
 1

 ACIRD: Intelligent Internet Document Organization and Retrieval

Shian-Hua Lin, Meng Chang Chen, Jan-Ming Ho, and Yueh-Ming Huang*
Institute of Information Science, Academia Sinica, Taipei, Taiwan

 Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan*

Abstract

This paper presents an intelligent Internet information system, Automatic Classifier for the Internet

Resource Discovery (ACIRD), which uses machine learning techniques to organize and retrieve

Internet documents. ACIRD consists of a knowledge acquisition process, document classifier and

two-phase search engine. The knowledge acquisition process of ACIRD automatically learns

classification knowledge from classified Internet documents. The document classifier applies learned

classification knowledge to classify newly collected Internet documents into one or more classes.

Experimental results indicate that ACIRD performs as well or better than human experts in both

knowledge acquisition and document classification. By using the learned classification knowledge

and the given class lattice, the ACIRD two-phase search engine responds to user queries with

hierarchically structured navigable results (instead of a conventional flat ranked document list),

which greatly aids users in locating information from numerous, diversified Internet documents.

Index Terms : Document Classification, Data Mining, Information Retrieval, and Search Engine.

1. Introduction

The explosive growth of the Internet has revolutionized working and living patterns as it has evolved

into a major source of information and communication medium. However, the huge amount of

information on the Internet has created the information overflow phenomenon. To alleviate this

problem, many Internet search engines and topic directories have become are available to users.

Search engines, such as AltaVista and InfoSeek, are able to retrieve Internet documents in response to

a user’s query. Alternatively, topic directories e.g. Yahoo!, allow users to search relevant documents

by browsing a topic hierarchy. Search Engines are designed to efficiently organize and access a large

collection of documents. Since the number of documents available on the Internet is huge, thousands

of documents may be retrieved by a search engines for a query with one or two terms1. For example 2,

1 The average query length is 1.3 terms, as reported by [37].
2Experiments were performed in October 1998. All the “facts” given in this paper reflect the situation then.

 2

given the query “education and university,” there were 87,368,493 hits by AltaVista, 7,379,086 hits

by Infoseek, and 237,902 hits by WebCrawler. Ranking a large number of documents using very few

terms is unlikely to produce an order of documents that meets the user’s information needs.

Consequently, the user must retrieve many uninteresting documents before obtaining the desired

information. Several search engines have applied relevance feedback [32] to expand and/or refine the

query based on documents selected by the user. However, relevance feedback may be ineffective

since grasping the user’s true intention from the selected documents is extremely difficult.

The conceptual gap between document developers and users enlarges the difference between retrieval

results and user expectations. Due to the richness of language and culture on the Internet, web

developers and users may use different terms and expressions to represent the same concept, or use

the same term to describe different things. Therefore, term-based search engines frequently retrieve

documents, virtually thousands, not desired by users, while the desired documents may not be

retrieved. For instance, term-based search engines do not match the term “airline schedule” in

documents with the term “flight schedule” in a query, whereas both terms are considered to have the

same meaning. Consulting a thesaurus may resolve the problem. Another problem arises in which a

term may have different meanings in different contexts, such as the term “bank.” Building a thesaurus

for each specific domain can solve this problem. However, no static thesaurus can handle the shifting

semantics of terms in the Internet environment owing to its diversity and dynamic nature.

Current topic directory systems suffer from the bottleneck of manual classification of newly collected

documents. For example, Yahoo!, the largest directory system on the Internet, contains roughly 1.2

million links in its topic hierarchy, and more than 150 editors are needed to classify web pages3. The

total number of documents in the directory systems is much less than the database used by search

engines. The focus of directory systems is assigning the Internet documents to the right topics, instead

of the speeding up or increasing the size of the database.

From the traditional measures of information retrieval, i.e., precision and recall, search engines have

low precision rates because too many results are retrieved, while topic directories suffer from low

recall rates because of their small databases. To achieve balanced precision/recall rates and allow

users to access needed documents rapidly, organizing documents according to a set of classes is a

prerequisite for efficient ly managing and retrieving Internet documents [14]. The system ACIRD4

(Automatic Classifier for the Internet Resource Discovery) [21, 22, 23] was designed to achieve

3 http://searchenginewatch.com/reports/directories.html in October 1998.
4 http://YamNG.iis.sinica.edu.tw/Acird/class.htm

 3

efficient and effective Internet document organization and retrieval. The system learns classification

knowledge from classified documents. It also mines the association rules among terms to explore the

implicit term semantics, and infers from the term associations in order to refine the classification

knowledge of classes in a class lattice. To facilitate the Internet search, the system uses a two-phase

search mechanism that presents a hierarchically navigable view to the user.

The rest of this paper is organized as follows. Section 2 reviews related works. Section 3 introduces

the functions of ACIRD. In Section 4, we introduce the conceptual model and define the terminology

used in this paper. Section 5 discusses the ACIRD learning model in detail. Next, Section 6 presents

experiments on automatic classification of documents to justify the design decisions of ACIRD.

Section 7 then introduces the two-phase search method. Contributions of this work and areas for

future work are finally presented in Section 8.

2. Related Work

This section reviews works related to this study on Internet information retrieval, document

classification and data mining.

Internet Information Retrieval

Previous studies on Information Retrieval (IR) systems focused mainly on improving retrieval

efficiency by using term-based indexing [8, 11, 28, 37] and query reformulation [32] techniques.

Term-based document processing initially extracts terms from documents using a pre-constructed

dictionary, stop words and stemming rules [10, 28, 30]. Once terms are extracted, a widely used

method called TF×IDF (or its variations) [31, 33] is applied to determine the weights of terms. A

document can thus be represented by a set of terms and their weights. The similarity measure between

a query and a document is the direct product of their corresponding term vectors, the cosine value

between the two vectors in a multi-dimensional vector space. To indicate the degree of relevance of

documents and queries, retrieved documents are presented as a ranked list based on the measure.

Alternatively, the string-based indexing approach indexes strings and all possible sub-strings instead

of terms as in term-based approach, which is particularly useful for arbitrary- length string search,

such as string matching (e.g. address matching) and character-based language search (including many

oriental languages, such as Chinese and Japanese). Notably, the storage requirement of the

string-based indexing approach is much higher than that of the term-based indexing approach. In

addition, their complicated data structures take more time for retrieval. While superior in retrieving

 4

exactly matched strings, the string-based indexing approach is inappropriate for Internet information

discovery tasks in which users only give conceptual descriptions, instead of exact strings. Many

investigations have developed string-based indexing technologies, including PAT-tree [4] and

signature files [7], to enhance the performance of various search functions, such as prefix searching,

range searching, longest repetition searching, most significant and most frequent searching, regular

expression searching, etc [10]. However, these search functions are rarely found on the Internet.

While current search engines employ a variety of IR techniques, the differences among them are

related to indexing, representation, querying and implementation.

Indexing. Search engines gather Internet HTML documents (i.e. web pages) from user submissions or

by means of automatic Internet robots (also called spiders or crawlers). As conventional IR systems,

search engines index a set of words or phrases for efficient retrieval. Some search engines attempt to

determine and index concepts in documents. For example, Excite5 knows that a relationship exists

between related concepts like “elderly people” and “senior citizens.” Based on the rich format of

HTML, search engines can enhance weights of terms according to the significance of tags.

Representation. Most search engines employ full text indexing for fast matching between queries and

documents where documents are represented by a set of term-weight pairs as the case with

conventional IR systems. Most topic directory systems also provide key word search functions so that

they represent web pages as term-weight indexes. In addition, they store pages into a topic hierarchy

developed and maintained manually.

Querying. Search engines employ several functions to refine the numerous search results. For

example, most search engines provide Boolean operators to derive precise results. Other functions,

such as exact phrase matching, sorting pages by corresponding sites and restricting search from

specified sites, are also useful for refining search results.

Implementation. Both Internet search engines and topic directory systems need to cope with the

dynamic Internet environment, in contrast with the stable context of IR systems. Web pages are

created, modified and deleted frequently, which requires systems equipped with dynamic storage

structures and efficient indexing mechanisms. Implementation of intelligent Internet robots is yet

another challenging issue for Internet web page collection.

Currently, there are hundreds of search engines that apply the technologies of IR to the Internet.

Popular search engines are famous for their rich indexes and fast response. In general, most search

5 http://www.excite.com/info/search_help/

 5

engines borrow indexing and ranking methods from IR and improve their performance by adding

advanced hardware and sophisticated software. User satisfaction suffers not when no matched

documents are returned by search engines, but when too many documents are returned. To learn more

about the current status of popular web search engines, readers can refer to Search Engine Watch6.

Document Classification and Data Mining

Many approaches used to classify documents can be divided into two main camps, manual

classification and automatic classification. Manual classification of documents is time consuming

and expensive, which makes it infeasible for handling the huge number of Internet documents. For

automatic classification, classification knowledge can be acquired from domain experts or learned

automatically from training documents [3]. Acquiring knowledge from domain experts, while

relatively effective, is expensive in terms of time and knowledge maintenance. Furthermore, the

acquired knowledge may be incomplete, which will require the use of complicated models and

theories to apply it. On the contrary, classification knowledge automatically learned from training

documents is efficient, but its accuracy is constrained by the employed learning model and training

data.

Many text categorization studies have focused on information retrieval [3, 9, 14, 15, 16, 17, 19, 20,

35]. Herein, “document classification” instead of “text categorization” is used since this work focuses

on Internet HTML [18] documents rather than general texts. Document classification involves the

automatic grouping of documents. Many studies have addressed this issue by adopting

similarity-based document retrieval [35], relevance feedback [32], text filtering [25], text

categorization [3, 17, 20], and text clustering [12, 19]. For example, ExpNet [35] uses similarity

measurement as the category ranking method to determine the best category for the input document.

SIFTER [25] uses a vector space model for document representation, unsupervised learning for

document classification, and reinforcement learning for user modeling to filter documents based on

content and user specific interests. INQUERY [17] employs three different classification techniques:

a k-nearest-neighbor approach using belief scores as the distance metric, Bayesian independence

classifiers, and relevance feedback. Goldszmidt and Sahami proposed document clustering based on

the probabilistic overlap between documents and document clusters [12].

Previous machine learning studies developed many algorithms that have been well tested and used in

many fields, such as medicine and finance. Widely used algorithms, including ID3 [26], C4.5 [27],

6 http://searchenginewatch.com/

 6

CN2 [5], and AQ algorithm [24], have been applied to structured training data instead of

non-structured textual data in the document classification problem. Correspondingly, many

approaches to document classification use feature sets to characterize documents and apply

algorithms such as Bayesian classifiers [19], k-nearest-neighbor method [9, 11], rule-based induction

algorithms [3], and mixed approaches (e.g. INQUERY [17]) to classify documents. While

concentrating on the document classification process and learning algorithms, those systems ignore

the diversity of documents in the use of terms and their semantics. In many learning applications, the

characterized feature is an attribute-value pair with the assumption of fixed semantics. However, the

semantics of a feature varies with different domains. For example, the document feature “apple” has

different meanings for the domains “computer” and “food.”

Mining association rules [1, 2, 34] are applied to discover important associations among items of

transactions. A conventional application of mining item associations is finding an optimal item

arrangement in a supermarket so as to allow customers to gather their groceries conveniently. In this

study, we apply mining association rules to explore the semantics of features in a document.

3. The ACIRD System

ACIRD [21 22, 23] automatically collects and classifies Internet documents for efficient, effective

management and retrieval. ACIRD initially focuses on improving the expensive and time-consuming

manual classification process used by many Internet search engines. By employing classification

knowledge learned from manually classified Internet documents, ACIRD automatically classifies

newly collected Internet documents. Classification knowledge together with the given class lattice

enables two-phase searching, which presents the search results in a hierarchical view instead of a

ranked document list as in conventional Internet document retrieval. All the design decisions, such as

measurement metrics, aim to reach the integral goal of ACIRD, i.e. auto- learning, auto-classification

and two-phase searching. This section provides an overview of ACIRD, and the subsequent sections

present the details of each component.

Fig. 1 schematically shows the workflow in ACIRD. The domain expert provides a class lattice as the

worldview of the document domain and a set of training data, which are Internet documents with

manually assigned classes. The Classification Learner learns from the training data and generates the

classification knowledge (or so called class indexes) of the classes in the class lattice. The Internet

Robot automatically collects documents from the Internet, and the Preprocessing Process extracts the

features from the documents. The Document Classifier proceeds to assign one or more most

appropriate classes to the incoming documents. When Internet users query ACIRD, the Two-Phase

 7

Search Engine matches the queries with knowledge of documents, and classes and presents a

hierarchical view to the users to facilitate the information discovery job. In this study, we focus on

Internet HTML documents only, referred to herein as objects. Each object is assigned a unique ID and

parsed into a document index, a set of terms with weights, which is stored in the database. The set of

term and weight pairs form the feature vector representing the object knowledge. Inverted indexes

pointing to the occurring objects from terms are generated for efficient access during learning and

accessing.

Internet
Robot

Preprocessing
Process

Two-Phase
Search
Engine

Classification
Learner

Internet
Documents

Database

Doc. Stream

Class Indexes

Knowledge
Base

Class Lattice &
Training Doc.

Documents

Class Lattice &
Training Doc.

Human
Expert

Doc. Indexes

Class Latice &
Class Indexes

Internet
User

Query

Result

Document
Classifier

Classified Doc.

Doc. Indexes

Doc. Indexes

Fig. 1. The Major Components and Workflow in ACIRD.

The given class lattice presents the worldview to ACIRD. In the lattice, each node represents a class,

and every parent node is a super set of its child node. Nodes with no parent nodes besides the

universal node are referred to as the most general nodes, and nodes with no child node besides the

null node as most specific nodes. The automatic learning and classification process of ACIRD

consists of two phases: a training phase and a testing phase. In the training phase, the training data

consist of a set of manually classified documents. The learning process learns the classification

knowledge in the sequence from the most specific classes to the most general classes of the given

class lattice. For the most specific classes, the classification knowledge is generalized from the

knowledge of objects in the class. For the other classes, the knowledge is generalized from their child

classes and direct objects (i.e. the objects belong to the class, but not to any of its child classes). After

the knowledge of classification is learned, the technique of mining association rules is employed to

discover term associations inside each class so as to enhance the classification knowledge. As term

 8

associations highly depend on the class domain, the best scope to apply term associations to refine the

classification knowledge is a single class. Our previous study [22] demonstrated that the mined term

association can enhance the term semantics dramatically. In the testing phase, the classifier employs

the learned classification knowledge to assign classes to the test documents (usually the newly

collected documents), and the assignments are compared with the classes assigned by human experts

to verify the quality of the learned knowledge.

ACIRD provides a two-phase search engine that allows users to efficiently and effectively retrieve

interesting documents via interactive navigation of the returned class hierarchy, rather than via a

sequence of ranked documents. During the two-phase search, each user query string is parsed and

formulated as a sequence of terms, called query term vector. Similarity matching based on the vector

space model is applied to determine the relevance between the query and the classes in the class

lattice as well as stored objects. Note that both class and object knowledge are also represented as

term vectors. During the first phase, a class-level search is performed in which the query term vector

is used to determine the qualified classes that form a shrunken view of the class lattice. If the user

decides to further explore a qualified class in the returned class hierarchy, the query term vector is

again employed to calculate the relevance of the subclasses of the selected class. When the user

decides to explore the objects in a class, which is called object-level search, ACIRD matches and

retrieves qualified documents in the class. The two-phase search not only reduces the search domain,

but also presents a hierarchical conceptual view to aid the user in locating interesting information.

4. ACIRD Conceptual Model

In this section, we define the terminology used herein and introduce the conceptual model of ACIRD

[22]. An entity is denoted by a lower case letter, and a set or series of entities by an upper case letter.

For example, let c denote a class and C represent a set of classes. In the following, we describe the

system entities with their notations in parentheses beginning from the high level concepts and

continuing to the low level ones.

− The ACIRD Lattice (),(RCLACIRD) is the given class lattice that consists of a set of classes C as

nodes and a set of relations R as edges that connect two nodes in C. The parent node of an edge is

a super set of its child node. The total number of classes is denoted by L .

− Class (c) is a class node of ACIRDL that possesses knowledge generalized from the subclasses and

direct objects in the class. The number of intermediate subclasses and objects is c .

 9

− Object (o) is an HTML document that consists of paragraphs (pg) enclosed by HTML tags. An

object o belongs to one or several classes in),(RCLACIRD .

− Paragraph (pg) consists of a series of sentences (S) that subsequently consists of terms. A

paragraph pg is informative if it is enclosed by informative HTML tags, which will be defined

later.

− Term (t) is a word (excluding stop words) extracted from the sentences of an informative

prargraph. Each term has a support value for the object in which it appears. The support (
ot

sup
,

)

of t to o is calculated using the term frequency and the weight of HTML tags, which quantifies

the importance of t to o.

− Object Knowledge (oKnow) is a set of selected terms (T) with supports for the object
ot

sup
,

.

oKnow can be represented by the Term Support Graph (),,(EoTTSG), in which each directed

edge in E from it (in T) to o has a label oti
sup , . The number of extracted terms in oKnow is

denoted by oKnow .

− Classification Knowledge of class c (cKnow) is a set of terms T in which each term it has a

support value ctsup , to c . cKnow is generalized from oKnow of its direct objects and from

classification knowledge of its child classes. Similar to oKnow , cKnow can be represented as a

graph),,(EcTTSG , in which each directed edge in E from it (in T) to c is labeled cti
sup , . The

number of terms in cKnow is denoted by cKnow .

− For each class c, the process of mining association rules is applied to mine associations among

terms of cKnow . The mined rules are called term associations, and for each pair of terms, it and

jt , there is a corresponding confidence (
ji ttconf →). A strongly connected graph Term Association

Graph (),(ETTAG) can be generated by considering terms of T as nodes and term associations

as edges labeled
ji ttconf → .

− For each class c, the Term Semantics Network (),,(EcTTSN) is constructed as the union of

),,(EcTTSG and),(ETTAG . TSN is used to represent the semantics of the class and the

relations among the terms in the class.

 10

− The Perfect Term Support (PTS) algorithm [22] is applied to promote cti
sup , of the edges in

),,(EcTTSN . The algorithm obtains an optimal path (*
,ctp) from t to c , where *

,ctp is a path

with the maximum value among all the possible paths (ctP ,) from t to c in),,(EcTTSN . The

value associated with a path ctp , is the product of the confidence values of the edges in the path

and the support of the term Zt at the end of the path to c,

(cttttttt zzykjj
supconfconfconf ,... ×××× →→→). The optimal support of t to c (denoted as *

,ctsup) is

defined as the value of *
,ctp .

− A keyword (k) is a term that passes Filtering Process, which filters out terms based on some

pre-specified conditions. For a keyword, its *
,ctsup is defined as the membership grade (ctMG ,)

of t to c . Application of PTS and Filtering Process refines cKnow to produce Refined

Classification Knowledge (*
cKnow). *

cKnow is the knowledge base employed by the two-phase

search engine and automatic classifier of ACIRD.

5. ACIRD Learning Model

In this section, we describe the learning model of ACIRD in detail. In the training phase, ACIRD

adopts supervised learning techniques and treats previously classified documents as training objects.

The testing phase is described in Section 6. ACIRD applies machine learning techniques to learn

classification knowledge as shown in Fig. 2. The learning method is applied to each class of ACIRD

lattice from the most specific classes to the most general ones. Each document is preprocessed into a

weighted term vector. The dimension of the vector is then reduced by the Feature Selection Process in

order to reduce the complexity of learning. For the most specific class, knowledge of the class cKnow

is generalized from the knowledge of all the objects in the class, which can be represented by the

Term Support Graph (TSG). For classes other than the most specific classes, the learning process is

the same except that the initial weighted term vectors originate from its subclasses and direct objects.

The mining association algorithm is then applied to mine associations of terms in TSG, which can be

represented by the Term Association Graph (TAG). Combining TSG and TAG derives the Term

Semantic Network (TSN). TSN can be further refined to produce TSN*, i.e., *
cKnow of the class. In

each iteration of the refinement process, some terms may be promoted. As the promoted terms may be

used to promote other terms, the promotion process is applied recursively until the stable state is

reached.

 11

Preprocessing
Process

Feature
Selection
Process

Term
Association

Miner

Classification
Knowledge

Learner

Stable

Classification
Knowledge

Refiner

Term
Vector

Object
Knowledge

(TSG)

Documents

Classification
Knowledge

(TSG)

Classification
Knowledge

(TSN)

Refined
Classification
Knowledge

(TSN*)

Fig. 2. The Learning Model of ACIRD.

5.1 Preprocessing Process and Knowledge Representation

The preprocessing process consists of two parsers, the HTML Parser and Term Parser. The HTML

parser parses an object into paragraphs and determines their weights by judging their associated

HTML tags. The Term Parser partitions the paragraphs into sentences and extracts terms from

sentences. The Term Parser also calculates term supports using the weight assigned by the HTML

Parser and the term frequency.

HTML Parser

An HTML document consists of paragraphs in which the associated HTML tags [18] indicate their

importance and provide meta- level information. Web developers highlight the contents using HTML

tags, such as titles or headings. In addition, META tags allow developers to add extra information

such as “CLASSIFICATIONS” and “KEYWORDS” to the document. Apparently, the implications

of tags must be considered while indexing documents. In ACIRD, human experts assign and adjust

the weights of HTML tags by observing the outcomes of numerous experiments in order to improve

the classification accuracy. HTML tags are classified into four types:

� Informative. Paragraphs enclosed by tags, such as CLASSIFICATION and KEYWORD in

META, TITLE, Hn, B, I, and U, consist of either the meta knowledge of the documents or

significant contents provided to users. Thus, the informative tags have the highest weights.

 12

� Skippable. Tags, such as BR and P, do not affect the semantics of the document and are omitted.

� Uninformative. Contents enclosed by tags, such as AREA, COL, SCRIPT, and COMMENT, are

invisible to users. Thus, these tags and their corresponding contents are excluded.

� Statistical. Contents enclosed by tags, such as !DOCTPYE, APPLET, OBJECT, SCRIPT, etc.,

are stored in a database for statistical purposes.

The HTML Parser is implemented with two stacks: one for HTML tags and the other for paragraphs.

The algorithm is executed in one document scan with computational complexity)(oKnowO .

Term Parser

The Term Parser partitions a paragraph into sentences, extracts terms from the sentences, and counts

the term frequency (TF) of each term. After a term t is extracted from an object o , the support value

otsup , is measured based on TF and HTML weight, as defined in equation (5.1). This value,

normalized in the range of [0, 1], indicates the importance of a term in representing the object:

 (5.1) 1]. [0, tonormalized is where,
}'{

'

; in tag weightedmaximum theis , tags

by dhighlighte sentence thein offrequency term theis where,'

, in

,
,

jj

,

sup
supMAX

sup
sup

TwandT

ttfwtfsup

otot

ot
ot

T

iij
T

Tijot

i
i

i

i

j

j

ji

=

⋅= ∑

Since a sentence may have more than one tag, the maximum weight of the tags is used to calculate the

term support. In ACIRD, TF and the maximum tag weight are used to calculate the term support

instead of using the TF×IDF weighting approach. The Inverted Document Frequency (IDF), designed

to enhance the discriminating capability of high frequency terms, is not critical in our hierarchical

learning model and two-phase search discovery model. In ACIRD, a high frequency term is

considered to represent its class and may be generalized to classification knowledge of its parent class,

instead of being used as a discriminator of objects in the class [31].

Designed to handle multi- lingual documents, ACIRD currently supports English and Chinese only.

With English, each extracted term is stemmed [31]. With a character-based language like Chinese, a

sentence is segmented into meaningful multi-character terms. As there may be no apparent stop

characters in a sentence, the Term Parser uses a pre-constructed term base structured as a B-tree [6] to

quickly match and extract meaningful terms. The Term Parser extracts Chinese terms based on the

heuristics of “long term first” to resolve ambiguity. That is, for two terms, one of which is a part of the

other, the Term Parser extracts the longer one. In addition, the rules for Chinese term segmentation

 13

are provided to handle segmentations ambiguity between conflicting candidate terms. The

complexity of term extraction is)(2nO , where n is the length of the input sentence. Including the

linear time complexity of the HTML Parser, the complexity of the Preprocessing Process is

)(
2

oKnowO .

5.2 Feature Selection Process

After preprocessing, the object knowledge obtained is represented as a vector of attribute-value pairs,

)},(),...,,(),,{(,,2,1 21 otnotot n
suptsuptsupto = . Theorectically, the induction process can be applied

immediately to learn classification knowledge from the object knowledge. However, the complexity

of the learning process is exponentially increased by the the vector size, which requires use of the

Feature Selection Process to reduce the vector size and, thus, the complexity. A common practice is to

adopt a pre-defined threshold of support sθ in order to discard less important terms, and the

remaining terms are used to represent the object knowledge oKnow . In this manner, the problem of

feature selection is reformulated to the problem of selection of sθ .

10.44210.442

6.5886.588

3.8823.882

2.1752.175

1.0451.0451.0501.050
0.4940.4940.3590.3590.2380.2380.0830.083

2.2832.283

0.000

2.000

4.000

6.000

8.000

10.000

12.000

[0.0, 0.1)[0.1, 0.2)[0.2, 0.3)[0.3, 0.4)[0.4, 0.5)[0.5, 0.6)[0.6, 0.7)[0.7, 0.8)[0.8, 0.9)[0.9, 1.0)[1.0, 1.0]

Ranges of Term Supports

N
u
m
b
e
r

o
f

T
e
r
m
s

Fig. 3. The distribution of term supports of training data.

A high sθ discards more terms, so the remaining terms may not be sufficient to represent oKnow . In

contrast, a low sθ only has a slight effect in the feature selection process. In ACIRD, the selection of

sθ is adapted to the emperical experiments. For instance, analysis of the distribution of term supports

based on the training data as shown in Fig. 3 reveals that more than one-half of them are in the range

[0, 0.2]. If we choose 2.0=sθ as the threshold value, then the average number of terms in an object is

reduced from 28.64 to 11.61, which is approximately the minimum number of terms needed to

produce acceptable learning results in experiments. It is obvious that the computational cost of

 14

feature selection is mainly due to the grouping of terms from all the objects, which can be done by

means of a sorting process. Hence, the complexity is))((cc KnowLlogKnowLO ××× .

5.3 Learning Classification Knowledge

The process of learning classification knowledge first generalizes the object knowledge oKnow to the

knowledge of most specific class cKnow using induction learning, and then generalizes the obtained

class knowledge to its upper classes. The learning process is applied beginning with the most specific

classes and continuing to the most general classes. In conventional learning methods, the values of

features of training objects are either TRUE or FALSE, i.e. whether or not the term occurs in the

object; all the terms are assumed to be equally important so that the degree of term support for the

object or class can be neglected. To amend this shortcoming, we define the support of t to c , denoted

as ctsup , , in equation (5.2). Similar to (5.1), ctsup , is also normalized to [0, 1]:

1]. [0, in tonormalized is ' i.e., ,
}'{

'

; class theinobject an is and , to ofsupport term theis ,'

,,
,

,
,

,,,

ctct
ct

ct
ct

jjiot
o

otct

ii

i

i

i

ji

j

jii

supsup
supMAX

sup
sup

cootsupsupsup

=

= ∑
 (5.2)

The support of term to a non-most specific class can be obtained from the support of term to the direct

objects and child classes, as shown in Eq. (5.3). Note that the number of objects in a child class affects

the contribution of that class to the super class:

1]. [0, in tonormalized is ' i.e., ,
}'{

'

(5.3); in objects ofnumber theis and , class of class childa is

 ,ofobject direct a iso where,'

,,
,

,
,

j,,,

ctct
ct

ct
ct

jjj

c
ctj

o
otct

ii

i

i

i

j

ji

j

jii

supsup
supMAX

sup
sup

cccc

csupcsupsup

=

×+= ∑∑

The algorithm of the Classification Knowledge Learner is described in the following.

1. From the most specific classes to the most general classes, apply the preprocessing and feature
selection processes to the objects.

2. For the most specific cla ss, calculate the term support for the class based on Eq. (5.2). The
computational complexity is the complexity of grouping terms from all the objects of the class,
i.e. the sorting complexity,) (cc KnowlogKnowO × .

3. For all other classes, calculate the term support for the class based on Eq. (5.3). By regarding its
child classes as direct objects, the complexity is the cost of grouping terms of child classes and

 15

objects,) (cc KnowlogKnowO × . Thus, the complexity of the special-general learning process

is) (cc KnowlogKnowLO ×× .

Due to the diversity of Internet documents, the number of terms in a class is large, and their term

support is generally low. For instance, in Fig. 4, each line represents the distribution of term support

of a class. From the learning results, there are about 472 terms per class on average, and support is

fairly low. This figure reveals that most term supports are located in the low support range (e.g., [0,

0.3]). Therefore, a feature selection process is needed to reduce the low support terms in cKnow .

Given a threshold cθ = 0.1, on average, there are 47 remaining terms per class, 24 terms with 2.0=cθ ,

and 20 terms with 3.0=cθ , after filtering. However, a filtering process may remove meaningful, but

with low supports, terms, such as aliases, and terms closely related to high support terms. To alleviate

this problem, we propose a method that uses the mining association technique to discover the term

associations in a class and then apply the result to enhance supports of the otherwise filtered out

terms.

Fig.4. The distribution of term supports of all the classes from the training data.

5.4 Mining Term Association

The feature selection process at the class level is more sophisticated than that at the object level. First,

cKnow is generally larger than oKnow since cKnow is generalized from much classification

knowledge and object knowledge. Second, terms in an object are more consistent in both semantics

and representation than are those in a class. Since an object is typically written by one web developer,

a simple filtering method using a threshold value can perform satisfactorily. On the other hand, the

 16

objects in a class are collected from many web servers and written by a variety of web developers,

which adds diversity to the term wording and usage. Applying a filtering algorithm that uses a

threshold value cθ directly to cKnow may remove representative terms but with low support values.

Consequently, the recall rate on cKnow is likely to be low. Therefore, the system must identify and

consolidate terms related to the important concepts before applying the filtering process. In ACIRD,

we apply the mining term association technique and the perfect term support algorithm [22] to

promote low support, representative terms. According to the association rule defined in [1], the

association rule problem is defined as follows:

Let I ii im={,,, }1 2K be a set of items, and let D be a set of transactions (i.e., the transaction

database) in which each transaction T is a set of items such that T I⊆ . An association rule is an

implication of the form X Y→ , where X I⊂ , Y I⊂ , and X Y∩ = φ . The rule X Y→

holds in the transaction set D with confidence c if c% of transactions that contain X also

contain Y . The rule X Y→ has support s in the transaction set D if s% of transactions contain

X Y∪ .

When the above definitions are adopted, two critical issues should be addressed before implementing

the data mining process: (a) the granularity of transactions used to mine associations and (b) the

domain used to generate association rules.

Granularity of mining associations

In [13], the authors proposed restricting the granularity for generating associations to 3-10 sentences

per paragraph in order to reduce the computational complexity. This restriction is impractical for web

documents since a paragraph may have hundreds of meaningful sentences. In addition, the

importance of a sentence in a web document depends on the associated HTML tags, not its position.

Therefore, the granularity of mining term association is the whole informative paragraph.

Domain for generating association rules

As Internet documents are published by various web developers, it is common for a term to have

different meanings that its semantics depends on both the developer and context. For example, when

a document has “apple computer” in a paragraph, the semantics of “apple” are not likely to be “apple

of fruit or food.” Most likely, the phrase indicates “Macintosh” in the class of “Computer.” Similarly,

apple in “apple pie” implies the apple of fruit in the class of “Food.” The above observation supports

restricting the domain of mining term associations within the boundary of a class. On the other hand,

 17

it is also common to observe a meaning has many forms of representations that make its associations

a promising candidate for mining. For these reasons, ACIRD applies the mining association rule

process to mine term associations based on the following assumptions:

(i) Term corresponds to item.

(ii) Informative paragraph corresponds to transaction.

(iii) Class corresponds to transaction database.

Document

Term Semantic
Network (TSN)

Extracting
Terms

Mining
Association

Rules

Terms

Term Association
Graph(TAG)

Term Support
Graph(TSG)

 Class

Term

Document Document Document

Learning
Classification

Knowledge

Fig. 5. Construction of the Term Semantic Network.

Concentrating on the objects of a class instead of all the classes has the merit of low computational

complexity due to the resulting small database size. When the size of the database is not large, a

simple mining association algorithm, such as Apriori [2], can be efficient ly applied. In this study, we

only consider one-to-one term associations, where the cost of the mining term associations of a class

is)(
2

cKnowO [22].

We define confidence (conf) and support (sup) of term association ji tt → as follows:

; and contain that documents ofnumber theindicates)(and , term

 contain that documents ofnumber for the stands)(where,)(
)(

jijici

ic
ic

jic
tt

ttttdft

tdftdf
ttdf

conf
ji

∩

∩
=>−

 18

. class in documents ofnumber for the stands where,
)(

cD
D

ttdf
sup c

c

jic
tt ji

∩
=→

Confidence is considered to be the degree of association between terms and is employed by the

Classification Knowledge Refiner to refine cKnow to *
cKnow . Support is the percentage of

transactions supporting the associated rules, and is considered to be a metric of the correctness of the

rules. For example, cKnow of class Art contains the following term supports: 13.0, =Artexhibitionsup

and 1, =Artartsup . exhibitiont may be filtered out from cKnow due to its low support value. After mining

the term associations of the class Art, ACIRD identifies the term association artexhibition → with

826.0=→artexhibitionconf and 1.0=→artexhibitionsup . Assume that a rule with 10% support is considered to

be useful. Following the definition of *sup defined in the previous section, *
, Artexhibitionsup is increased

from 0.13 to 0.826 (i.e., *
, Artexhibitionsup = artexhibitionconf → × Artartsup , = 0.826×1 = 0.826). The inference

process promotes the support value of exhibitiont to 0.826 to pass through the filter.

After the term associations of a class are mined, TSN is obtained, as shown in Fig. 5. TSG denotes the

term supports of a class, TAG represents the term associations in a class, and TSN represents the

union of TSG and TAG, i.e.,),(),,(),,(ETTAGEcTTSGEcTTSN ∪= .

5.5 Refinement of Classification Knowledge

As the term associations are asymmetric and exist for every pair of terms, both TAG and TSN form

strongly connected digraphs. To determine *sup of a term, all the possible paths from the term to the

class node must be considered. For a TSN, the total number7 of possible paths from terms to the class

is ∑
−

=

−⋅
1

1

1
n

i

n
iPn , where n is the number of terms. In the experiments, the average number of terms for a

class was found to be 472, which makes exhaustive search infeasible. Although the support value of

term association can be employed as a filter to remove rarely used terms, it is still computationally

expensive for a small number of terms. For instance, a class with ten terms creates about 8103.2 ×

possible paths. Therefore, an efficient algorithm is deemed necessary.

7
)!1(

)!1(
 where,

)!2(
)!1(

...
!2

)!1(
!1

)!1(
)!1(1

1

1

1

in
n

PPn
n
nnn

nn n
i

n

i

n
i −−

−
=⋅=

−
−

++
−

+
−

+−⋅ −
−

=

−∑ .

 19

Herein, we present a novel PTS algorithm to locate *
,cti

sup ’s for all the terms in a class in polynomial

time. According to the definition }...{ ,
*
, ctttttttct zzykjj

supconfconfconfMAXsup ××××= →→→ , where

conf and sup range in [0, 1], a larger number of edges in the path),,,...,,,(ctttttp zykj implies a

smaller value for their product. Restated, a sub-path of an optimal path must be an optimal path as

well. The proposed greedy heuristics and algorithm are as follows:

Heuristics. Divide the terms in TSN into two groups T and *T . Initially, T contains all the terms,

and *T is empty. Each time, find a term t with the maximum *
,ctsup in T and move t from T to *T .

Repeat the above until T is empty.

Perfect Term Support (PTS) Algorithm

1. [Initial state: This step initializes all *
,ct j

sup and partitions the terms into two groups: *T

contains the term with maximum *sup , and T contains all others.]

};{)};,{(Let

;c} t|{Let

;,Let

*

i

last
*

,ctlast

*
,ct

*
,ct

j,ct
*

,ct

tcTsuptT

supMAXsup

ctsupsup

last

ilast

jj

−←←

∈∀←

∈∀←

2. [This step updates every *
,ct j

sup in T if necessary, where lastt denotes the latest term added into
*T .]

. then, If

,),edge(that such eachFor
stop. Otherwise, 3. and 2 Steps withcontinue ,emptynot is If

*
,

*
,

*
,

*
, ctttctctcttt

lastjj

lastlastjjjlastlastj
supconfsupsupsupconf

EttTt
T

×←>×

∈∈

→→

3. [This step locates the term with maximum *
,ctsup from T and inserts it into *T .]

).,t(;t ;

}};|{ and ,|{Let
*

,lastlast
**

*
,

*
,

clastlast

jctctkklast

supOutputTTtTT

TtsupMAXsupTttt
jk

+←−←

∈=∈←

In [22], we proved that the PTS algorithm always obtains the optimal solution with computation

complexity)(
2

cKnowO . PTS can efficiently promote some non-representative terms by exploring

their associations with representative terms. Fig. 6 illustrates the effect of PTS. On the left-hand side,

there are four non-representative terms in TSN. After refinement using PTS, on the right-hand side of

the graph, three terms are promoted to be representative for their associations with the representative

terms. All other non-representative terms and corresponding associations are eliminated to reduce the

learning complexity.

 20

su
pp

or
t

su
pp

or
t

su
pp

or
t

su
pp

or
t

su
pp

or
t

TSN

Optimize
TSN

Optimized TSN

Class

Representative Term

Non-Representative Term

Proomted-Representative Term

support

MG

MG
MG MG

MG

Fig. 6. PTS Refinement on TSN.

Effects of the Knowledge Refinement Process

An experiment was designed to compare cKnow and *
cKnow based on U

cKnow , which includes class

keywords selected by ten human experts. For every class, ten human experts selected terms

considered representative of the class from a given set of Internet documents. Those selected terms

were sorted based on the number of times they were selected and used as the basis for judging the

quality of learned knowledge. The precision and recall rates are defined as follows:

Precision of cKnow = ;
c

U
cc

Know
KnowKnow ∩

.

Recall of cKnow = U
c

U
cc

Know
KnowKnow ∩

.

The experiment results indicate that the Knowledge Refining Process indeed refines the knowledge

contents of classification knowledge. The trade-off between precision and recall based on different

feature selection criteria was examined as well. Two types of criteria were used to evaluate the

outcomes of the experiment results.

� Top n. All the *
,ctsup are sorted in a descending order. The first n terms are selected as keywords

of *
cKnow .

� Threshold = ? . This criterion is used to select terms with .*
, θ≥ctsup

Table 1 summarizes the experiment results. Before PTS was applied, the lowest precision was 0.76,

due to the high selection standards. However, the recall was low for the same reason. This

observation implies that the Induc tion Process does not learn the implicit association among terms

although it correctly generalizes the knowledge of objects to classes. In contrast to the case where

PTS was not applied, PTS increased both precision and recall for the Top n criterion as it promotes

 21

important but non-representative terms at the expense of removing less important terms (as the Top n

criterion selected a fixed number of terms). For the “Threshold = ?” criterion, PTS dramatically

increased recall while decreasing precision since it increased the number of keywords while

promoting the terms. The experimental results confirm that the Induction Process and Knowledge

Refining Process discover the hidden semantics among terms. Our results further demonstrate that an

acceptable compromise between precision and recall can be achieved with a carefully chosen

selection criterion.

Since each component of the ACIRD learning model can be executed in polynomial time and

knowledge refinement can be achieved in a finite number of iterations, the total complexity is also

polynomial.

Table 1. The performance of the PTS algorithm on classification knowledge.

 Before PTS algorithm After PTS Algorithm

Selection Criterion Precision Recall Precision Recall

Top 10 0.76 0.27 0.91 0.38

Top 20 0.78 0.53 0.85 0.62

Threshold = 0.5 0.97 0.10 0.73 0.97

Threshold = 0.7 0.96 0.07 0.79 0.83

6. Evaluation of ACIRD Automatic Classification

In this section, we describe the testing phase of the learning process. Based on the learned knowledge,

the ACIRD Classifier automatically categorizes newly collected Internet objects. For each object, the

classifier assigns one or more classes, which are compared with the classes assigned by human

experts to evaluate the classification accuracy. A series of experiments and analyses revealed that
*
cKnow provides high quality suggestions in classifying Internet documents.

Similarity Measurement

class. theof norm theis ...

object; theof norm theis ...

(6.1) ; i.e., , to of grade membership is and , to of

support theis , and of mcommon ter a is where,
)(

),(

22
2

22
2

*
,

,

22

 and in
,,

,2,1

,2,1

,

++=

++=

×

×
=

∑

ctct

otot

citi

i

i

ii

mgmgc

supsupo

supctmgot

supcot
co

mgsup
cosim

icti

oti
oct

ctot

 22

The ACIRD Classifier uses the conventional similarity measurement, the cosine value of feature

vectors of documents and classes, defined in equation (6.1):

Owing to the imprecise nature of the class concept, the class assignment of an object cannot be

exactly “true” or “false.” In addition, categorizing an object to one class will be impractical since an

object may be conceptually related to several classes. Therefore, for an input object, the ACIRD

Classifier gives the best N classes that are closest to the intention of the object. Classification

accuracy is estimated based on the criterion in which the expert-assigned class of a testing object is

located in the set of best N matched classes.

Experiment Results

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Top1 Top2 Top3 Top4 Top5 Top6 Top7 Top8 Top9 Top10

Threshold (Top N): The target class is in the best N matched classes (N = 1, 2, ⋯, 10)

A
ve

ra
ge

 A
c
c
u
r
a
c
y

10 Users

With PTS

Without PTS

Naive Bayes

Fig. 7. The classification accuracy of assigning 8,855 testing objects to 386 most specific classes.

This experiment used 512 classes in ACIRDL with 386 most specific classes, 9,778 training objects and

8,855 testing objects, where both sets of objects were disjoint and manually classified. Before the

learning process, ten human experts extracted the keywords from each class for use as the

classification knowledge benchmark, denoted as U
cKnow . Fig. 7 summarizes the results of the testing

processes run on U
cKnow , *

cKnow , and cKnow , denoted as “10 Users,” “With PTS,” and “Without

PTS,” respectively. The result obtained from a naive Bayes classifier, denoted as “Naive Bayes,” was

also included for comparison, as it is widely used in text classification. According to these results,
*
cKnow has quality on a par with the manually extracted classification knowledge U

cKnow in terms of

the accuracy of class assignment of objects, while both perform better than the naive Bayes classifier.

 23

However, the classification accuracy for all the cases is unsatisfactorily low. Closely examining the

training and testing sets reveals that many classes contain insufficient training objects, and that some

training and testing objects contain very few keywords because they are non-text pages or link-only

pages. Thus, another experiment was designed to circumvent this situation. The same testing process

was performed based on the twelve most general classes8 of ACIRDL , and the resulting classification

accuracy is shown in Fig. 8. The “Top 1” accuracy of *
cKnow increased from 0.139 to 0.595. This

increase was due to the sufficient number of training objects in the testing classes, and the total

number of testing classes was reduced from 512 to 12.

0.595

0.746

0.798

0.833

0.863
0.878

0.539

0.688

0.763

0.805

0.834
0.861

0.460

0.626

0.705

0.755

0.793

0.822

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Top1 Top2 Top3 Top4 Top5 Top6

A
c
c
u
r
a
c
y

10 Users

With PTS

Without PTS

Fig. 8. The classification accuracy of assigning 8,855 testing objects to the 12 most general classes.

Table 2 lists the number of objects and keywords of the twelve most general classes. From this table,

the distribution of the numbers of objects is skewed, and some classes still exhibit the problem of

insufficient training objects and keywords. To further investigate this problem, we performed another

set of experiments on classes with a sufficient number of training objects and keywords only. In the

experiment, every testing class had at least forty training objects. The number of testing classes was

reduced from 512 to 48. Since the classes contained a sufficient number of training objects, these

classes are referred to herein as well-trained classes and their refined classification knowledge as

well-trained classification knowledge. In Fig. 9, the “Top N” classification accuracy is markedly

higher. This figure also reveals that, when the classes contained a sufficient number of training

objects, our learning model could learn more accurate classification knowledge than could the human

8 They are “Arts,” “Humanities,” “Social Sciences,” “Society and Culture,” “Natural Sciences,” “Computer and Internet,”
“Health,” “News and Information,” “Education,” “Government and State,” “Companies,” and “Entertainment and
Recreation.”

 24

experts. Intuitively, the number of classes is a factor that affects classification accuracy. However,

according the results shown in Fig. 8 and 9, the accuracy of classification of the twelve most general

classes and forty-eight well- trained classes were comparable. For instance, Top 1 accuracies were

0.539 and 0.486, and Top 6 were 0.861 and 0.936, respectively. This result is interesting since it

shows that the number of classes is not the only major factor.

Table 2. The distribution of training objects in the most general classes.

Class Name Objects Keywords
Companies 2702 (27.88%) 950 (22.83%)

Entertainment and Recreation 2577 (26.59%) 1084 (26.05%)
Computer and Internet 1199 (12.37%) 471 (11.32%)

Education 1169 (12.06%) 589 (14.15%)
Society and Culture 502 (5.18%) 226 (5.43%)
Government and State 384 (3.96%) 241 (5.79%)
News and Information 288 (2.97%) 162 (3.89%)

Health 280 (2.89%) 180 (4.32%)
Arts 223 (2.30%) 115 (2.76%)

Social Science 208 (2.15%) 92 (2.21%)
Natural Science 106 (1.09%) 44 (1.06%)

Humanities 53 (0.55%) 8 (0.19%)

0.486

0.734

0.807

0.872

0.9270.936
0.9540.9630.9630.963

0.450

0.688

0.743

0.807

0.872
0.908

0.9360.9450.9540.954

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Thershold (Top N, N = 1, 2, ⋯, 10)

A
c
c
u
r
a
c
y Well-Trained Class

10 Users

With PTS

Without PTS

Fig. 9. The classification accuracy of well-trained classes.

7. Two-Phase Search Engine

Most search engines reply to user queries with a list of ranked documents, which makes it time

consuming and inconvenient for users to retrieve the needed documents. ACIRD provides the

two-phase search that allows users to perform both class-level searching and object-level searching.

By utilizing the two-phase search, users can relate their information needs to the classes in ACIRDL ,

 25

navigate among the classes, and locate and retrieve needed documents. The above procedure can be

executed iteratively until the user obtains the needed information. Ensuring the effectiveness of the

two-phase search requires that the terms of user queries be in some *
cKnow ; thereby, applying

class- level search to *
cKnow can return relevant classes. The conjecture “most query terms are in

*
cKnow ” was investigated by means of the following analysis of the user query log.

Analysis on User Query Log

Internet queries were analyzed based on a user log collected in October 1997. Terms were extracted

from queries, and their frequencies were counted. There were 9,644 distinct terms in the user log,

denoted by the set logCT , in 648,006 queries. If a keyword in *
cKnow was also in logCT , its reference

count was assigned as the reference count of the term in logCT ; otherwise, the reference count of the

keyword was 0. The reference count is applied to measure the recall rate. The number of retained

keywords of *
cKnow served as a measure of the index rate, i.e. the rate of coverage of *

cKnow to logCT .

Regarding the references and query terms of the query log as the baseline, the recall rate and index

rate are defined as follows:

 Recall rate = total reference count of *
cKnow / total references of logCT ;

 Index rate = number of keywords in *
cKnow / number of query terms in logCT .

Table 3. Total reference counts (recall rate) vs. the number of keywords (index rate).

Based Line: Query Terms in User Log 648006 (100%) 9644 (100%)

Filter Threshold for *
cKnow Total References Needs Number of Keywords

Th = 0.0 628065 (96.92%) 18076 (187.43%)
Th = 0.1 477906 (73.75%) 3775 (39.14%)
Th = 0.2 470277 (72.57%) 3446 (35.73%)
Th = 0.3 465396 (71.82%) 3260 (33.8%)
Th = 0.4 458468 (70.75%) 3090 (32.04%)
Th = 0.5 452897 (69.89%) 2981 (30.91%)
Th = 0.6 440661 (68.00%) 2723 (28.24%)
Th = 0.7 421649 (65.07%) 2498 (25.90%)
Th = 0.8 404615 (62.44%) 2277 (23.61%)
Th = 0.9 389439 (60.10%) 2015 (20.89%)
Th = 1.0 378249 (58.37%) 1905 (19.75%)

To observe the change of the recall and index rates, the keyword selection process uses different

thresholds denoted by “Th = x.x.” Table 3 lists the reference counts (recall rate) and the number of

keywords (index rate) for each test. From the table, in the case of “Th = 0” (i.e., no keyword was

 26

eliminated), indexed keywords covered 96.92% of the information needs with about double the index

size of query terms. When “Th = 0.5”, the remaining keywords covered 69.89% of the information

needs with an index rate of 30.91%. With a sufficiently high recall rate, two-phase search is able to

shrink the searching domain to a reduced class lattice for efficient and effective searching without

compromising user’s information needs.

Two-Phase Search Method

Parse
Keyword

Query
String

Class-Level
Search

Object-Level
Search

User selects a
desired class

Class
Search

No info. needs in the class

Search All
Objects

Not Found
in the class

Conventional
Search

Found

A Sequence of
Query Keywords

Ranked Classes
that match with
the query

Subclass Search

Fig. 10. Processing Flow of Two-Phase Search.

The above analyses show the likelihood of performing a class- level search without much information

loss. Besides class- level searching on a structured presentation, ACIRD also provides conventional

searching, including object- level searching and searching of all-objects as an “escape” for users.

After briefly reviewing the return of a class- level search, the user can navigate down or up along the

class lattice or choose to apply object-level search to a particular class. Fig. 10 shows a block diagram

of Two-Phase Search. The operations are described below.

1. Process query string : Parse the query string into a sequence of keywords.

2. Perform a Class-Level Search: Examine the sub-classes of the designated class (initially, the
root), calculate the relevance scores and sort the classes based on the scores in descending order.
Return only the more general classes (i.e., if both parent and child classes satisfy the query, return
only the parent class) to the user. Generate and present the result in HTML format.

3. Execute an Object-Level Search in a class: Retrieve objects in the designated class associated
with the query terms, calculate each object’s relevance score, and sort the objects according to
the scores in descending order. Generate and present the findings in HTML format.

 27

4. Search all objects: Retrieve all objects related to query terms, calcula te each object’s relevance
score, and sort the objects based on the scores in decreasing order. Present the findings in HTML
format.

Examples of Two -Phase Search

The user gives the query “interesting technical magazine” to search for desired objects using

Two-Phase Search.

Fig. 11. Class-level Search (Query Result: Matched Classes).

Fig.12. Search All Objects in a Class (Query Result: All the objects in a class).

Fig. 11 presents the query returns, which are the 8 highest level classes satisfying the query, obtained

by class- level search. In the figure, the column “Refined Search in Class” presents the class names

that user can resume the same query on the class by clicking on the class name. The column “Object

In Class” shows two links, “All” and “Direct.” The former lists all the objects in the class (including

the objects in its subclasses), as shown in Fig. 12, which are all the objects in the class Technical

Journals; the latter lists the class’s direct objects only, as shown in Fig. 13. “MG (membership

grade)” indicates the normalized relevance score.

 28

Fig.13. Object-level Search (Query Result: Direct objects of a class).

If the user was interested in the class “Technical Journal” and clicked on it to perform object- level

search, the search findings were those shown in Fig. 14. The column “In Class” presents the classes

the object belongs to that the class hyperlink links back to the class node.

Fig. 14. Object-Level Search (Query Result: Objects in designated Classes).

Fig. 15 summarizes the results of “Search All Objects,” as used by conventional search engines. This

example contains a total of 746 relevant objects. In comparison with the 8 relevant classes returned by

a class- level search, visiting and locating information in 746 links is extremely inefficient.

 29

Fig. 15. Search All Objects (Query Result: All Objects).

8. Conclusions and Future Work

This paper has presented a class-based Internet document management and access system: ACIRD.

Our results demonstrate that machine learning and data mining techniques are capable of generating

accurate classification knowledge. Based on the classification knowledge, the classifier can

automatically and satisfactorily classify Internet documents into classes in a class lattice. According

to analysis of the user query log, the classification knowledge can serve as a meta-index to shrink the

searching domain to enable retrieval of potentially desirable documents efficiently. In addition,

class- level search returns with a comprehens ible organization of classes. Users can associate their

queries with the presented classes, navigate among the classes and finally perform object- level search

to obtain their desired documents. In this manner, the system helps users discover information in a

large number of Internet documents.

In the future, the learning model should be extended to incrementally learn the changes of the Internet.

In addition, the classification accuracy of the learning methods and of the classifier still has room for

further improvement. Some related issues are also worth closer examination and further study. For

example, future work should examine the feasibility of extending the use of mining term associations

in classes to automatically construct a thesaurus, which corresponds to the semantics of terms in the

specific domain. Also, analyzing the user query log will allow the system to learn and extract new

terms that cannot be found in thesauruses, such words like “MP3,” “ICQ,” and “CGI,” in order to

expand the term base of ACIRD.

 30

Acknowledgement

This work was partially supported by NSC under Contract NSC 88-2213-E-001-025.

References

[1] R. Agrawal, T. Imielinski, and Swami, A., “Mining Association Rules between Sets of Items in Large Databases”,
Proceedings of the ACM SIGMOD International Conference on Management of Data, May 1993.

[2] R. Agrawal and R Srikant, “Fast Algorithms for Mining Association Rules”, Proceedings of the 20th International
Conference on VLDB, September 1994.

[3] C. Apte, F. Damerau, and S. M. Weiss, “Automated Learning of Decision Rules for Text Categorization”, ACM
Transactions on Information Systems, Vol. 12, No. 3, July 1994, pp. 233-251.

[4] L. F. Chien, “PAT-Tree-Based Keyword Extraction for Chinese Information Retrieval”, Proceedings of the ACM
SIGIR International Conference on Information Retrieval, 1997.

[5] P. Clark and T. Niblett, “The CN2 Induction Algorithm”, Machine Learning Journal, Vol. 3(4), 1989, pp. 261-283.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to Algorithms ”, MIT Press, 1990.

[7] W. B. Croft and P. Savino, “Implementing Ranking Strategies Using Text Signatures”, ACM Transactions on Office
Information Systems, Vol. 6, No. 1, Jan. 1998, pp. 42-62.

[8] D. Cutting, and J. Pedersen, “Optimizations for Dynamic Inverted Index Maintenance”, the 13th International
Conference on Research and Development in Information Retrieval, 1990.

[9] R. O. Duda and P. E. Hart, “Pattern Classification and Scene Analysis ”, John Wiley & Sons, New York, 1973.

[10] W. B. Frakes and R. Baeza-Yates, “Information Retrieval – Data Structures & Algorithms”, Prentice Hall, 1992.

[11] N. Fuhr, “Models for Retrieval with Probabilistic Indexing”, Information Processing and Management, Vol. 25, No.
1, 1989, pp. 55-72.

[12] M. Goldszmidt and M. Sahami, “A Probabilistic Approach to Full-Text Document Clustering”, TR
ITAD-433-MS-98-044, SRI International, http://robotics.stanford.edu/users/sahami/papers-dir/gm-clustering.ps.

[13] Y. F. Jing and W. B. Croft, “An Association Thesaurus for Information Retrieval”, UMass Technical Report 94-17,
http://cobar.cs.umass.edu/info/psfiles/irpubs/jingcroftassocthes.ps.gz.

[14] K. S. Jones and D. M. Jackson, “The Use of Automatically-Obtained Classifications for Information Retrieval,”
Information Processing and Management (IP&M), Vol. 5, 1970, pp. 175-201.

[15] K. S. Jones and R. M. Needham, “Automatic Term Classification and Retrieval,” Information Processing and
Management, Vol. 4, No 1, 1968, pp. 91-100.

[16] T. Kalt and W. B. Croft, “A New Probabilistic Model of Text Classification and Retrieval”, UMass Computer
Science Technical Report, IR-78, 1996, http://cobar.cs.umass.edu/info/psfiles/irpubs/ir.html.

[17] L. S. Larkey and W.B. Croft, “Combining Classifiers in Text Categorization”, ACM SIGIR’96, 1996, pp. 289-297.

[18] T. Berners-Lee, “Hypertext Markup Language 2.0”, http://andrew2.andrew.cmu.edu/rfc/rfc1866.html.

[19] D. Lewis , “An Evaluation of Phrasal and Clustered Representations on a Text Categorization Task”, ACM SIGIR’92,
pp. 37-50, 1992.

[20] D. Lewis and William Gale, “Training Text Classifiers by Uncertainty Sampling”, ACM SIGIR’94, 1994.

[21] S. H. Lin, M. C. Chen, J. M. Ho, and Y. M. Huang, “The Design of an Automatic Classifier for Internet Resource
Discovery”, International Symposium on Multi-technology and Information Processing (ISMIP’96), December 1996,
pp. 181-188.

[22] S. H. Lin, C. S. Shih, M. C. Chen, J. M. Ho, M. T. Kao, and Y. M. Huang, “Extracting Classification Knowledge of
Internet Documents: A semantics Approach”, ACM SIGIR’98, 1998, pp. 241-249.

 31

[23] S. H. Lin, C. S. Shih, M. C. Chen, J. M. Ho, M. T. Kao, and Y. M. Huang, "A Collaborative Internet Documents
Access Scheme Using ACIRD", International Computer Symposium on Software Engineering and Database
Systems (ICS'98), 1998.

[24] R. S. Michalski, I. Mozetic, and J. Hong, “The AQ15 Inductive Learning System: An Overview and Experiments”,
Technical Report ISG 86-20, UIUCDCS-R-86-1260, Department of Computer Science, University of Illinois,
Urbana, 1986.

[25] J. Mostafa, S. Mukhopadhyay, W. Lam, and M. Palakal, “A Multilevel Approach to Intelligent Information Filtering:
Model, System, and Evaluation”, ACM Transactions on Information Systems, Vol. 15, No. 4, October 1997, pp.
368-399.

[26] J. R. Quinlan, “Induction of Decision Trees”, Machine Learning, Vol. 1, 1989, pp. 261-283.

[27] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers. San Mateo, CA, 1993.

[28] G. Salton, “Automatic Information Organization and Retrieval,” McGraw-Hill, 1968.

[29] G. Salton, C. Buckley, and C. T. Yu, “An Evaluation of Term Dependence Models in Information Retrieval,” LNCS
146, 1983, pp. 151-173.

[30] G. Salton and M. J. McGill, “Introduction to Modern Information Retrieval,” McGraw-Hill, 1983.

[31] G. Salton, “Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer”,
Addison Wesley, 1989.

[32] G. Salton and C. Buckley, “Improving Retrieval Performance by Relevance Feedback”, Journal of American Society
for Information Science, Vol. 41, No. 4, 1990, pp. 188-297.

[33] D. Shasha, and T. Wang, “New Techniques for Best-Match Retrieval”, ACM Transactions on Office Information
Systems, Vol. 8, No. 2, January 1990, pp. 140-158.

[34] R. Srikant and R. Agrawal, “Mining Quantitative Association Rules in Large Relational Tables”, Proceedings of the
ACM SIGMOD International Conference on Management of Data, June 1996.

[35] Y. Yang, “Expert Network: Effective and Efficient Learning from Human Decisions in Text Categorization and
Retrieval”, ACM SIGIR’94, 1994, pp. 13-22.

[36] C. T. Yu, W. Meng, and S. Park, “A Framework for Effective Retrieval,” ACM Transactions on Database Systems,
Vol. 14, No. 2, 1989, pp. 147-167.

[37] B. Yuwono, S. L. Y. Lam, J. H. Ying, and D. L. Lee, “A World Wide Web Resource Discovery System”, World
Wide Web Journal, Vol. 1, No. 1, Winter 1996.

 32

Shian-Hua Lin received his M.S. and Ph.D. degree in Engineering Science from

National Cheng-Kung University, Tainan, Taiwan, in 1994, and 2000, respectively.

He is currently a postdoctoral fellow of Institute of Information Science at

Academia Sinica, Taipei. His research interests include Internet document

classification and retrieval, machine learning, data mining, and database system.

Meng Chang Chen received the B.S. and M.S. degrees in Computer Science from

National Chiao-Tung University, Taiwan, in 1979 and 1981, respectively, and the

Ph.D. degree in Computer Science from the University of California, Los Angeles,

in 1989. He joined AT&T Bell Labs in 1989 as Member of Technical Staff, and

became an Associate Professor at Sun Yat-Sen University, Taiwan in 1992. Since

1993, he has been with Institute of Information Science, Academia Sinica, Taiwan.

Currently, he is an Associate Research Fellow and Deputy Director. His current main research

interests include database and knowledge base systems, knowledge discovery and representation,

QoS networking, multimedia systems and streaming, and operating system.

Jan-Ming Ho received his Ph.D. degree in electrical engineering and computer

science from Northwestern University in 1989. He received his B.S. in electrical

engineering from National Cheng Kung University in 1978 and his M.S. at Institute

of electronics of National Chiao Tung University in 1980. He joined Institute of

Information Science, Academia Sinica, Taiwan, R.O.C as a associate research

fellow in 1989,and is promoted to research fellow in 1994. He visited IBM T. J.

Watson Research Center in summer 1987 and 1988, Leonardo Fibonacci Institut e for the Foundations

of Computer Science, Italy, in Summer 1992, and Dagstuhl-Seminar on "Combinatorial Methods for

Integrated Circuit Design", IBFI-Geschäftsstelle, Schloβ Dagstuhl, Fachbereich Informatik, Bau 36,

Universität des Saarlandes, Germany, in October 1993. His research interests target at the integration

of theoretical and application-oriented research, including environment for management and

presentation of digital archive, management, retrieval, and classification of web documents,

continuous video streaming and distribution, video conferencing, real-time operating systems with

applications to continuous media systems, computational geometry, combinatorial optimization,

VLSI design algorithms, and implementation and testing of VLSI algorithms on real designs. He is

 33

Associate Editor of IEEE Transaction on Multimedia. He was Program Chair of Symposium on

Real-time Media Systems, Taipei, 1994 - 1998, General Co-Chair of International Symposium on

Multi-Technology Information Processing, 1997 and will be General Co-Chair of IEEE RTAS 2001.

He was also steering committee member of VLSI Design/CAD Symposium, and program committee

member of several previous conferences including ICDCS 1999, and IEEE Workshop on Dependable

and Real-Time E-Commerce Systems (DARE'98), etc.

Yueh-Min Huang was born in Taiwan, R.O.C., in 1960. He received the B.S. degree

in engineering science from National Cheng-Kung University, Taiwan, R.O.C., in

1982, and both the M.S. and Ph.D degrees in electrical engineering from the

University of Arizona, Tucson, AZ, in 1988 and 1991, respectively. Since 1991, he

has been with the Department of Engineering Science, National Cheng-Kung

University, where he is a professor. His research interests include distributed

multimedia systems, machine learning, and real- time systems. Dr. Huang is a member of IEEE

Computer Society, the Taiwaness Association for Artificial Intelligence, and the Chinese Fuzzy

Systems Association. He was a winner of the 1996 and 1998 Acer Long-Term Award for Best M.S.

Thesis Supervision.

