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ABSTRACT 
We address an important issue of fully low-cost and low-complex 
video compression for use in resource-extremely limited 
sensors/devices. Conventional motion estimation-based video 
compression or distributed video coding (DVC) techniques all rely 
on the high-cost mechanism, namely, sensing/sampling and 
compression are disjointedly performed, resulting in unnecessary 
consumption of resources. That is, most acquired raw video data 
will be discarded in the (possibly) complex compression stage. In 
this paper, we propose a dictionary learning-based distributed 
compressive video sensing (DCVS) framework to “directly” 
acquire compressed video data. Embedded in the compressive 
sensing (CS)-based single-pixel camera architecture, DCVS can 
compressively sense each video frame in a distributed manner. At 
DCVS decoder, video reconstruction can be formulated as an l1-
minimization problem via solving the sparse coefficients with 
respect to some basis functions. We investigate adaptive 
dictionary/basis learning for each frame based on the training 
samples extracted from previous reconstructed neighboring frames 
and argue that much better basis can be obtained to represent the 
frame, compared to fixed basis-based representation and recent 
popular “CS-based DVC” approaches without relying on 
dictionary learning. 

Index Terms—Compressive sensing, sparse representation, 
dictionary learning, single-pixel camera, l1-minimization.

1. INTRODUCTION 
Conventional high-complexity video compression techniques [1] 
or recently popular low-complexity technique called distributed 
video coding (DVC) [2] all rely on the high-cost mechanism where 
video sensing and compression tasks are disjointedly performed. 
Most acquired raw pixel data in the sensing stage will be discarded 
in the (possibly) complex compression stage, which suffers from 
unnecessary memory wasting and power consumption, and is 
especially unfeasible for resource-extremely limited devices/ 
sensors. Recently, with the advent of the compressive sensing 
(CS)-based single-pixel camera architecture [3], based on the 
inherent sparse property of images, CS [4] can directly and 
efficiently acquire compressed image data via randomly projecting 
raw data to obtain linear and non-adaptive measurements. Image 
reconstruction can be formulated as solving an l1-minimization 
problem [5]-[6] based on the acquired data measurements. 

Recently, compressive video sensing integrating both video 
sensing and compression into a unified task has emerged as a new 
way to directly acquire compressed video data via random 
projection for each individual frame at a low-complexity encoder. 
Video reconstruction can be achieved via performing l1-
minimization together with exploiting correlations among 
successive frames at a high-complexity decoder [7]-[9]. In [7], we 
have proposed a distributed compressive video sensing (DCVS) 
framework, where an efficient initialization and several stopping 
criteria were designed to improve and speedup the employed l1-
minimization algorithm for video reconstruction. In [8]-[9], DVC 

algorithms using CS were proposed, where the major core is to 
assume each block in a frame can be sparsely represented with 
respect to the dictionary/basis formed from a set of spatially local 
neighboring blocks (without performing dictionary learning) of 
previous reconstructed neighboring frames, denoted as the “W/O 
dictionary learning”-based scheme in this paper. 

In this paper, a DCVS framework via “dictionary learning”-
based sparse representation is proposed. Our major contributions 
include: (i) Single-pixel camera-compatible low-complexity 
video encoder: only CS random projection will be individually 
performed for each frame, which can be fully compatible to the 
single-pixel camera [3]. In [8]-[9], it is required to support the 
H.264/AVC encoder to periodically encode each intra-frame, 
which is more complex. (ii) Dictionary-learning based sparse 
representation: a dictionary learned from a set of blocks globally 
extracted from the previous reconstructed neighboring frames 
together with the side information generated from them is used as 
the basis of each block in a frame. The major advantages are: (a) 
Extracting more blocks globally for dictionary learning can 
provide much better representation for blocks with large motions; 
and (b) Even if the qualities of the training blocks are not good 
enough (due to poorly reconstructed neighboring frames), the 
learned dictionary may still provide a good basis. The fact can be 
similarly explained by the image denoising approach via the 
dictionary learned from the patches extracted from a noisy image 
itself [10]. In contrast, the “W/O dictionary learning” approach [8]-
[9] may not work well for: (a) blocks with (very) large motions; 
and (b) the use of non-learned dictionary formed from (possibly) 
low-quality blocks. Other technical comparisons can be found in 
Table 1 of Sec. 4. 

2. COMPRESSIVE SENSING 
Assume that an orthonormal basis matrix (or dictionary)  

NN×∈ R  (e.g., DWT basis) can provide a K sparse 

representation for a signal 1R ×∈ Nx , i.e., x = , where 
1R ×∈ N  can be well approximated using only K << N non-zero 

entries. Compressive sensing (CS) [4] states that x can be 
accurately reconstructed by taking only M = O(K×log(N/K)), K < 
M << N, linear and non-adaptive measurements from the random 

projection as y = x, where 1R ×∈ My  is a measurement vector 

and NM ×∈ R  is a measurement matrix that is incoherent with .
More specifically, the M measurements in y are random linear 
combinations of the entries of x, which can be viewed as the 
compressed version of x. The reconstruction of  (or x) can be 
formulated as an l1-minimization problem. On the other hand, a 
basis matrix is actually not necessarily orthonormal. An 
overcomplete dictionary D learned from training some selected 
training samples [10] can be used as a basis for representing the 
original signal. In fact, by using a measurement matrix  randomly 
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generated from some distribution, the incoherence between  and 
D should be usually high enough. 

3. PROPOSED DCVS FRAMEWORK 

3.1. Problem Formulation 
In DCVS, a video sequence consists of several GOPs (group of 
pictures), where a GOP consists of a key frame followed by some 
CS frames. At DCVS encoder, each key frame or each block in a 
CS frame can be compressed via CS random projection to get its 
measurement vector. Here, the used measurement matrix is the 
scrambled block Hadamard ensemble (SBHE) matrix [5], which 
takes the partial block Hadamard transform, followed by randomly 
permuting its columns. At DCVS decoder, the reconstruction of a 
frame or a block can be formulated as an l1-minimization problem. 
Here, the sparse coefficients with respect to different basis 
functions (or dictionaries) depending on various types of frames 
are solved via the “sparse reconstruction by separable 
approximation (SpaRSA)” algorithm [6]. Employed different basis 
functions or learned dictionaries will be described in Secs. 3.3~3.5. 

3.2. DCVS Encoder 
At DCVS encoder shown in Fig. 1, without acquiring complete 
raw video data and performing motion estimation, each key frame 

1R ×∈ N
tx  viewed as a column vector is compressed via frame-

based random projection as yt = xt, where 1R ×∈ tM
ty  is the 

measurement vector, Mt < N, forming the compressed version of xt,

which will be transmitted to the decoder. NM t ×∈ R  is the 
measurement matrix [5]. On the other hand, each CS frame xt

consisting of B non-overlapping blocks, 1R ×∈ bN
tib  viewed as a 

column vector, i = 1, 2, …, B, is compressed via block-based 
random projection by individually projecting each bti via yti = bti,

where 1R ×∈ tiM
tiy  is the measurement vector, Mti < Nb, and  

bti NM ×∈ R  is the measurement matrix [5]. The vectors yti, i = 
1, 2, …, B, forming the compressed version of xt, will be 
transmitted to the decoder. 
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Fig. 1. Proposed DCVS with dictionary learning. 

3.3. DCVS Decoder for Key Frame Reconstruction 
At DCVS decoder, each key frame xt can be reconstructed via 
solving the l1-minimization problem as: 

1
2
22

1min ttt Ay
t

θτθ
θ

+− ,                            (1) 

where yt is the received measurement vector, yt = xt, A = ,

is the measurement matrix [5],  is the DWT basis, 1R ×∈ N
tθ  is 

the sparse coefficient vector to be solved via SpaRSA algorithm [6] 
with respect to , and  is a non-negative parameter. Finally, the 
key frame xt can be reconstructed via ttx θ~~ Ψ= , where tθ~  is the 
solution of t minimizing Eq. (1). For achieving the goal of 

independent reconstruction of a key frame, a general-purpose basis, 
DWT basis, for image representation is employed. 

3.4. DCVS Decoder for CS Frame Reconstruction 
At DCVS decoder, each CS frame xt can also be reconstructed via 
solving the l1-minimization problem for each block bti, i = 1, 2, …, 
B, in xt as: 

1
2
22

1min tititti Ay
ti

ατα
α

+− ,                            (2) 

where yti is the received measurement vector for bti, yti = bti, At = 

Dt,  is the measurement matrix [5], PN
t b ×∈ RD , Nb P, is 

the learned dictionary for xt, described in Sec. 3.5, 1R ×∈ P
tiα  is 

the sparse coefficient vector to be solved via SpaRSA algorithm [6] 
with respect to the basis Dt, and  is a non-negative parameter. 
Similarly, bti can be reconstructed via tittib α~D

~
= , where tiα~  is 

the solution of tiα  minimizing Eq. (2). That is, each block bti in xt

can be sparsely represented as a linear combination of the atoms 
(column vectors) in Dt. Finally, the CS frame xt can be 
reconstructed by integrating tib

~
, i = 1, 2, …, B.

3.5. Dictionary Learning for CS Frame Reconstruction 
If the basis/dictionary for an image can be learned based on the 
training samples/atoms extracted from the image itself, this basis 
should provide much sparser representation for the image. 
Although, it is impossible to obtain such the basis from an image 
itself to be reconstructed at decoder, a good dictionary learned 
from the training samples generated from the neighboring frames 
of a video frame to be reconstructed may be still obtained. Based 
on the general fact that the contents of successive frames in the 
same scene of a video should be similar, a frame can be well-
predicted based on its side information possibly generated from the 
interpolation of its neighboring reconstructed frames. 

At DCVS decoder, for a CS frame xt, its side information It can 
be generated from the motion-compensated interpolation (MCI) of 
its previous and next reconstructed key frames, respectively, 
denoted by xt-j and xt+j. MCI technique has been successfully used 
for side information generation in DVC [2]. Then, we use the three 
frames, xt-j, It, and xt+j to learn the dictionary (basis) for this CS 
frame xt as follows. First, we extract Q training patches bN

i Ru ∈ ,
i = 1, 2, …, Q, from xt-j, It, and xt+j, where each frame is divided 
into several non-overlapping blocks. For each block in the three 
frames, we extract the 9 training patches including the nearest 8 
blocks overlapping this block and this block itself, where each 
extracted patch bN

i Ru ∈  can be viewed as a column vector. 
Second, we apply the K-SVD algorithm [10] to these Q training 

patches to learn the dictionary PN
t b ×∈ RD , Nb P, for xt, where 

Dt is an overcomplete dictionary containing P atoms. With respect 
to Dt, each block bti in xt can be sparsely represented as a sparse 

coefficient vector 1R ×∈ P
tiα  and, usually, || ti||0 << Nb. Using the 

learned dictionary for all the blocks of a CS frame can usually 
provide sparser representation for the frame than using a fixed 
DWT basis. 

An illustrative example of the Foreman QCIF video sequence 
at measurement rate (MR, defined by the number of acquired 
measurements divided by the number of pixels of a frame) = 0.3 
shown in Fig. 2 is used to demonstrate the efficiency of DCVS 
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decoder, where the parameter settings are described in Sec. 4. Fig. 
2(a) and (b) show, respectively, an original CS frame (the 32nd 
frame), and its dictionary with size 256×256, where each atom 
(column vector) with length 256 in the dictionary is displayed as a 
block. Fig. 2(c) and (d), respectively, show the reconstructed CS 
frame using the dictionary shown in Fig. 2(b) and the frame-based 
DWT basis (treat this frame as a key frame). It can be observed 
from Fig. 2 that using the learned dictionary can provide better CS 
frame reconstruction than using the DWT basis at the same MR.

(a)                           (b) 

(c)                                            (d) 
Fig. 2. Comparison of reconstructed CS frames with respective 
to learned and fixed dictionaries: (a) The original 32nd frame; 
(b) the dictionary learned for (a); (c) the reconstructed 32nd 
frame with respective to the dictionary shown in (b) (PSNR = 
31.49dB); and (d) the reconstructed 32nd frame with respect to 
the frame-based DWT basis (PSNR=27.83dB). 

4. SIMULATION RESULTS 
In this paper, several QCIF (frame size: 176×144) video sequences 
(51 Y frames for each) with GOP size = 2, and different 
measurement rates (MRs) were employed to evaluate the proposed 
DVCS scheme. For learning the dictionary for each CS frame 
consisting of several non-overlapping 16×16 blocks, the parameter 
settings are described as follows. The dictionary size was set to 
256×256, i.e., Nb = 16×16 = 256 and P = 256 (atoms). In K-SVD 
[10], the number of training iterations was set to 10 while the target 
sparsity, denoted by S (number of nonzero coefficients used to 
represent each signal/block) was set to 10. According to our 
simulations, the performances will not exhibit significant changes 
when the two above-mentioned parameters for K-SVD are 
increased, which will increase the complexity of dictionary 
learning. Currently, the MR of all the frames in a video sequence 
are set to be the same as the target MR. In addition, to keep the 
encoding complexity to be as low as possible, the available 
measurements for each CS frame are equally allocated to each 
block without considering the complexity or sparsity of the block. 

In this paper, two compressive video sensing schemes were 
used for comparison with our dictionary learning-based DCVS 
scheme (denoted by Proposed). The first one is the Frame-DWT
scheme, in which under our DCVS architecture, all frames are 
treated as key frame (reconstructed with respect to the frame-based 
DWT basis). The second one is the “W/O dictionary learning” 
scheme, in which based on our DCVS architecture, each block in a 
CS frame is reconstructed with respect to its corresponding 

dictionary without learning. The second type is similar to the major 
core in [8]-[9]. Here, based on [8], the dictionary of each block in a 
CS frame includes the blocks extracted from the two spatially 
corresponding square 17×17 windows, respectively, in the two 
neighboring reconstructed key frames. The characteristics of the 
“Proposed” and the “W/O dictionary learning” schemes are 
summarized in Table 1. Please note that we only implemented the 
major core of the schemes proposed in [8]-[9] instead of the full 
system for comparison. 

For reconstructing block bti in a CS frame xt using SpaRSA, the 
computational complexity is approximately O(P ), where P is 

decided by the dimension of PM
t tiA ×∈ R , and  is a constant. It 

has been shown that the complexity of SpaRSA is approximately 
linear ( is close to 1) [6]. In our parameter settings (Table 1), the 
dimension P (256) used by Proposed scheme is smaller than that 
(578) used by “W/O dictionary learning” scheme. Nevertheless, 
additional complexity for performing K-SVD dictionary learning 
[10] (approximately Q×(S2×P + 2×Nb×P) per training iteration [11], 
where Q is the number of training patches, S is the target sparsity, 
and Nb×P is the size of each dictionary Dt) is required for each CS 
frame in our scheme, which is, however, usually acceptable for a 
high-complexity decoder supported in a server or in cloud. 

Table 1. Comparisons of the Proposed and “W/O dictionary 
learning” schemes. 

Scheme Proposed W/O dictionary learning 

Ingredients 
of dictionary

Learning based on 
the extracted patches 
from neighboring key 

frames and side 
information 

Spatially neighboring blocks 
from neighboring key frames 

without learning 

Dictionary 
size 256 atoms 

Size of spatially 
corresponding square 
window × Number of 

neighboring key frames 
(17×17×2 = 578 atoms) 

Number of 
dictionaries 

per CS 
frame 

1

Number of blocks per CS 
frame 

(99 dictionaries for a QCIF 
CS frame) 

Dictionary 
type Global with learning Local w/o learning 

Decoding 
complexity 

per CS 
frame

Dictionary learning 
by K-SVD + l1-

minimization solving 
256 coefficients per 

block 

l1-minimization solving 578 
coefficients per block 

The average PSNR performances at different MRs for the 
Foreman, Mobile, and Silent sequences are shown in Figs. 3(a), 
4(a), and 5(a), respectively, where it can be observed that the 
PSNR performances of the proposed DCVS can outperform or be 
comparable to the Frame-DWT and “W/O dictionary learning” 
schemes [8]-[9], especially at lower MRs and for sequences with 
large motion. It can also be observed from Fig. 4(a) that the PSNR 
performances obtained from the three schemes are somewhat poor. 
The major reasons include: (i) the frame contents of the Mobile
sequence are very complex, which may not be exactly sparse with 
respect to most bases, and (ii) the motions of the sequence are very 
large so that it is hard to learn a good dictionary for a CS frame 
from its neighboring key frames. It is worth noting that the 
dictionary learning of our DCVS can reveal some “denoising” 
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capability to obtain a basis better than that of the “W/O dictionary 
learning” scheme without relying on dictionary learning. 

Proposed
W/O dictionary learning
Frame-DWT

Proposed
W/O dictionary learning
Frame-DWT

(a)                                              (b) 
Fig. 3. The (a) MR-PSNR and (b) Bitrate-PSNR performances 
of the Foreman Sequence. 

Proposed
W/O dictionary learning
Frame-DWT

Proposed
W/O dictionary learning
Frame-DWT

(a)                                                (b) 
Fig. 4. The (a) MR-PSNR and (b) Bitrate-PSNR performances 
of the Mobile Sequence. 

Proposed
W/O dictionary learning
Frame-DWT

Proposed
W/O dictionary learning
Frame-DWT

(a)                                               (b) 
Fig. 5. The (a) MR-PSNR and (b) Bitrate-PSNR performances 
of the Silent Sequence. 

On the other hand, to explore the compression efficiency in 
terms of PSNR-bitrate performances, we quantized each 
measurement via a nonuniform quantizer with 8 levels, generated 
using Lloyd’s algorithm [12]. Then, we encoded each quantized 
measurement using an entropy encoder designed by Huffman 
coding, where each measurement was averagely encoded by 2.9 
bits. The average PSNR performances at the four different bitrates 
(bits per pixel, i.e., bpp), respectively, obtained by encoding the 
measurements for MR = 10%, 20%, 30%, and 40% for the three 
evaluated sequences, are shown in Figs. 3(b), 4(b), and 5(b), 
respectively, where it can be observed that the proposed DCVS can 
outperform or be comparable to the Frame-DWT and “W/O 
dictionary learning” schemes. That is, with some quantization 
noises, adaptive learned dictionaries can reveal some “denoising” 
capability and provide much better bases, resulting in better 
reconstructed quality. In addition, the average number of bits (2.9 
bits) for encoding a measurement using the entropy encoder is very 
close to that (3 bits) using fixed-length encoder. The reason is that 

the measurement matrix spreads the energy of a signal uniformly 
across the measurements, so that each measurement is nearly 
allocated the same number of bits [13]. 

5. CONCLUSIONS 
In this paper, a single-pixel camera-compatible dictionary learning-
based distributed compressive video sensing (DCVS) framework is 
proposed to directly acquire compressed video. The simulation 
results have shown that the learned dictionary can provide better 
basis for video reconstruction than using the DWT basis and 
dictionary without learning-based basis. For the future works, 
several important issues need to be investigated in depth are 
described as follows. (i) Adaptive measurement matrix learning: (ii) 
Optimal measurement quantization and allocation. (iii) Bit 
allocation and entropy coding for measurements. (iv) Fast 
dictionary learning. (v) More efficient algorithm solving the l1-
minimization problem. 

6. REFERENCES 
[1] T. Wiegand and G. J. Sullivan, “The H.264/AVC video coding 

standard,” IEEE Signal Processing Magazine, vol. 24, no. 2, pp. 148-
153, March 2007. 

[2] F. Dufaux, W. Gao, S. Tubaro, and A. Vetro, “Distributed video 
coding: trends and perspectives,” EURASIP Journal on Image and 
Video Processing, Article ID 508167, 2009. 

[3] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. 
Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive 
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 83-91, 
March 2008. 

[4] E. Candès and M. Wakin, “An introduction to compressive sampling,” 
IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21-30, March 
2008. 

[5] L. Gan, T. T. Do, and T. D. Tran, “Fast compressive imaging using 
scrambled hadamard ensemble,” in Proc. of European Signal 
Processing Conf., Switzerland, Aug. 2008. 

[6] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse 
reconstruction by separable approximation,” IEEE Trans. on Signal 
Processing, vol. 57, no. 7, pp. 2479-2493, July 2009. 

[7] L. W. Kang and C. S. Lu, “Distributed compressive video sensing,” in
Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
Taipei, Taiwan, April 2009, pp. 1169-1172. 

[8] J. Prades-Nebot, Y. Ma, and T. Huang, “Distributed video coding 
using compressive sampling,” in Proc. of Picture Coding Symposium,
Chicago, Illinois, USA, May 2009. 

[9] T. T. Do, Y. Chen, D. T. Nguyen, N. Nguyen, L. Gan, and T. D. Tran, 
“Distributed compressed video sensing,” in Proc. of IEEE Int. Conf. on 
Image Processing, Cairo, Egypt, Nov. 2009, pp. 1393-1396. 

[10]M. Aharon, M. Elad, and A. M. Bruckstein, “The K-SVD: an 
algorithm for designing of overcomplete dictionaries for sparse 
representation,” IEEE Trans. on Signal Processing, vol. 54, no. 11, pp. 
4311-4322, Nov. 2006. 

[11]R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation 
of the K-SVD algorithm using batch orthogonal matching pursuit,” CS 
Technical Report, Technion - Israel Institute of Technology, 2008. 

[12]W. Dai, H. V. Pham, and O. Milenkovic, “Distortion-rate functions for 
quantized compressive sensing,” in Proc. of IEEE Information Theory 
Workshop on Networking and Information Theory, June 2009. 

[13]V. K. Goyal, A. K. Fletcher, and S. Rangan, “Compressive sampling 
and lossy compression,” IEEE Signal Processing Magazine, vol. 25, 
no. 2, pp. 48-56, 2008. 

- 213 -



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
    /JPN <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


