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Abstract—Assessment of image similarity is fundamentally
important to numerous multimedia applications. The goal of sim-
ilarity assessment is to automatically assess the similarities among
images in a perceptually consistent manner. In this paper, we in-
terpret the image similarity assessment problem as an information
fidelity problem. More specifically, we propose a feature-based
approach to quantify the information that is present in a reference
image and how much of this information can be extracted from a
test image to assess the similarity between the two images. Here,
we extract the feature points and their descriptors from an image,
followed by learning the dictionary/basis for the descriptors in
order to interpret the information present in this image. Then,
we formulate the problem of the image similarity assessment in
terms of sparse representation. To evaluate the applicability of
the proposed feature-based sparse representation for image simi-
larity assessment (FSRISA) technique, we apply FSRISA to three
popular applications, namely, image copy detection, retrieval, and
recognition by properly formulating them to sparse representation
problems. Promising results have been obtained through simula-
tions conducted on several public datasets, including the Stirmark
benchmark, Corel-1000, COIL-20, COIL-100, and Caltech-101
datasets.

Index Terms—Feature detection, image copy detection, image
recognition, image retrieval, image similarity assessment, sparse
representation.

I. INTRODUCTION

I MAGE similarity assessment is fundamentally important
to numerous multimedia information processing systems

and applications, such as compression, restoration, enhance-
ment, copy detection, retrieval, and recognition/classification.
The major goal of image similarity assessment is to design al-
gorithms for automatic and objective evaluation of similarity in
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a manner that is consistent with subjective human evaluation.
A simple and popularly used metric is the peak signal-to-noise
ratio (PSNR) or the corresponding mean-squared error (MSE),
whose correlation with human judgment has been shown to be
not tight enough for most applications [1], [2]. Some advanced
approaches, based on the human visual system (HVS), natural
scene statistics (NSS), and/or some image distortion model, also
have been proposed to improve the PSNR metric. They demon-
strate that visual quality of a test image is strongly related to the
relative information present in the image and that the informa-
tion can be quantified to measure the similarity between the test
image and its reference image [1], [2].

There is no doubt that these advanced similarity metrics are
efficient to measure the “quality” of an image compared with
its original version, especially for some image reconstruction
applications. Nevertheless, they mainly focus on assessing the
similarities between a reference image and its non-geometri-
cally variational versions, such as decompressed and bright-
ness/contrast-enhanced versions. Different from the above, in
this paper, we emphasize the “similarity” between two arbi-
trary images. In several applications, assessment of the simi-
larities between a reference image and its geometrically varia-
tional versions, such as translation, rotation, scaling, flipping,
and other deformations, is required. On the other hand, one
could encounter appearance variabilities of images, including
background clutter, different viewpoints, and different orienta-
tions. Even if some advanced approaches, such as the structural
similarity (SSIM) index and visual information fidelity (VIF)
[1], [2], can tolerate slightly geometric variations, their goals
still do not devote to the consideration of more comprehensive
image variations.

In this paper, motivated by the concept addressed in Sheikh
and Bovik’s scheme [2], we interpret the image similarity
assessment problem as an information fidelity problem. More
specifically, we attempt to quantify the information that is
present in a reference image and how much of this information
can be extracted from a test image to assess the similarity
between the two images. The core of the proposed approach,
significantly different from that used in [2], can be addressed
as follows. In [2], image information is quantified using HVS,
NSS, and an image distortion model, while we propose a fea-
ture-based approach to quantify the information present in an
image, based on robust image feature extraction. That is, we de-
tect the feature points of an image, followed by describing each
feature point using a descriptor. Then, we propose to represent
all of the descriptors of an image via sparse representation and
assess the similarity between two images via sparse coding
technique. The merit is that a feature descriptor is sparsely
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represented in terms of a dictionary or transferred as a linear
combination of dictionary atoms, so as to achieve efficient
feature representation and robust image similarity assessment.
In this paper, the term “atom” means a typical pattern or basic
unit learned from a set of training data. A dictionary consisting
of several atoms can provide sparse representations of the data
as a linear combination of a few atoms.

In this paper, we adopt the SIFT feature1 [3] as the basis of
our feature-based image similarity assessment scheme. The rea-
sons, in terms of the robustness and applicabilities of SIFT, are
briefly described as follows. In the literature, SIFT is one of
the most pervasive and robust image features, and it has been
widely used in several multimedia applications, such as image
retrieval [4], [5], recognition [6]–[8], copy detection [8], [9],
and near-duplicate detection [10], [11]. In addition, in a recent
performance evaluation, the SIFT descriptor has been shown
to outperform other local descriptors [12]. Current SIFT-based
image retrieval approaches are usually based on building in-
dices for SIFT feature descriptors that are extracted from local
image regions. Then, the descriptors are quantized into visual
words defined in a pre-constructed vocabulary. Finally, image
retrieval can be achieved through a text retrieval technique [4].
Moreover, for SIFT-based image recognition, an efficient archi-
tecture, called a vocabulary tree, was proposed [5]. Based on
quantized SIFT feature descriptors, the support vector machine
(SVM) or nearest-neighbor (NN) techniques are usually used
for image recognition [7].

In this paper, we study sparse representation and matching
techniques of SIFT features for realizing our idea of quantifying
image information and similarity assessment between images.
We also show that the proposed feature-based sparse representa-
tion for image similarity assessment (FSRISA) technique can be
broadly applied to numerous multimedia applications through
proper problem formulations. In Sections I-A–E, we briefly re-
view the SIFT technique and explore the two aspects of the SIFT
feature, namely, representation and matching, followed by a pre-
sentation of the overview of the proposed scheme.

A. SIFT

SIFT [3] is a powerful technique extensively used in the
community of computer vision and pattern recognition to
detect and describe local features in images. Roughly speaking,
SIFT transforms an image into a large collection of descriptors
(feature vectors), each of which is invariant to image transla-
tion, scaling, and rotation, is partially invariant to illumination
changes, and is robust to local geometric distortion. The main
stages of SIFT include: 1) scale-space extrema detection; 2)
keypoint localization; 3) orientation assignment; and 4) key-
point descriptor generation.

B. Representation of SIFT Feature

To extract SIFT features from an image, keypoints are local-
ized first, based on scale-space extrema detection. Then, one or
more orientations, based on local image gradient directions, will
be assigned to each keypoint. Finally, a local image descriptor
is built for each keypoint, based on the image gradients in its

1Nevertheless, any feature descriptors can be used in the proposed framework.

local neighborhood. In the standard SIFT descriptor represen-
tation, each descriptor is a 128-dimensional feature vector [3].
Usually, hundreds to thousands of keypoints may be extracted
from an image.

To make the SIFT feature more compact, the bag-of-words
(BoW) representation approach quantizes SIFT descriptors via
vector quantization technique into a collection of visual words
based on a pre-defined codebook, such as visual vocabulary [4]
or vocabulary tree [5]. Also, advanced compression for SIFT
features has been investigated recently [13].

C. Matching of SIFT Feature

To evaluate the similarity between two images based on their
SIFT features, the most straightforward scheme is to perform
keypoint matching by treating each image as a set of keypoints
and conducting direct keypoint-set mapping [3]. The similarity
between the two images is based on the number of matched
keypoints, between the two sets of keypoints.

Moreover, for the BoW representation-based approach
[4], the similarity between SIFT features can be measured
by matching their corresponding visual words via histogram
matching [14]. Typically, the computational complexity of the
direct keypoint matching approach is higher than that of the
BoW-based approach. Nevertheless, the outcomes of the direct
keypoint matching approach are usually more reliable than
those of the BoW-based approach suffered from quantization
loss [11].

D. Overview of the Proposed Scheme

In this paper, a scheme of feature-based sparse representation
for image similarity assessment (FSRISA) is proposed. SIFT is
adopted as the representative feature detector in our framework.
To compactly represent SIFT feature of an image, we propose
construction of the basis (dictionary), consisting of the proto-
type SIFT atoms via dictionary learning that forms the feature,
called “dictionary feature,” of the image. To assess the simi-
larity between two images based on their dictionary features,
we propose formulating the problem as a sparse representation
problem, where we perform sparse coding and calculate the
reconstruction error for each SIFT descriptor of a test image.
Then, based on a voting strategy, we can define a similarity value
(matching score) between the two images. We also apply our
FSRISA to three multimedia applications, including image copy
detection, retrieval, and recognition, by properly formulating
them to their corresponding sparse representation problems.

The major novelties and contributions of this paper include:
1) a feature-based image assessment approach is proposed to
quantify how much information present in a reference image
can be extracted from a test image by integrating image feature
extraction and sparse representation; 2) the inherent discrimina-
tive characteristic of sparse representation is exploited to assess
the similarity between two images by performing sparse coding
with respect to the dictionary integrated from the two dictionary
features of the two images, respectively; 3) efficient feature rep-
resentation can be achieved by representing features in terms
of linear combination of dictionary atoms; and 4) the proposed
FSRISA provides a bounded similarity score, i.e., , for de-
tected features to quantify the similarity between two images.
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Fig. 1. Concept of the proposed FSRISA framework.

A bounded similarity score should be more suitable for users to
conjecture how similar two images are or for a vision system to
decide a threshold for image comparison. This metric should be
better than just using the number of matched keypoints which
may range from zero to thousands of keypoints.

E. Organization of This Paper

The rest of this paper is organized as follows. The proposed
FSRISA scheme is addressed in Section II. The applications of
FSRISA to image copy detection, retrieval, and recognition are
presented in Section III. The simulation results are shown in
Section IV, followed by the conclusion presented in Section V.

II. PROPOSED FEATURE-BASED SPARSE REPRESENTATION FOR

IMAGE SIMILARITY ASSESSMENT (FSRISA) METHODOLOGY

Sparse representation has resulted in significant impact on
computer vision and pattern recognition, usually in unconven-
tional applications where the goal is not just to obtain a com-
pact representation of the observed signal, but also to extract se-
mantic information. The selection of the dictionary plays a key
role to achieve this goal. That is, overcomplete dictionaries con-
sisting of (or learned from) the training samples provide the key
to attach semantic meaning to sparse signal representations [15].

In this paper, we utilize the sparse representation and
dictionary learning techniques to design our framework of
feature-based sparse representation for image similarity as-
sessment (FSRISA). As illustrated in Fig. 1, given a reference
image, we first apply standard SIFT to detect the keypoints and
extract the feature vector for each keypoint in this image. To
make the SIFT features more compact, we propose to learn
the dictionary consisting of the prototype SIFT atoms to form
the “dictionary feature” of the reference image, as described in
Section II-A. Similarly, we also extract the dictionary feature
for an input test image. Then, we calculate the similarity value
between the two images using the proposed FSRISA technique,
as described in Section II-B.

A. Dictionary Feature Extraction

Here, we apply the K-SVD dictionary learning algorithm [16]
to construct the dictionary for a set of SIFT feature vectors of an
image to form its dictionary feature. To learn an overcomplete
dictionary for a set of training signals, K-SVD seeks the dictio-
nary leading to the best possible representation of each signal in
this set with strict sparsity constraints. The K-SVD algorithm,
which generalizes the K-means algorithm, is an iterative scheme
alternating between sparse coding of the training signals with

respect to the current dictionary and an update process for the
dictionary atoms so as to better fit the training signals.

Given a set of SIFT feature vectors, ,
, we apply K-SVD to find the dictionary of size

, , by formulating the problem as

(1)

where is the sparse representation coefficients of ,
, -norm of , counts the number of nonzero coefficients

of , and is the most desired number of nonzero coefficients
of . We apply K-SVD to solve (1) via an iterative manner with
two stages: 1) sparse coding stage: apply orthogonal matching
pursuit (OMP) [17] to solve for each while fixing ; and
2) dictionary update stage: update together with the nonzero
coefficients of . The two stages are iteratively performed until
convergence. It should be noted that the -minimization formu-
lation in (1) can be converted into an -minimization problem
[18] and other dictionary learning algorithm, (e.g., the online
dictionary learning algorithm [18]) can be also applied in the
dictionary feature extraction stage.

The obtained dictionary feature is an overcomplete dic-
tionary, where , contains

prototype feature vector atoms as the column vectors in .
Each original feature vector , , can
be sparsely represented as a linear combination of the atoms de-
fined in , satisfying , where is an error
tolerance.

B. Sparse Representation-Based Image Similarity Assessment

After obtaining the dictionary feature for each image, we for-
mulate the image similarity assessment based on dictionary fea-
ture matching as a sparse representation problem, described as
follows.

First, consider the two SIFT feature (column) vectors with
length , , , and , ,
extracted, respectively, from the two images, and , where

and are the numbers of feature vectors of and ,
respectively. The dictionary features of and are (of size

) and (of size ), respectively, where
and . Hence, and , where

and are the two sparse coefficient (column) vectors with
length and , of and , respectively. Obviously, if

and can be matched, can be represented sparsely
and linearly with respect to . On the other hand, can be
represented sparsely and linearly with respect to .

To assess the similarity between a reference image and
a test image , exploiting the discriminative characteristic of
sparse representation, we want to quantify how much informa-
tion present in can be extracted from . A sparse represen-
tation problem for representing each SIFT feature vector of

with respect to the joint dictionary can be
defined as

(2)
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where with length is the sparse coefficient vector
of with length of . of size

is the joint dictionary concatenating and , and
is an error tolerance.

To solve the sparsest solution for , (2) can be cast to an
-minimization problem as [19]

(3)

where is a positive real number parameter. In this paper, we
apply an efficient sparse coding algorithm, called the sparse re-
construction by separable approximation (SpaRSA) algorithm
[20] to solve (3) in order to find the sparse representation
of with respect to the dictionary . SpaRSA is a very effi-
cient iterative algorithm, where each step is obtained by solving
an optimization subproblem involving a quadratic term with di-
agonal Hessian plus the original sparsity-inducing regularizer.
Of course, (3) can be directly solved via a greedy algorithm,
such as OMP [17] and other -minimization algorithms.

It is expected that the positions of nonzero coefficients in
(or the selected atoms from ) should be highly concentrated
on only one sub-dictionary (e.g., or ), and the remaining
coefficients in should be zeros or small enough. Also, it is
intuitive to expect that the atoms for sparsely representing
should be mostly selected from the sub-dictionary learned
from the feature vectors extracted from the image itself, in-
stead of . If the parameters for learning the two dictionaries
( and ) can be adequately tuned, the manner of atom selec-
tion in the sparse coding process may be changed accordingly.
That is, we intend to make the sparse coefficients (or the used
atoms) solved by performing sparse coding for more con-
sistent with our expectation to help for similarity assessment.
More specifically, we expect will use more atoms from
to represent it when and are visually different. On the other
hand, we expect will use more atoms from to represent
it when and are visually similar. The details are described
in the seventh paragraph of this subsection.

Based on the obtained solution of (3), we can calculate the
reconstruction error as . By letting the elements
in , corresponding to the atoms from , be zeros, we can get
the reconstruction error , using only the atoms from for
reconstructing . On the other hand, by letting the elements in

, corresponding to the atoms from , be zeros, we can get
the reconstruction error , using only the atoms from for
reconstructing . If , it is claimed that the atoms
from are more suitable for representing than those from

, and will get a vote. Otherwise, if , is more
suitable to be represented by the atoms from (the dictionary
learned from the feature vectors itself) than , and will
get a vote. Considering all the SIFT feature vectors of , ,

, the obtained percentage of votes from and
are denoted by and , , , respectively.

Based on the voting strategy, we define the similarity between
the two images, and , as

(4)

where the range of - is , which can be shifted
to , resulting in the defined in (4). Larger

indicates that more atoms from learned from
can well represent the feature vectors extracted from

. This implies that a considerable amount of information
(denoted by ) presented in can be extracted [via spare
coding by solving (3)] from . On the other hand, smaller

indicates most suitable atoms for representing
extracted from are from learned from itself. This im-
plies that less/no information presented in can be extracted
from . Hence, the larger the is, the more similar
the images and are.

Obviously, if is visually very different from , is larger
than . Nevertheless, if is visually similar to , will not
be larger than in all instances. That is, better (or similar) re-
construction performance for may be achieved using as
the dictionary than using due to some feature vectors ex-
tracted from being able to be matched by the feature vec-
tors extracted from . To achieve this goal, we propose three
rules for tuning the parameters used by K-SVD for learning the
two dictionaries, and : 1) the number of the atoms in
should be larger than that in ; 2) the number
of iterations K-SVD performs for learning should be larger
than that for learning ; and 3) the number of
the target sparsity , i.e., the number of nonzero coefficients
for representing each feature vector for learning , should be
larger than that for learning . According to
the rules designed above, when is visually similar to and

is finer than , the -minimizer for solving (3) may prefer
more promising atoms from than to reconstruct , re-
sulting in and larger . Otherwise, when
is visually different from , most atoms for reconstructing
will still be selected from , resulting in and smaller

. The proposed FSRISA technique is summarized in
Algorithm I and illustrated in Fig. 2.

The major goal of performing sparse coding with respect to
the dictionary consisting of and , instead of only , can
be addressed as follows. When (reference image) is visu-
ally different from (test image), and are significantly
different. In this scenario, the idea behind our FSRISA is some-
what related to that of sparse coding-based image classification
approach [15], [21] or sparse coding-based image decomposi-
tion approach [22]. We use the similar concept to quantify the
similarity between and , which may be interpreted as ei-
ther 1) classifying into or itself; or 2) decomposing

into the components of and/or those of itself. When
is visually similar to , and are similar, which is

enforced to that is finer than in FSRISA. Hence, the
above discussions are also valid in this scenario. Moreover,
why we do not perform sparse coding with respect to only one
dictionary can be explained as follows. When performing
sparse coding for the feature vectors of with respect to a
dictionary consisting of atoms which may be not suitable
for sparsely representing them, the sparse coding procedure
still attempts to minimize the reconstruction errors. Based on
our experience, it is usually not well distinguishable from re-
construction errors obtained with respect to either related or
unrelated dictionaries. On the other hand, it is not easy to de-
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Fig. 2. Illustrated example of the proposed FSRISA framework. (a) Extrac-
tion of dictionary features for the reference and test images, respectively. (b)
Matching of the two images via sparse coding and voting.

fine a bounded score based on reconstruction error obtained by
only one dictionary.

Algorithm I: Proposed FSRISA

Input: A reference image and a test image .

Output: The similarity value between and , i.e.,
.

1. Extract the SIFT feature vectors , , from
, followed by learning the dictionary feature sparsely

representing .

2. Extract the SIFT feature vectors , , from
, followed by learning the dictionary feature sparsely

representing .

3. Perform -minimization by solving (3) for ,
, with respect to .

4. Calculate the reconstruction errors, and , for ,
, with respect to and , respectively.

5. Perform voting by comparing and , for ,
, and get the percentages of votes, and ,

with respect to and , respectively.

6. Calculate (4).

C. Computational Complexity Analysis of FSRISA

The computational complexity of the proposed FSRISA can
be analyzed as follows. The computational complexity for ex-
tracting the dictionary feature of an image includes the com-
plexities of performing SIFT feature extraction and K-SVD dic-
tionary learning. For an image with -dimensional SIFT
feature vectors, the computational complexity for learning a dic-
tionary of size , , using K-SVD [16] can
be derived to be around [23]

(5)
where is the target sparsity and is the number of training
iterations. Hence, the approximate computational complexity of
the dictionary feature extraction for an image is obtained as

(6)

where roughly denotes the computational com-
plexity (proportional to ) of SIFT feature extraction, in terms
of the size of an image.

On the other hand, the computational complexity of per-
forming -minimization using SpaRSA can be approximately
derived as [20]

(7)

where is the number of atoms in a dictionary and is a con-
stant. It has been shown that the complexity of SpaRSA is ap-
proximately linear, i.e., is very close to 1.

Based on (6) and (7), the overall computational complexity
for assessing the similarity between two images, and , by
performing the proposed FSRISA can be derived as

(8)

where and denote the number of SIFT feature vectors
for and , respectively, and denote the target sparsi-
ties for learning and (the dictionary features of and

, respectively), respectively, and denote the number of
atoms in and , respectively, and denote the number
of iterations for learning and , respectively, and de-
notes the length of a SIFT feature vector .

III. FSRISA FOR MULTIMEDIA APPLICATIONS

In this section, we introduce three multimedia applications,
including image copy detection, retrieval, and recognition, of
the proposed FSRISA.

A. Image Copy Detection via FSRISA

Digital images distributed through the Internet may suffer
from several possible manipulations, such as (re)compres-
sion, noising, contrast/brightness adjusting, and geometrical
operations. To ensure trustworthiness, image copy detection
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techniques have emerged to search for duplicates and forg-
eries [24], [25]. Image copy detection can be achieved via
content-based copy detection approach, which measures the
similarity/distance between an original image and its possible
copy version through comparing their extracted image features,
where SIFT-based features have been recently investigated
[8], [9]. In this section, we study content-based image copy
detection by applying the proposed FSRISA approach.

A user can perform image copy detection to detect possible
copies of her/his original image from the Internet or an image
database. To detect whether a test image is actually a copy of
a query image with the dictionary feature of size ,
we first extract the SIFT feature vectors , ,
and learn the dictionary feature of size of , such
that is finer than . Then, we perform -minimization by
solving (3) for each with respect to , and
voting to get the percentages of votes, and , with respect
to and , respectively. Finally, based on (4), the similarity
between and can be calculated as . Given an
empirically determined threshold , if , then
can be determined as a copy version of . Otherwise, and

can be determined to be unrelated. The computational com-
plexity for performing the FSRISA-based image copy detection
can be also similarly analyzed via (8).

B. Image Retrieval via FSRISA

The most popular image retrieval approach is content-based
image retrieval (CBIR), where the most common technique is to
measure the similarity between two images by comparing their
extracted image features.

In the proposed scheme, for a query image, we extract its
dictionary feature (with atoms) and transmit it to an image
database, where each image is stored together with its dictio-
nary feature and original SIFT feature vectors. For comparing
the query image and each database image , ,
size_of_database, where size_of_database denotes the total
number of database images, we apply the proposed FSRISA
scheme to perform the -minimization (3) for each SIFT
feature vector of with respect to the dictionary consisting
of the dictionary features of the two images. Then, we calculate
the reconstruction errors of all the stored feature vectors of

and perform voting to get the similarity value between the
two images (4) to be the score of . Finally, we retrieve the
top database images with the largest scores. Similarly, the
computational complexity of comparing the two images can be
analyzed via (8), except that the complexity for extracting the
dictionary feature of each database image can be excluded due
to the fact that the process can be performed in advance during
database construction.

C. Image Recognition via FSRISA

Consider a well-classified image database, where each class
includes several images with the same object, but with different
variations. Given a query image, a user may enquire to which
class the image belongs. For image recognition, sparse repre-
sentation techniques have been extensively used [21], [28]. The
major idea is to exploit the fact that the sparsest representation
is naturally discriminative. Among all of the subsets of atoms in

a dictionary, it selects the subset that most compactly expresses
the input signal and rejects all of the others with less compact
representations. More specifically, image recognition/classifica-
tion can be achieved by representing the feature of the query
image as a linear combination of those training samples from
the same class in a dictionary. Moreover, the conclusions in
[21] claimed that their sparse representation-based face recog-
nition algorithm should be extended to less constrained condi-
tions (e.g., variations in object pose or misalignment). In order
not to incur such a constraint, both variability-invariant features
and sparse representation should be properly integrated. In ad-
dition, in [21], a dictionary consists of several subsets of image
features (down-sampled image pixels were used), where each
subset contains the features of several training images belonging
to the same class. Nevertheless, if the number of classes, the
number of training images in each class, or the feature dimen-
sion of a training image is too large, the dictionary size will be
very large. It will induce very high computational complexity
in performing sparse coding for the feature vector(s) of a query
image.

In this paper, we propose an image recognition approach,
where we assess the similarity between a query image and each
class of training images based on the proposed FSRISA. In the
training stage, for the th image class, , where
denotes the number of classes in an image database, we extract
the SIFT feature vectors for each image as the training samples.
Then, we apply K-SVD [16] to learn the dictionary of size

to be the “dictionary feature” of the th image class,
where denotes the length of a SIFT feature vector
and denotes the number of atoms of .

In the recognition stage, for a query image , we extract the
SIFT feature vectors , , where denotes
the number of SIFT feature vectors, and the dictionary feature

. Then, we apply FSRISA to assess the similarity between
and the th image class, , by performing the

-minimization [similar to (3)] to obtain the sparse representa-
tion coefficients for of , with respect to the dictio-
nary consisting of and . Then, we calculate the
reconstruction errors for with respect to and , re-
spectively, and perform voting for each . Based on (4), we
can calculate the similarity between and the th image class,
denoted by Sim( , Class-i). Finally, the query image can
be determined to belong to the th class with the largest Sim( ,
Class-i).

Moreover, the computational complexity for assessing the
similarity between the query image and the th class of
images can be also approximately analyzed based on (8), where
the dictionary feature extraction for the th class of images
can be performed in advance during database construction. In
our image recognition approach, the sparse coding procedure
should be performed for a query image and each image class,
which is indeed computationally expensive. The complexity
of our approach (slightly cheaper than or similar to that of
the two-stage approach proposed in [28]) can be improved
by applying more efficient sparse coding techniques, such as
multi-core OMP [18].

It is also worth noting that, if the feature size of a query image
is crucial for online applications, each SIFT feature vector
can be further compressed via compressive sensing [19].
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Fig. 3. Similarity values obtained from the PSNR, VIF, and our FSRISA between the Baboon image and its manipulated images. (a) JPEG compression ����� �
���	
 ���
�� � ����������� � ��	��. (b) Blurring ����� � �
��� ���
�� � ��
�������� � �����. (c) Brightness and contrast adjusting
����� � 
���� ���
�� � 
��	������� � ��	��. (d) Noising ����� � 

��� ���
�� � ���	������� � �����. (e) Scaling and cropping
����� � 
��
� ���
�� � ���
������� � �����. (f) Rotation ����� � 
���� ���
�� � ���
������� � �����. (g) Flipping ����� �

���� ���
�� � ���
������� � �����. (h) Shearing ����� � 
���� ���
�� � ����������� � ���
�. (i) Rippling ����� � 
���	 ���
�� �
����������� � �����. (j) Irrelevant image ����� � ��	� ���
�� � ���
������� � �����.

Then, can be also solved by performing the -minimization
based on the received measurements for (compressed ).

IV. SIMULATION RESULTS

In this section, we present simulations conducted on publicly
available benchmarks or datasets for evaluation of the proposed
FSRISA scheme in the fundamental issue of image assessment
and three multimedia applications. Then, we address some ex-
perimental comparisons between sparse coding-based and tradi-
tional approaches to demonstrate the advantage of the proposed
scheme.

A. Evaluation of FSRISA-Based Image Similarity Assessment

To evaluate the efficiency of FSRISA for assessing the sim-
ilarity between two images, we use several examples of image
manipulations (including signal processing and geometric dis-
tortions) defined in the Stirmark benchmarks [26] and com-
pare FSRISA of similarity range with well-known metrics,
PSNR of range , and VIF of range (for image con-
trast enhancement, VIF value may be larger than 1) [2]. In the
three evaluated metrics, the larger the value is, the more similar
the two evaluated images are.

In our simulation, the size of each image is 280 280. Never-
theless, it should be noted that our scheme can work for images
of different sizes. Based on the principle for tuning the KSVD
parameters described in Section II-B, we set the following pa-
rameters to ensure that is finer than . For a reference
image of size , the parameters are shown
as follows. We set the number of atoms in the dictionary fea-
ture to , where denotes the number of
SIFT feature vectors for , the number of iterations K-SVD
performs for learning to , and the target sparsity to

. For a test image of size , the
parameters are , , and . If

, we force by properly adjusting the factors
to be multiplied by and , respectively.

The similarity values obtained from the PSNR, VIF, and FS-
RISA for some examples of image manipulations for the Ba-
boon and Lena images, respectively, are shown in Figs. 3 and 4.
It can be observed from Figs. 3 and 4 that for image similarity
assessment, FSRISA is more robust to several image manipula-
tions, especially for geometrical manipulations. The similarity
values between an image and its related manipulated versions
for FSRISA are usually higher than 0.5, while the ones between
an image and unrelated versions are usually far lower than 0.5.
Nevertheless, the VIF value between an image and its manipu-
lated versions are usually lower than 0.5, except for the bright-
ness and contrast adjusting manipulation, which enhances the
image quality. For some manipulations (e.g., scaling, cropping,
and flipping), the VIF value is almost indistinguishable from
that for an unrelated image. Moreover, PSNR is obviously not
good for similarity assessment. Hence, the discriminability of
FSRISA is usually better than the other two metrics used for
comparisons. In this paper, we focus on “similarity” assessment
between images and hence, the similarity scores for different
kinds of manipulations are somewhat similar. The major goal is
also the “discriminability” between different images. Neverthe-
less, for the “quality” issue, the differences between a test image
and its reference image (ground truth) becomes more critical,
which is not the focus of this paper.

B. Evaluation of FSRISA-Based Image Copy Detection

To evaluate the proposed FSRISA-based image copy detec-
tion scheme, ten 280 280 images, Baboon, Boat, Clock, Girl,
House, Lena, Monarch, Pepper, Splash, and Tiffany, were used.
Each image was manipulated by 204 manipulations defined in
the Stirmark benchmarks [26]. These image manipulations are
also very similar to the ones used to evaluate image copy or
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Fig. 4. Similarity values obtained from the PSNR, VIF, and our FSRISA between the Lena image and its manipulated images. (a) JPEG compression ����� �
���	
 ���
�� � ����������� � ��
��. (b) Blurring ����� � ����
 ���
�� � ����������� � �����. (c) Brightness and contrast adjusting
����� � ����� ���
�� � ����������� � ���
�. (d) Noising ����� � ����� ���
�� � ���	������� � �����. (e) Scaling and cropping
����� � ���
� ���
�� � ����������� � ���
�. (f) Rotation ����� � ����� ���
�� � ����������� � ��

�. (g) Flipping ����� �
���	� ���
�� � ����������� � �����. (h) Shearing ����� � �	��� ���
�� � ���
������� � ���
�. (i) Rippling ����� � ����	 ���
�� �
���
������� � �����. (j) Irrelevant image ����� � ���� ���
�� � ����������� � �����.

Fig. 5. Comparison of ROC curves obtained using the proposed FSRISA-based
image copy detection scheme and the “feature points hash” scheme [25].

near-duplicate detection in [9], [10], [24], and [25]. We treat
each of the ten images as a query image and its 204 manipulated
versions as the test images. The parameter settings for applying
FSRISA to each query image and each test image are the same
as those settings for the reference image and test image, respec-
tively, used in Section IV-A.

To evaluate the true positive rate (TPR), the proposed scheme
was conducted between each original image and its 204 manip-
ulated versions. To evaluate the false positive rate (FPR), the
proposed scheme was conducted for each original image and
the 204 manipulated versions of each of the other nine images.
The receiver operating characteristic (ROC) curves (TPR-FPR

Fig. 6. Probability distributions of the FSRISA similarity values between the
Lena image and its 204 manipulated versions and those between the Lena image
and the 204 manipulated versions of each of the other nine test images.

curve) obtained from the proposed scheme by adjusting the
threshold , and the “feature points hash” scheme [25] with
public source code available for the ten images are shown in
Fig. 5. It can be observed from Fig. 5 that the performance of the
proposed FSRISA-based scheme can significantly outperform
that of the “feature points hash” scheme.

On the other hand, we also give an example for demonstrating
the discrimination of our FSRISA. In Fig. 6, the probability dis-
tributions of the FSRISA similarity values between the Lena
image and its 204 manipulated versions, and those between the
Lena image and the 204 manipulated versions of each of the
other nine images, are displayed. It can be observed from Fig. 6
that our FSRISA can indeed discriminate between related and
unrelated images.
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It is particularly worth considering the flipping manipulation.
Standard SIFT keypoint matching [3] can only match a few key-
points due to the orientations of the corresponding feature vec-
tors being switched to the opposite (e.g., only six pairs of key-
point can be correctly matched for the Lena image). Neverthe-
less, even if the proposed FSRISA is based on SIFT, FSRISA
can usually provide a reasonable similarity score between an
image and its flipped version, as examples shown in Figs. 3 and
4. That is, each feature vector of a flipped image and the corre-
sponding vector of its original (unflipped) version usually only
have different signs (with the same magnitudes). Let us consider
a dictionary integrated from the two dictionary features of the
two images, respectively. When performing sparse coding for
each feature vector of the flipped image with respect to the dic-
tionary, most of the feature vectors of the image can be still well
sparsely and linearly represented by the dictionary feature of its
original version.

C. Evaluation of FSRISA-Based Image Retrieval

To evaluate the proposed FSRISA-based image retrieval
scheme, we construct an image database consisting of the ten
test images together with their respective 204 manipulations
used in Section IV-B (total 2050 images), and the Corel-1000
image dataset [27] (total 1000 images from ten classes), re-
sulting in a total of 3050 images. The parameter settings for
applying our FSRISA to each query image and each database
image are the same as those settings for reference image and
test image, respectively, used in Section IV-A. In this subsec-
tion, we conduct two kinds of experiments, including “copy
image retrieval” and “general image retrieval.”

In this paper, we just consider the simplest scenario for
image retrieval, where the score between a query image and
each database image is individually calculated using the pro-
posed FSRISA. Then, we retrieve the top images with the
largest scores, where is the desired number of retrieved
images. Here, we neither consider performing any indexing
or clustering techniques to re-organize an image database nor
integrating multiple features for efficient image retrieval.

The main reasons for constructing this database and con-
ducting such two kinds of experiments to evaluate our scheme
can be described as follows. We focus on investigating sparse
representation of SIFT features and finding its usefulness in
image retrieval application. Hence, the database includes sev-
eral images and their variations for “copy image retrieval” eval-
uation (similar to the test dataset collected in [9] and [10]). On
the other hand, without integrating multiple features, we just
want to test some “pure” query images (without overly com-
plex scenes or with a clear background) to retrieve the images
with the same semantic meaning, with different appearance for
“general image retrieval” evaluation.

For “copy image retrieval,” we use the ten original images as
the query images and evaluate the precision rates for retrieving
the top 205 database images with the largest scores for each
query image, as shown in Table I, where the average precision
is 99.01%. Such simulation settings are similar to the ones used
for near-duplicate image retrieval performed in [10]. It can be
observed from Table I that FSRISA is efficient for retrieving the
copy versions of a query image.

TABLE I
PRECISION RATES FOR RETRIEVING THE TOP 205 DATABASE

IMAGES WITH THE LARGEST SCORES FOR EACH QUERY IMAGE

TABLE II
AVERAGE PRECISION RATES OF THE “DINOSAURS” QUERY IMAGES FOR

RETRIEVING THE TOP 10, 20, AND 40 IMAGES FROM THE COREL-1000 DATASET

Fig. 7. Retrieved top ten images. (a) Query image and the retrieved 1st image
and (b)-(j) the retrieved 2nd through 10th images.

Fig. 8. Probability distributions of the FSRISA similarity values between a se-
lected “Dinosaurs” image and the 100 images in the same class, and those be-
tween the image and the other 900 images in Corel-1000 dataset.

For “general image retrieval,” we randomly select ten im-
ages from the “Dinosaurs” class of the Corel-1000 image dataset
and evaluate the average precision for retrieving the top 10, 20,
and 40 images, respectively, with the largest scores from the
dataset. We compare the results with the best ones reported in
[29] (denoted by “visually significant point feature”), as shown
in Table II. Some retrieved images for a query image are il-
lustrated in Fig. 7. Moreover, the probability distributions of
the FSRISA similarity values between a selected “Dinosaurs”
image and the 100 images in the same class, and those be-
tween the image and the other 900 images in Corel-1000 dataset,
are displayed in Fig. 8. It can be observed from Table II and
Figs. 7 and 8, for images without overly complex scenes, FS-
RISA can be still efficient for retrieving images with similar se-
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mantic meanings. It should be noted that the FSRISA values
between an image and its related images, shown in Fig. 8, are
smaller than those shown in Fig. 6. This is because, in Fig. 8, FS-
RISA is used to assess the similarities between a query image
and the images with the same semantic meaning, but different
appearances in the same class, instead of the manipulated ver-
sions of the query image.

D. Evaluation of FSRISA-Based Image Recognition

To evaluate the proposed FSRISA-based image recogni-
tion scheme, we used the COIL-20 [30] and COIL-100 [31]
datasets. We followed the setup for simulations provided in
[32], where randomly selected 36 images from each class were
used for training samples and the remaining 36 images were
used for testing. We repeated the simulations for ten times with
different randomly selected training images and averaged the
recognition rate obtained from each run. We also evaluated
our scheme by using the Caltech-101 dataset consisting of 101
image categories with high shape variability [33]. We followed
the common setup to randomly select 5, 15, and 30 training
images per category, respectively, and test on the rest images.
We repeated the simulations for ten times with different ran-
domly selected training images and averaged the recognition
rate obtained from each run. It should be noted that similar
to our image retrieval application, using only single feature
(SIFT-based feature) may not work very well for recognizing
objects with overly complex background. Hence, we only
employed the three above-mentioned datasets to investigate
sparse representation of SIFT features and find its usefulness in
image recognition application.

The parameter settings for applying FSRISA to each query
image and each image class are the same as those settings
for the reference image and test image, respectively, used in
Section IV-A. That is, we set the parameters , , ,

, , and based on the settings for , , , , ,
and , respectively, used in Section IV-A, where and
are replaced by and , respectively ( denotes the
number of SIFT feature vectors for the class ).

The number of SIFT feature vectors extracted from an image
in the COIL-20/100 dataset is usually small, and hence, is
not large. When applying our scheme to the Caltech-101 dataset,
we adopted the online dictionary learning algorithm to learn a
dictionary [18] and the implementation of OMP provided in [18]
to perform sparse coding, which are both highly efficient multi-
core implementations.

For testing the COIL-20 dataset, the recognition rates ob-
tained using FSRISA, the best ones reported in [34] (denoted
by “neighborhood-preserving projections”) and [35] (denoted
by “invariant moment”), respectively, are shown in Table III
for comparison. For testing the COIL-100 dataset, the recog-
nition rates obtained using FSRISA, the best ones reported in
[36] (denoted by “distributed sparse representation”), [32] (de-
noted by “SVM-based”), and [37] (denoted by “bipartite graph
matching”), respectively, are shown in Table IV for comparison.
For testing the Caltech-101 dataset, the recognition rates ob-
tained using FSRISA, the results reported in [38] (denoted by
“SVM-KNN”), [39] (denoted by NBNN), and [7] (denoted by
ScSPM), are shown in Table V for comparison. It can be ob-
served from Tables III–V that the performances obtained using

TABLE III
RECOGNITION RATES FOR EVALUATING COIL-20 DATASET

TABLE IV
RECOGNITION RATES FOR EVALUATING COIL-100 DATASET

TABLE V
RECOGNITION RATES FOR EVALUATING CALTECH-101 DATASET

the proposed FSRISA can outperform or be comparable to those
of the schemes used for comparisons.

E. Experimental Comparisons Between Sparse Coding-Based
and Traditional Approaches

In this subsection, we experimentally demonstrate the advan-
tage from sparse coding techniques by evaluating the following
two kinds of comparisons. First, to evaluate the impact of sparse
coding-based feature representation strategy, we compare two
kinds of approaches denoted by: 1) “BoW-Traditional:”
BoW-based feature ;
and 2) “Sparse-Traditional:” sparse coding-based feature

, as follows. A clas-
sical example of “BoW-Traditional” approach realized by using
BoW and SVM can be found in [6], where the best recognition
rate (53.90%) for the Caltech-101 dataset was reported. A
good example of “Sparse-Traditional” approach realized by
using sparse coding and SVM can be found in [7], where the
reported best recognition rate (73.20%) for the same dataset
can significantly outperform the one reported in [6].

Second, to evaluate the impact of sparse coding-based
matching strategy, we compare two kinds of approaches de-
noted by: 1) “Sparse-Traditional;” and 2) “Proposed:” sparse
coding-based feature coding-based
matching. Based on Table V, “Proposed” approach can
slightly outperform “Sparse-Traditional” approach (denoted by
“ScSPM” [7]). Another example for “Sparse-Traditional” also
realized by using sparse coding and SVM for testing COIL-100
dataset can be found in [36]. Based on Table IV, “Proposed” ap-
proach can slightly outperform “Sparse-Traditional” approach
(denoted by “Distributed sparse representation” [36]). Even if
the improvement of the proposed scheme seems to be limited,
a unique characteristic of our scheme is to define a similarity
assessment metric, which can be widely applicable in several
multimedia applications.
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V. CONCLUSIONS

In this paper, we have proposed a scheme of FSRISA. The
core is to propose a feature-based image similarity assessment
technique by exploring the two aspects of a feature detector in
terms of representation and matching in our FSRISA frame-
work. Then, we properly formulate the image copy detection, re-
trieval, and recognition problems as sparse representation prob-
lems and solve them based on our FSRISA. The future works
may focus on reducing the computational complexities for dic-
tionary feature extraction and image matching by performing
sparse coding, which can be further reduced via novel tech-
niques, such as the online dictionary learning algorithm [18], ef-
ficient greedy algorithm [18], or fast -minimization algorithm
[40]. On the other hand, for FSRISA-based image retrieval ap-
plications, further indexing techniques should be also studied.
The proposed FSRISA-based image copy detection scheme may
be extended to video copy detection by learning the “dictio-
nary feature” for each video sequence/clip. Moreover, incorpo-
rated with our secure SIFT techniques [41], [42], the three FS-
RISA-based applications can be performed in the encrypted do-
main and are suitable for privacy-preserving applications.
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