sup,, inT andmove t from T to T".

Repeat the above until T isempty.

Perfect Term Support (PTS) Algorithm

1. [Initial state: This step initializes all supfj . and partitions the terms into two groups: T~

contains the term with maximum sup , and T contains al others]]

-

Let sup, .~ sup, .," t;1 ¢
Let sup, .~ MAX{sup, . |" t;T c};

Let T = {(tg Sup, . )b T = C- {tgl;

2. [This step updates every sup:j . In T if necessary, where t,,, denotes the latest term added into
T ]
If Tisnot empty, continue with Steps 2and 3. Otherwise, stop.
For each t; T T such that edge( t;,t.,)1 E,

If conf " sup,

t]® tIa\st last

> S‘lpt*J,c’ then sup; o moeonfg sup, ..
3. [This step locates the term with maximum sup:’C from T and insarts it into T ]
Let tg = {t [t T T,and sup, . = MAX{sup,  [t;T T}};
T T-te T = T+t OUPUL(t g, SUPg.c)-
In [22], we proved that the PTS algorithm always obtains the optimal solution with computation
complexity O(|Know,|*) . PTS canefficiently promote some non-representative terms by exploring

their associations with representative terms. Fig. 6 illustrates the effect of PTS. On the left-hand side,
there are four non-representativetermsin TSN. After refinement using PTS, on the right-hand side of
the graph, three terms are promoted to be representative for their associations with the representative
terms. All other non representative terms and corresponding associations are eliminated to reduce the

learning complexity.
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Fig. 6. PTS Refinement on TSN.

Effects of the Knowledge Refinement Process

An experiment was designed to compare Know, and Know, based on Know!' , which includes class

keywords selected by ten human experts. For every class, ten human experts selected terms
considered representative of the class from a given set of Internet documents. Those selected terms
were sorted based on the number of times they were selected and used as the basis for judging the
quality of learned knowledge. The precision and recall rates are defined as follows:

Precision of Know, = ||Knowc G Know; ;.
Know,|

||KnowC G Know}!

Recall of Know, = ||Knov\}j

The experiment results indicate that the Knowledge Refining Process indeed refines the knowledge
contents of classification knowledge. The trade-off between precision and recall based on different
feature selection criteria was examined as well. Two types of criteria were used to evaluate the

outcomes of the experiment results.

* Topn. All the sup:’c are sorted in a descending order. The first n terms are selected as keywords

of Know, .
* Threshold = ?. Thiscriterion is used to select terms with S;up:C 3 q.

Table 1 summarizes the experiment results. Before PTS was applied, the lowest precision was 0.76,
due to the high selection standards. However, the recall was low for the same reason. This
observation implies that the Induction Process does not learn the implicit association among terms
athough it correctly generalizes the knowledge of objects to classes. In contrast to the case where

PTS was not applied, PTS increased both precision and recall for the Top n criterion as it promotes
20



important but non-representative terms at the expense of removing less important terms (asthe Top n
criterion selected a fixed number of &rms). For the “Threshold = ?” criterion, PTS dramatically
increased recall while decreasing precision since it increased the number of keywords while
promoting the terms. The experimental results confirm that the Induction Process and Knowledge
Refining Process discover the hidden semantics among terms. Our results further demonstrate that an
acceptable compromise between precision and recall can be achieved with a carefully chosen

selection criterion.

Since each component of the ACIRD learning model can ke executed in polynomia time and

knowledge refinement can be achieved in a finite number of iterations, the total complexity is also

polynomial.
Table 1. The performance of the PTS algorithm on classification knowledge.
Before PTS algorithm After PTS Algorithm

Selection Criterion Precision Recall Precision Recall

Top 10 0.76 0.27 0.91 0.38

Top 20 0.78 053 0.85 0.62
Threshold=0.5 0.97 0.10 0.73 0.97
Threshold=0.7 0.96 0.07 0.79 0.83

6. Evaluation of ACIRD Automatic Classification

In this section, we describe the testing phase of the learning process. Based on the |earned knowledge,
the ACIRD Classifier automatically categorizes newly collected Internet objects. For each object, the
classifier assigns one or more classes which are compared with the classes assigned by human

experts to evaluate the classification accuracy. A series of experiments and analyses revealed that

Know, provides high quality suggestions in classifying Internet documents.

Similarity M easurement

a (sup,,” mg, )
_ tincando

sam(o,c) = , Where t; is acommon ter mof oand ¢, sup, , is the support

[ol, " Iel,

of t; too, and mg, . is membership grade of t; toc, i.e, supf_yc; (6.2)

loll, = \/sup:p +sup? +...isthe norm of the object;

el = Jmi +mg? _+...is the norm of the class
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The ACIRD Classifier uses the conventional similarity measurement, the cosine value of feature

vectors of documents and classes, defined in equation (6.1):

Owing to the imprecise nature of the class concept, the class assignment of an object cannot be
exactly “true” or “false.” In addition, categorizing an object to one class will be impractical since an
object may be conceptually related to several classes. Therefore, for an input object, the ACIRD
Classifier gives the best N classes that are closest to the intention of the object. Classification
accuracy is estimated based on the criterion in whichthe expert-assigned class of a testing object is
located in the set of best N matched classes.

Experiment Results
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Threshold(Top N): The target class is in the best N matched classes (N

Fig. 7. The classification accuracy of assigning 8,855 testing objects to 386 most specific classes.

Thisexperiment used 512 classesin L .z, With 386 most specific classes, 9,778 training objects and

8,855 testing objects, where both sets of objects were digoint and manually classified. Before the

learning process, ten human experts extracted the keywords from each class for use as the

classification knowledge benchmark, denoted as Know!’ . Fig. 7 summarizes the results of the testing

processes run on Know! , Know, , and Know,, denoted as “10 Users,” “With PTS,” and “Without
PTS,” respectively. The result obtained from a naive Bayesclassifier, denoted as“ Naive Bayes,” was

also included for comparison, as it is widely used in text classification. According to these results,
Know, hasquality on a par with the manually extracted classification knowledge Know} in terms of

the accuracy of classassignment of objects while both perform better thanthe naive Bayesclassifier.



However, the classification accuracy for al the cases is unsatisfactorily low. Closely examining the
training and testing sets reveals that many classes contain insufficient training objects, and that some
training and testing objects contain very few keywords because they are norttext pages or link-only
pages. Thus, another experiment was designed to circumvent this situation. The same testing process

was performed based on the twelve most general classes’ of L,z and the resulting classification

accuracy is shown in Fig. 8. The “Top 1" accuracy of Know] increased from 0.139 to 0.595. This

increase was due to the sufficient number of training objects in the testing classes, and the total

number of testing classes was reduced from 512 to 12.
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Fig. 8. The classification accuracy of assigning 8,855 testing objects to the 12 most general classes.

Table 2 lists the number of objects and keywords of the twelve most general classes. From thistable,
the distribution of the numbers of objects is skewed, and some classes still exhibit the problem of
insufficient training objects and keywords. To further investigate this problem, we performed another
set of experiments on classes with a sufficient number of training objects and keywords only. In the
experiment, every testing class had at least forty training objects. The number of testing classes was
reduced from 512 to 48. Since the classes contained a sufficient number of training objects, these
classes are referred to herein as well-trained classes and their refined classification knowledge as
well-trained classification knowledge. In Fig. 9 the “Top N’ classification accuracy is markedly
higher. This figure adso reveals that, when the classes contained a sufficient number of training

objects, our learning model could learn more accurate classification knowledge than could the human

8 They are “Arts,” “Humanities,” “ Social Sciences,” “ Society and Culture,” “ Natural Sciences,” “ Computer and Internet,”
“Health,” “News and Information,” “ Education,” “ Government and State,” “ Companies,” and “Entertainment and
Recreation.”
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experts. Intuitively, the number of classesis a factor that affects classification accuracy. However,
according the results shown in Fig. 8 and 9, the accuracy of classification of the twelve most genera
classes and forty-eight well-trained classes were comparable. For instance, Top 1 accuracies were
0.539 and 0.486, and Top 6 were 0.861 and 0.936, respectively. This result is interesting since it

shows that the number of classes is not the only major factor.

Table 2. The distribution of training objectsin the most general classes.

Cl ass Nanme bj ect s Keywor ds
Conpani es 2702 (27.88% 950 (22.83%
Ent ertai nment and Recreation | 2577 (26.59% 1084 (26.05%
Conput er and | nternet 1199 (12.37% 471 (11.32%
Educati on 1169 (12.06% 589 (14.15%
Society and Culture 502 (5.18% 226 (5.43%
Governnment and State 384 (3.96% 241 (5.79%
News and | nfornmation 288 (2.97% 162 (3.89%
Heal t h 280 (2.89% 180 (4.32%
Arts 223 (2.30% 115 (2.76%
Soci al Sci ence 208 (2.15% 92 (2.21%
Nat ural Sci ence 106 (1.09% 44 (1. 069
Humani ti es 53 (0.55% 8 (0.19%
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Fig. 9. The classification accuracy of well-trained classes.

7. Two-Phase Search Engine

Most search engines reply to user queries with a list of ranked documents, which makes it time
consuming and inconvenient for users to retrieve tie needed documents. ACIRD provides the

two-phase search that allows users to perform both class-level searching and object-level searching.

By utilizing the two-phase search, users can relate their information needs to the classesin L, gy »
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navigate among the classes, and locate and retrieve needed documents. The above procedure can be

executed iteratively until the user obtains the needed information. Ensuring the effectiveness of the

two-phase search requires that the terms of user queries be in some Know ; thereby, applying
class-level search to Know, can return relevant classes. The conjecture “most query terms are in

Know " was investigated by means of the following analysis of the user query log.

Analysison User Query Log

Internet queries were analyzed based on a user log collected in October 1997. Terms were extracted
from queries, and their frequencies were counted. There were 9,644 distinct terms in the user log

denoted by the set CT,, in 648,006 queries. If akeyword in Know, wasasoin CT,, its reference

og’ og’?

count was assigned as the reference count of the termin CT,,; otherwise, the reference count of the

og!?

keyword was 0. The reference count is applied to measure the recall rate. The number of retained

keywordsof Know, served asameasure of theindex rate, i.e. therate of coverage of Know to CT,.

Regarding the references and query terms of the query log as the baseline, the recall rate and index
rate are defined as follows:
Recall rate = total reference count of Know; / total references of CT,;

Index rate = number of keywordsin Know, / number of query termsin CT,.

Table 3. Total reference counts (recall rate) vs. the number of keywords (index rate).

Based Line: Query Termsin User Log 648006 (100%) 9644 (100%)
Filter Threshold for KnOV\Z Total References Needs Number of Keywords
Th=0.0 628065 (96.92%) 18076 (187.43%)
Th=0.1 477906 (73.75%) 3775(39.14%)
Th=0.2 470277 (72.57%) 3446 (35.73%)
Th=0.3 465396 (71.82%) 3260(33.8%)
Th=04 458468 (70.75%) 3090 (32.04%)
Th=05 452897 (69.89%) 2981 (30.91%)
Th=0.6 440661 (68.00%) 2723(28.24%)
Th=0.7 421649 (65.07%) 2498 (25.90%)
Th=0.8 404615 (62.44%) 2277 (23.61%)
Th=0.9 389439 (60.10%) 2015 (20.89%)
Th=1.0 378249 (58.37%) 1905 (19.75%)

To observe the change of the recall and index rates, the keyword selection process uses different
thresholds denoted by “Th = x.x.” Table 3 lists the reference counts (recall rate) and the number of
keywords (index rate) for each test. From the table, in the case of “Th = 0" (i.e., no keyword was
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eliminated), indexed keywords covered 96.92% of the information needs with about doubl e the index
size of query terms. When “Th = 0.5”, the remaining keywords covered 69.89% of the information
needs with an index rate of 30.91%. With a sufficiently high recall rate, two-phase search is able to
shrink the searching domain to a reduced class lattice for efficient and effective searching without
compromising user’ s information needs.

Two-Phase Search M ethod

Query Parse A Sequence of Class-Level
String K eyword Query Keywords l—, Search
| W

Subclass Search
Noinfo. needsiin the class Ranked Classes
that match with
the query
Object-Level Class User selectsa  |¢
Search Search desired class
Not Found Conventional

in the class Search All J Sealrch
Objects [

<

Fig. 10. Processing Flow of Two-Phase Search.
The above analyses show the likelihood of performing aclass-level search without much information
loss. Besides class-level searching on a structured presentation, ACIRD also provides conventional
searching, including object-level searching and searching of all-objects as an “escape” for users.
After briefly reviewing the return of aclass-level search, the user can navigate down or up along the
class|lattice or choose to apply object-level search to aparticular class. Fig. 10 showsablock diagram
of Two-Phase Search The operations are described below.

Process query string: Parse the query string into a sequence of keywords.

2. Perform a Class-Level Search: Examine the sub-classes of the designated class (initialy, the
root), calculate the relevance scores and sort the classes based on the scores in descending order.
Return only the more general classes (i.e., if both parent and child classes satisfy the query, return
only the parent class) to the user. Generate and present the result in HTML format.

3. Executean Object-Level Search in a class: Retrieve objects in the designated class associated
with the query terms, calculate each object’ s relevance score, and sort the objects according to
the scores in descending order. Generate and present the findings in HTML format.
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4. Search all objects: Retrieve al objects related to query terms, calculate each object’s relevance
score, and sort the objects based on the scores in decreasing order. Present the findings inHTML
format.

Examples of Two-Phase Sear ch

The user gives the query “interesting technical magazine” to search for desired objects using
Two-Phase Search
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Fig.12. Search All Objectsin a Class (Query Result: All the objectsin aclass).

Fig. 11 presentsthe query returns, which are the 8 highest level classes satisfying the query, obtained
by class-level search. In the figure, the column “Refined Search in Class’ presents the class names
that user can resume the same query on the class by clicking on the class name. The column “ Object
In Class” showstwo links, “All” and “Direct.” The former lists al the objects in the class (including
the objects in its subclasses), as shown in Fig. 12, which are all the objects in the class Technical
Journals, the latter lists the class s direct objects only, as shown in Fig. 13. “MG (membership
grade)” indicates the normalized relevance score.
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Fig.13. Object-level Search (Query Result: Direct objects of aclass).
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If the user was interested in the class “ Technical Journa” and clicked on it to perform object- level
search, the search findings were those shown in Fig. 14. The column “In Class” presents the classes
the object belongs to that the class hyperlink links back to the class node.
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Fig. 14. Object-Level Search (Query Result: Objects in designated Classes).
Fig. 15 summarizes the results of “Search All Objects,” as used by conventional search engines. This

example contains atotal of 746 relevant objects. | n comparison with the8 relevant classes returned by

aclass-level search, visiting and locating information in 746 links is extremely inefficient.
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Fig. 15. Search All Objects (Query Result: All Objects).

8. Conclusonsand Future Work

This paper has presented a class-based Internet document management and access system: ACIRD.
Our results demonstrate that machine learning and data mining techniques are capable of generating
accurate classification knowledge. Based on the classification knowledge, the classifier can
automatically and satisfactorily classify Internet documents into classes in a class lattice. According
to analysis of the user query log, the classification knowledge can serve as a meta-index to shrink the
searching domain to enable retrieval of potentially desirable documents efficiently. In addition,
class-level search returns with a comprehensible organization of classes. Users can associate their
queries with the presented classes, navigate among the classes and finally perform object- level search
to obtain their desired documents. In this manner, the system helps users discover information in a

large number of Internet documents.

In the future, the learning model should be extended to incrementally learn the changes of the Internet.
In addition the classification accuracy of the learning methods and of the classifier still has room for
further improvement. Some related issues are also worth closer examination and further study. For
example, future work should examine the feasibility of extending the use of mining term associations
In classes to automatically construct a thesaurus, which corresponds to the semantics of termsin the
specific domain. Also, analyzing the user query log will allow the system to learn and extract new
terms that cannot be found in thesauruses, such words like “MP3,” “ICQ,” and “CGl,” in order to
expand the term base of ACIRD.
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