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Image Feature Extraction in Encrypted Domain
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Abstract— Privacy has received considerable attention but is
still largely ignored in the multimedia community. Consider a
cloud computing scenario where the server is resource-abundant,
and is capable of finishing the designated tasks. It is envisioned
that secure media applications with privacy preservation will be
treated seriously. In view of the fact that scale-invariant feature
transform (SIFT) has been widely adopted in various fields, this
paper is the first to target the importance of privacy-preserving
SIFT (PPSIFT) and to address the problem of secure SIFT
feature extraction and representation in the encrypted domain.
As all of the operations in SIFT must be moved to the encrypted
domain, we propose a privacy-preserving realization of the SIFT
method based on homomorphic encryption. We show through the
security analysis based on the discrete logarithm problem and
RSA that PPSIFT is secure against ciphertext only attack and
known plaintext attack. Experimental results obtained from dif-
ferent case studies demonstrate that the proposed homomorphic
encryption-based privacy-preserving SIFT performs comparably
to the original SIFT and that our method is useful in SIFT-based
privacy-preserving applications.

Index Terms— Feature extraction, homomorphic encryption,
privacy preserving, security, scale-invariant feature transform
(SIFT).

I. INTRODUCTION

IN THIS section, we introduce privacy-preserving query
in Sec. I-A, describe the importance of privacy-preserving

SIFT in Sec. I-B, and give the outline of this paper in Sec. I-C.

A. Privacy-Preserving Query

Recently, people have gotten used to accessing and querying
multimedia data on a server due to the increase of band-
width capacity over the Internet. In addition, if the remote
server has strong computation/storage capability with abundant
resources, the users can store their data on the server side
and exploit the computational power provided by the server
to execute their intended tasks. In this circumstance, the Web
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not only provides a passive search service but also is equipped
with a highly interactive mechanism. This scenario is analo-
gous to cloud computing and is of practical use for multimedia
data that demand immense computation and communication.
Under this kind of framework, the transmission of personal
data and permission of the server in accessing the stored data
pose the issue of privacy-preserving that is usually ignored in
the multimedia community.

Although encryption is a prevalent method of securing trans-
mitted data, the data in the encrypted form (i.e., ciphertext)
will impede operations that are usually conducted on the
plaintexts. In order to further process ciphertexts and obtain
the corresponding results in the plaintext domain, some studies
have been devoted to several aspects of encrypted domain
operations.

Only recently, secure text document search in the encrypted
domain [1], [2] has been extended to secure multime-
dia data search [3], [4]. While the aforementioned studies
have been done on content-based multimedia retrieval over
either encrypted query, or both encrypted query and data-
base, the prevailing scale-invariant feature transform (SIFT)
[5] conducted in the encrypted domain still has not been
addressed. In what follows, we will target the importance
of privacy-preserving SIFT (PPSIFT) and explore its broad
applications.

B. Importance of Privacy-Preserving SIFT and Our Contribu-
tions

SIFT [5] is an algorithm for detecting and describing local
features in images, and it has been widely used in the com-
munity of computer vision and pattern recognition due to its
powerful attack-resilient feature point detection mechanism. In
addition to maintaining the “robustness” of SIFT, in this paper,
we will explore a homomorphic encryption-based secure SIFT
methodology, called privacy-preserving SIFT (PPSIFT). In
PPSIFT, privacy-preserving feature extraction and representa-
tion addresses the issue of extracting and representing media
features in the encrypted domain while allowing exhibition
of inherent properties in the plaintext/un-encrypted domain.
Particularly, both the query and database are permitted to be
encrypted to guarantee privacy-preserving as a whole. This
core technology, enabling SIFT to simultaneously possess both
robustness and security, will find many applications, including
media retrieval [3], [6], [7], media authentication [8], face
identification [9], face recognition [10]–[13], fingerprint veri-
fication [14], and video-based mobile location search [15], for
the purpose of preserving privacy. More specifically, we have
the following observations from the aforementioned existing
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works: 1) privacy-preserving media retrieval [3], [16], and
privacy-preserving face recognition and identification [9], [10],
[12] have been studied; 2) the robustness of Roy and Sun’s
image authentication scheme [8] can be enhanced via a secure
SIFT strategy [17] in order not to be defeated; and 3) several
SIFT-based methods and applications [11], [13]–[15] poten-
tially need privacy protection if privacy leakage is a concern.

The contributions of this paper in realizing privacy-
preserving SIFT are summarized as follows. To the best of
our knowledge, this work is among the first endeavors on the
SIFT algorithm in the encrypted domain.

1) The Difference-of-Gaussian (DoG) transform must be
executed in the encrypted domain. We investigate how
DoG transform can be performed within the Paillier
cryptosystem [18], which is associated with an error
probability analysis. Our implementation of DoG in the
encrypted domain is analog to implementations of DCT
[19] and DWT [20] in the encrypted domain.

2) We present a homomorphic comparison strategy that
can be conducted in the encrypted domain so that local
extrema can be securely detected for SIFT feature point
extraction.

3) PPSIFT is able to achieve local extrema extraction,
descriptor calculation, and descriptor matching, all in
the encrypted domain, without multiple rounds of com-
munication between the user and server. On the contrary,
only one-round of pre-communication is necessary for
synchronization of data.

4) PPSIFT has been evaluated to find its superiority in
attaining both privacy and robustness under benchmark
attacks and datasets, when compared with the original
SIFT.

5) Security analysis via the discrete logarithm problem
and RSA is studied to show that PPSIFT is indeed
secure against ciphertext only attack and known plain-
text attack.

6) Our method can adapt to other feature detectors if the
underlying operations for feature extraction are restricted
to those considered in this paper. In fact, the operations
of homomorphic addition, plaintext multiplication, and
homomorphic comparison in the encrypted domain dis-
cussed here have already been covered in known feature
detectors, like Speeded Up Robust Features (SURF)
[21], Harris detector, and Hessian detector.

C. Organization of This Paper

The remainder of this paper is organized as follows. In
Sec. II, we define the problem we would like to solve. In
Sec. III, the operations on the encrypted domain are intro-
duced, along with presenting a cryptosystem that is appropriate
for the design of secure SIFT in a privacy-preserving manner.
In Sec. IV, the proposed privacy-preserving SIFT method is
described. In Sec. V, we provide formal security analysis for
the proposed method. Experiments, including case studies, are
presented to verify the usefulness of our method in Sec. VI.
Finally, conclusions and future work are given in Sec. VII.

Fig. 1. Nonsymmetric query-response model operating in an cloudlike
environment.

II. PROBLEM DEFINITION

For a multimedia query system with preservation of the
user’s privacy, a non-symmetric1 query scenario in a cloud,
an example of which is shown in Fig. 1, is considered in
this paper. In Fig. 1, the user with scarce resources can send
encrypted data as a query to the server, which possesses
abundant resources and powerful computational capability, and
can use the received encrypted data to finish the intended tasks
(e.g., feature extraction and matching). Since the user will rely
on the remote but capable server, (s)he simply encrypts the
data for the purpose of privacy and sends the encrypted data to
the server for storage in advance. For the scenario considered
in this paper, the server is assumed to be honest but curious.
Thus, the server must learn nothing about either the query sent
by the user or the results derived from the query in order to
satisfy the purpose of privacy preserving. In other words, the
server is powerful in finishing the requested tasks and sends
the encrypted outputs back into the user but cannot infer what
has been obtained from the information that can be available.
When the user receives the encrypted outputs, they can be
decrypted back to the plaintext domain. Although a query
model is employed to explain the problem to be solved in this
paper, our method can be broadly applied to other problems,
as later described in Sec. VI.

Motivated by earlier works [3], [9], [10], [12] where
privacy-preserving applications of media data have received
attention recently, in this paper, we shall take digital images
as the instance to describe the proposed homomorphic
encryption-based secure SIFT method conducted in a privacy-
preserving manner.

In our model, the user only prepares a homomorphically
encrypted copy of the query image as the encrypted input,
which then is sent to the server for subsequent processing.
The problem here is that the server is responsible for gener-
ating the SIFT features via the framework of homomorphic
encryption without knowing/learning anything to breach the
user’s privacy. More specifically, in order to finish SIFT in
the encrypted domain, in addition to common homomor-
phic addition and plaintext multiplication, we observe that
homomorphic comparison is also required. Nevertheless, the
extremely challenging issue, which is a major concern of

1Non-symmetric here means that the user is only responsible for feeding the
query and some parameters to the server but the server is capable of finishing
all of the tasks for the query.
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this paper, is how to accomplish comparative homomorphism
securely.

It should be noted that it is not suitable to employ the
framework of secure multiparty computation (SMC) [22] to
solve this problem since SMC may need several rounds of
interaction between the user and the server. In addition, the
multiple parties in SMC can be said to possess equivalent
capability. On the contrary, for the scenario (Fig. 1) considered
here, the user heavily relies on the capable and powerful
server to finish almost all tasks. It will be clear later that the
proposed method only needs one-round of pre-communication
for necessary synchronization of data when the query is
initiated. Based on the received query image in the form of
ciphertexts, the server carries out DoG transform, SIFT feature
point extraction, feature descriptor extraction, and descriptor
matching to accomplish the designated tasks in the encrypted
domain and sends the encrypted outputs to the user, who will
finally get the results in the plaintext domain via decryption.

III. OPERATIONS IN THE ENCRYPTED DOMAIN

In this section, we will first briefly review our previous
work [17] that proposes a method of detecting SIFT features
from encrypted images. Then, we will introduce the Paillier
cryptosystem2 [18], which enables one to directly operate in
the ciphertext domain but can obtain the equivalent results in
the plaintext domain. The goal of this section is to provide
some preliminaries that motivate the study of this paper and
to make this paper self-contained.

A. SIFT in an Encrypted Domain

In [17], we present two anti-SIFT attacks that can efficiently
remove the feature points retrieved by conventional SIFT [5].
The idea comes from the observation that a pixel is decided
as a SIFT keypoint if and only if it is a local extremum
in the scale space defined by Difference-of-Gaussian (DoG)
functions. As a result, an original keypoint will not be detected
by SIFT if another extremum is maliciously generated nearby.
In other words, there can be at least two equal extrema in a
detection region such that the duplicate extremum is forced to
be at one of the eight neighbors of the true one in the scale
space to evade keypoint detection.

In order to tackle this problem, we present a secret key-
based transformation process, which is performed on images
before SIFT feature detection, such that the dominant features
become recessive. This implies that the detection of SIFT
features will be conducted in the transformed (or encrypted)
domain instead of the original spatial domain, and the goal
of secure SIFT can be achieved. Such a secret key-based
transformation can be linear or non-linear. The proposed
strategy is simple and composed of two steps: bit reversing
and local encryption. Basically, the bit reversing step is to
make SIFT detection fail and become erroneous while local
encryption aims to secure SIFT detection.

2Nevertheless, it should be noted that our method does not tie to only
one cryptosystem since any cryptosystems that possess at least additive
homomorphism can meet our need.

Nevertheless, as we mentioned in [17], a more sophisticated
design regarding secure SIFT is possible. In this paper, we
shall address this issue so that the performance of the proposed
method can be validated in a cryptographically secure manner.

B. Paillier Cryptosystem

In order to execute SIFT in a ciphertext domain and
still obtain results equivalent to those generated in the cor-
responding plaintext domain, the prerequisite is to seek a
cryptosystem that can provide the required operations, such
as addition and multiplication. In the original SIFT, in addi-
tion to common additive and multiplicative operations, the
comparison operation is a must for finishing feature point
detection. Nevertheless, the design of a cryptosystem that
can possess homomorphic comparison is still a challenging
issue. Therefore, our goals are to seek a cryptosystem that can
provide homomorphic addition and multiplication of plaintexts
and to develop a new approach to achieve homomorphic
comparison3.

To achieve operations in the ciphertext domain and obtain
results equivalent to those in the plaintext domain, homomor-
phic encryption [23] (and the references therein) has been
widely investigated. We chose the Paillier cryptosystem [18] as
the platform for designing our secure SIFT method because it
provides additive homomorphism and plaintext multiplication,
achieves provable security based on modular arithmetic, and
is computationally comparable to RSA.

The operations of the Paillier cryptosystem are briefly
described as follows. First, a pair of private and public
keys are set. Let p and q be two large primes, and let
N = pq . Let Z N2 = {0, 1, . . . , N2 − 1} and Z∗

N2 ⊂ Z N2

denote the set of non-negative integers that have multiplicative
inverses modulo N2. We also select g ∈ Z∗

N2 to satisfy
gcd(L(gλ mod N2), N) = 1, where λ defined as λ =
lcm(p − 1, q − 1) is the private key. The pair of N and g
defines the public keys.

Second, the encryption phase is operated as follows. Let
the message to be encrypted be denoted as m ∈ Z N , which
satisfies m < N . The ciphertext (corresponding to m) ∈ Z N2

is derived as:

c = E(m, r) = gmr N mod N2 (1)

where r ∈ Z∗
N ⊂ {0, 1, . . . , N − 1} denotes the uniformly

chosen key and integer numbers modulo is employed. Since
r is not fixed, the Paillier cryptosystem satisfies so-called
“semantic security,” which states that, for the same plaintext,
different ciphertexts can be generated if r is changeable.

Third, for decrypting the ciphertext c, we use the private
key λ and obtain the plaintext m as:

m = D(c, λ) = L(cλ mod N2)

L(gλ mod N2)
mod N, (2)

where L(u) = u−1
N .

3It should be noted that homomorphic comparison for SIFT feature detection
needs to be accomplished alone on one party (e.g., the server side of Fig. 1).
Therefore, secure multiparty computation (SMC) [22] does not meet the goal
of our paper.
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Fig. 2. Framework of our privacy-preserving SIFT-based method and
applications.

The Paillier cryptosystem is said to be homomorphically
additive because:

c1 × c2 = E(m1, r1) × E(m2, r2)

= g(m1+m2)(r1r2)
N mod N2. (3)

After decrypting the above result by D(E(m1, r1) ×
E(m2, r2), λ), we can get the plaintext m1 + m2, which
is generated by executing multiplication in the ciphertext
domain, as indicated in Eq. (3). Another form equivalent to
Eq. (3) is expressed as:

c1 × gm2 = E(m1, r1) × gm2

= g(m1+m2)(r1)
N mod N2 (4)

which can also be decrypted to get m1 + m2.
The Paillier cryptosystem provides plaintext multiplication

based on additive homomorphism because:

D([E(m1, r1)]m2 mod N2) = (m1 × m2) mod N. (5)

The plaintext m1 × m2 is equivalent to being generated
by executing an exponentiation operation in the ciphertext
domain.

The proposed PPSIFT is based on the Paillier cryptosystem,
which needs to perform modular exponentiations of large
numbers, and incurs a higher computational complexity (quan-
tified by the number of modular multiplications). Strategies of
speeding up modular exponentiation operation can be found in
[24], [25], but they are not germane to the scope of the paper.

IV. PPSIFT: SECURE SIFT IN HOMOMORPHIC

ENCRYPTED DOMAIN

In this section, we describe the proposed privacy-preserving
SIFT (PPSIFT) method that is conducted in the Paillier
cryptosystem. It should be noted that it is not straightfor-
ward at all to simply incorporate both SIFT and the Paillier
cryptosystem directly. On the contrary, certain modifications,
which are described in this section, must be introduced. Fig. 2
illustrates a framework of proposed privacy-preserving SIFT-
based method and applications.

A. Difference of Gaussian in the Encrypted Domain

The first step of the SIFT framework for extracting the
feature points is to execute Difference-of-Gaussian transforms.

For this, the image is convolved with Gaussian filters, which
are assigned different variances ρi ’s (corresponding to scales),
and the differences between two neighboring Gaussian-blurred
images are taken. Feature points are then chosen as local
extrema of the DoG images, which occur at multiple scales.
Specifically, a DoG image DoG Img generated at two neigh-
boring scales ρi and ρ j is defined as:

DoG Img(x, y, ρi j ) = ConvG(x, y, ρi ) − ConvG(x, y, ρ j )
(6)

where X and Y are, respectively, the horizontal and vertical
sizes of the original image, I , 1 ≤ x ≤ X and 1 ≤ y ≤ Y ,
and ConvG denotes the convolution of the image with the
Gaussian kernel G at the i -th scale, i.e.,

ConvG(x, y, ρi ) = G(u, v, ρi ) ∗ I (x, y)

= �u,v G(u, v, ρi )I (x − u, y − v) ∀ x and y (7)

where ∗ denotes a convolution operation.
To preserve the users’ privacy, the image I is encrypted

using homomorphic encryption, as described in the previous
section. The resultant encrypted data are expressed as:

Ie(x, y) = E(I (x, y), r) = gI (x,y)r N mod N2 ∀ x and y,
(8)

where E() denotes the Paillier cryptosystem, as indicated in
Eq. (1), and r is the uniformly chosen key. For practical
implementation, the original Gaussian filter coefficients are
adjusted as integers because the Paillier cryptosystem can only
operate in the integer domain. For this, the integer DoG filter,
G Di f f (u, v, ρi j ), is derived as:

G Di f f (u, v, ρi j ) = �s(G(u, v, ρi )−G(u, v, ρ j ))� ∀ u and v,
(9)

where �·� is a rounding function and s is a scaling factor used
to enlarge Gaussian filter coefficients, G()’s, which are usually
smaller than 1. It is worth noting that the proposed PPSIFT in
this paper only introduces errors due to the rounding operation
in Eq. (9). For the sake of notation simplification, we will
simply use ρ in place of ρi j in the following if there is no
confusion. Furthermore, when Gaussian kernel G() is involved
in the following discussion, its support will also be omitted.

By convolving the image to be encrypted with the DoG
filters in the encrypted domain, the resultant encrypted image
in the DoG domain can be derived for 1 ≤ x ≤ X and 1 ≤
y ≤ Y as:

DoG Imge(x, y, ρ) = E(G Di f f (x, y, ρ) ∗ I (x, y), r),

= E

(∑
u,v

G Di f f (u, v, ρ)I (x − u, y − v), r

)

=
∏
u,v

E(I (x − u, y − v), r)G Di f f (u,v,ρ) mod N2, (10)

where the last line is derived according to homomorphic
addition and plaintext multiplication of the Paillier cryptosys-
tem, respectively, shown in Eq. (3) and Eq. (5). Note that
DoG Imge(x, y, ρ) is also interpreted as the encrypted differ-
ence between two Gaussian-blurred images at two neighboring
scales. Furthermore, as mentioned in Eq. (9), a constant s
is employed to enlarge the Gaussian filter coefficients and
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obtain G Di f f (u, v, ρ). Now, it is clear that s cannot be
too large since this will make the computational complexity
of Eq. (10) intractable. On the other hand, if s is small
enough, then G Di f f (u, v, ρ) may still be truncated to zero,
leading to severe performance degradation. In order to properly
achieve the tradeoff between performance and computational
complexity, an error probability model is theoretically derived
in Appendix, experimentally verified in Sec. VI-A, and is used
as the guideline to determine a proper s. Basically, our results
show that if the error probability of deleting an original feature
point or extra generating a new feature point would like to be
as low as 10−6, then s should be set to 224.

B. PPSIFT Feature Point Detection: Local Extrema Extraction
via Encrypted Data Comparison

The most challenging task of PPSIFT is the local
extrema extraction operating in the encrypted domain. As
we introduced in Sec. III-B, the Paillier cryptosystem
only provides additive homomorphism. Nevertheless, SIFT
feature detection still needs homomorphic comparison. In
this section, we investigate a homomorphic comparison
strategy in the Paillier cryptosystem for encrypted data
comparison.

In the Paillier cryptosystem, the uniformly chosen key r in
Eq. (1) must be variable to satisfy semantic security. Under this
circumstance, given the plaintext mi , the resultant ciphertexts
ci ’s will be different according to the used user keys ri ’s,
leading to one-to-many mapping.

In the two-dimensional case, like the images considered
here, the uniformly chosen key rx,y , dependent on the location
of a pixel, is used. Hence, a DoG image in the encrypted
domain using different rx,y’s can be derived as:

DoG Imge(x, y, ρ) = E(G Di f f (x, y, ρ) ∗ I (x, y), rx,y),

= E

(∑
u,v

G Di f f (x, y, ρ)I (x − u, y − v), rx−u,y−v

)

=
∏
u,v

E(I (x − u, y − v), rx−u,y−v )
G Di f f (u,v,ρ) mod N2.

(11)

It can be observed that Eq. (11) is generated using homomor-
phic addition and plaintext multiplication. Substituting Eq. (1)
into Eq. (11), we have:

DoG Imge(x, y, ρ)

=
∏
u,v

E(I (x − u, y − v), rx−u,y−v )
G Di f f (u,v,ρ) mod N2

=
∏
u,v

gI (x−u,y−v)G Di f f (u,v,ρ)r
NG Di f f (u,v,ρ)
x−u,y−v mod N2

= g
∑

u,v I (x−u,y−v)G Di f f (u,v,ρ)

(∏
u,v

r
G Di f f (u,v,ρ)
x−u,y−v

)N

mod N2

= E

(∑
u,v

I (x − u, y − v)G Di f f (u, v, ρ),
∏
u,v

r
G Di f f (u,v,ρ)
x−u,y−v

)

= E(DoG Img(x, y, ρ), Rρ), (12)

where a pixel DoG Img(x, y, ρ) is encrypted using a com-
bined uniformly chosen key Rρ , which is expressed as

Rρ =
∏
u,v

r
G Di f f (u,v,ρ)
x−u,y−v (13)

which is a function of the uniformly chosen key rx,y that
is dependent on a pixel’s location (x, y). Since the Gaussian
kernel G() is involved in the calculation of Rρ , we know that
Rρ depends on the support of G() instead of the image size,
as we have mentioned in Sec. IV-A.

Comparing Eq. (11) and Eq. (12), we know that the result
obtained from the scenario that the user provides encrypted
data E(I (x, y), rx,y) to the server for executing DoG in the
ciphertext domain is equivalent to that obtained from directly
encrypting DoG image using Rρ at the scale ρ. Similarly, a
unique characteristic is that the server does not have access to
rx,y’s and their combined one Rρ .

1) Homomorphic Comparison: Due to the use of different
r ’s, the resultant ciphertexts, as indicated in Eq. (12), will fall
into the range between 0 and N2−1. We propose quantization-
like homomorphic comparison of ciphertexts to equivalently
achieve local extrema extraction in the plaintext domain. In
our method, a series of thresholds in the ciphertext domain,
which will divide the ciphertext domain located between 0 and
N2 − 1 into several (non-uniform) quantization intervals, are
designed.

For this, the user will generate a series of thresholds Ti ’s in
the plaintext domain, where Ti ∈ Z N , and these thresholds
will be encrypted and sent to the remote server for the
purpose of homomorphic comparison. Since comparison will
be conducted in the encrypted domain, these thresholds are
encrypted via Paillier encryption using Rρ at scale ρ as:

T e
i,ρ = E(Ti , Rρ) = gTi RN

ρ mod N2, (14)

where T e
i,ρ ∈ Z N2 . Note that Rρ is employed by users to

encrypt Ti ’s because the ciphertexts used for homomorphic
comparisons are also encrypted using Rρ , as indicated in
Eq. (12).

In the proposed method, in addition to the encrypted query
data, the additional data needed to be sent to server for subse-
quent privacy-preserving processing are the secure thresholds
T e

i,ρ ’s and their order. Note that the calculation of Rρ needs
G Di f f (u, v, ρ), which will be sent from the server to the user.
Such pre-computation will only be executed once during the
course of the query system when a user initiates his/her query
task. Fig. 3 illustrates the transmission of parameters between
the user and server. Nevertheless, we also note that some
homomorphic comparison algorithms, like [26], employ the
framework of secure multiparty computation and need a few
rounds of communication.

Now, the strategy for comparison between two elements
in DoG Imge in the encrypted domain will be described
as follows. Basically, the principle is to compare two
encrypted data according to their locations in the inter-
vals separated by the thresholds T e

i,ρ ’s. The homomorphic
addition property, as indicated in Eq. (4), is exploited.
Given two ciphertexts, E(DoG Img(x1, y1, ρ1), Rρ1) and
E(DoG Img(x2, y2, ρ2), Rρ2), the goal is to compare them
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Fig. 3. Parameter communication between the user and server.

in the encrypted domain and finally find their magnitude
relationship in the plaintext. This goal can be accomplished
by identifying which quantization intervals the two ciphertexts
fall into via Paillier homomorphic addition as:

ak = argminI nc︸ ︷︷ ︸
∀ i

(E(DoG Img(xk, yk, ρ), Rρ)gI nc

−E(Ti , Rρ)) (15)

where k = 1, 2. In Eq. (15), gI nc appears for additive homo-
morphism but, in fact, should be E(Inc, 1) = gI ncr N mod N2

with r = 1 in order not to change the combined uniformly
chosen key, as indicated in Eqs. (3) and (4).

Mathematically, Eq. (15) implies that the plaintext
DoG Img(xk, yk, ρ) is incrementally increased by Inc in the
plaintext domain until it is finally increased to be equal to
the nearest threshold Ti , which corresponds to E(Ti , Rρ)
in the ciphertext domain for certain i . Here, the increment
Inc is set to 1. By doing so, once two different thresh-
olds E(Tak , Rρk )’s are found, in this case for k = 1, 2,
the server can easily determine the magnitude relationship
between the two ciphertexts, E(DoG Img(x1, y1, ρ1), Rρ1)
and E(DoG Img(x2, y2, ρ2), Rρ2 ), since it receives the order
of encrypted thresholds sent from the user. This case is
illustrated in Fig. 4(a).

On the other hand, if Ta1 = Ta2 is found, then the
magnitude relationship between the two ciphertexts,
E(DoG Img(x1, y1, ρ1), Rρ1) and E(DoG Img(x2, y2, ρ2),
Rρ2), can still be determined by checking the magnitude
relationship between a1 and a2. For example, as illustrated
in Fig 4(b), if a1 > a2, then E(DoG Img(x1, y1, ρ1), Rρ1) <
E(DoG Img(x2, y2, ρ2), Rρ2) since E(DoG Img(x1, y1, ρ1),
Rρ1) is more distant from T e

i,ρ for certain i .
Thus, according to this proposed homomorphic comparison

strategy, the SIFT feature detection conventionally done in the
plaintext domain can now be finished in the ciphertext domain
without revealing the original image data. Nothing can be
learned from the proposed homomorphic comparison strategy
since all the operations are performed under the homomorphic
addition of the Paillier cryptosystem. The security of our
proposed homomorphic comparison scheme will be formally
analyzed in Sec. V.

Fig. 5 illustrates a result of SIFT feature point extrac-
tion in the plaintext and ciphertext domains, respectively.
In the remainder of this paper, all encrypted images are
illustrated with the encrypted pixel value being normalized

(a)

(b)

Fig. 4. Illustration of the proposed homomorphic comparison. (a) Two
ciphertexts located at different intervals. (b) Two ciphertexts located at the
same interval.

)b()a(

(c) (d)

Fig. 5. (a) and (c) Detection of SIFT features in the plaintext domain. (b)
and (d) Ciphertext domain. (Best viewed on a color display).

within [0, 255]. Each circle represents the region where a
feature point resides. Large/small circles correspond to the
SIFT feature points detected at the coarse/fine scales. To show
the consistency of feature point detection between the original
SIFT and our proposed PPSIFT, the regions of detected fea-
tures are overlapped, as shown in Fig. 6. Visually, the detected
locations (labeled in blue and red circles) of feature points look
similar. Nevertheless, there are dissimilarities sometimes due
to the effect of rounding errors introduced in Eq. (9). More
advanced evaluations will be elaborated in Sec. VI.

Please also note that, in the proposed scheme, the locations
of pixels are not encrypted, so the locations of SIFT features
are known to the public. Such a characteristic is significantly
different from our previous work [17], which aims to hide
the locations of SIFT features in order to escape from being
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Fig. 6. Difference of detected features between original SIFT and proposed
PPSIFT. Red circles represent the features of original SIFT, and blue circles
represent the features of PPSIFT. (Best viewed on a color display).

maliciously tampered with. Nevertheless, for the scenario of
privacy-preserving considered here, the locations of feature
points will not breach the privacy because their corresponding
feature descriptors (to be described later) are still in the
encrypted form4 without revealing any private data. One may
argue that if the shape formed from the locations of SIFT
points is directly used as the query, then conventional shape-
based image retrieval can be conducted to find a set of retrieval
results. However, even some private data may be revealed in
this set roughly, they are not known precisely.

2) Impact of the Number of Thresholds Ti ’s and Their
Pairwise Distances: As described in the previous subsection,
the quantization-like homomorphic comparison strategy needs
a series of thresholds Ti ’s. It is interesting to investigate the
impact of the number of thresholds and their pairwise distances
on the accuracy and security of homomorphic comparison.

First, we note that the different pairwise distances between
a pair of thresholds will not affect the accuracy of comparison
since both the magnitude relationship between E(T1, Rρ)
and E(T2, Rρ) and between a1 and a2 can cooperatively
finish homomorphic comparison. In the following, uniform
quantization is used.

Second, we examine the impact of the number of thresholds
upon the speed of computation and security. If the number
of thresholds is large, meaning that the quantization interval
is small, then the computation of homomorphic comparison
indicated in Eq. (15) can be quicker since ak can be found
fast, but at the expense of spending large communication cost
in transmitting these thresholds from the user to the server.
Thus, there exists a tradeoff between communication cost
and computation overhead in homomorphic comparison. If the
server is considered to be resource-abundant, it is, however,
preferable to use a limited number of thresholds.

3) Communication Overhead: In addition to the encrypted
query data, the extra data needed to be sent to server for subse-
quent privacy-preserving processing are the secure thresholds
T e

i,ρ ’s (Eq. (14)) and their order. Note that the calculation
of Rρ (Eq. (13)) needs G Di f f (x, y, ρ), which will be sent
from the server to the user, and what is more, such a pre-
computation will only be executed once when a user initiates
his/her query task. It should be noted that the aforementioned
transmitted data are all integers since these integer data are
used in the Paillier cryptosystem despite the difference in

4We have an interesting observation that, if the SIFT feature descriptors are
not encrypted, the adversary can use them to query other databases so the
originally encrypted content may be approximately guessed from the search
outputs, leading to a privacy breach.

integer length. One finds that the overhead for transmitting
the data is dominated by log2 N2 bits due to the use of
Paillier encryption. Thus, the communication overhead is
O(log2 N).

C. PPSIFT Feature Point Descriptor in Encrypted Domain

In this section, we describe how to derive SIFT feature
descriptors in the plaintext domain, which is then extended
to the ciphertext domain. First, as done in [5], an orientation
assignment is executed for each detected feature point. Then, a
normalized 16×16 region expanded from the region covering
the derived orientation is built from which feature descriptors
are obtained as follows.

An SIFT feature descriptor is established for the 16 × 16
region, which is further divided into sixteen 4 × 4 blocks,
around a feature point. In addition, the calculation of the
feature descriptor is accomplished at the scale where the
feature is detected. Let the gradient magnitudes be denoted
as Di f fX = ConvG(x + 1, y, ρ) − ConvG(x − 1, y, ρ)
and Di f fY = ConvG(x, y + 1, ρ) − ConvG (x, y − 1, ρ)
along different directions. For each 4 × 4 block, the gradient
magnitude and orientation are, respectively, computed for each
position (x, y) within the 4 × 4 block as:

m(x, y) =
√

(Di f fX )2 + (Di f fY )2, (16)

θ(x, y) = tan−1 Di f fX

Di f fY
. (17)

Then, the histogram of weighted magnitudes defined on a
number of restrictive directions is derived based on Eqs. (16)
and (17).

For feature descriptor extraction conducted in the encrypted
domain, the weighted magnitudes located at the four axes
(i.e., positive and negative x-axes and positive and negative
y-axes) are calculated in this paper, which will constitute a
4-dimensional vector. Since there are a total of sixteen 4 × 4
blocks in a 16×16 region, a 64-dimensional feature descriptor
is established. It should be noted that no more than four
restrictive directions are employed in this paper because the
operation of the secure inner product5 is required to derive the
included angle with the two sides not both coinciding with the
x− and y− axes.

In this paper, the feature descriptor calculated in the
encrypted domain for each 4 × 4 block is conducted as
follows. Let V (k), 0 ≤ k ≤ 3, denote the 4-dimensional
feature descriptor of a 4 × 4 block, and let E(V (k)) denote
the ciphertext corresponding to the plaintext V (k). E(V (k))’s
are all initialized to be 1. The encrypted feature descriptors
are derived according to the above conceptions based on
homomorphic addition and plaintext multiplication as:

E(V (0)) = E(V (0))E(ConvG (x + 1, y, ρ))

×E(ConvG(x − 1, y, ρ))−1mod N2,

if ConvG(x + 1, y, ρ) ≥ ConvG(x − 1, y, ρ)

5In the field of secure computation, secure inner product computation
without needing interaction between the user and server is another challenging
issue that needs to be further studied.
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E(V (1)) = E(V (1))E(ConvG(x, y + 1, ρ))

×E(ConvG(x, y − 1, ρ))−1mod N2,

if ConvG(x, y + 1, ρ) ≥ ConvG(x, y − 1, ρ)

E(V (2)) = E(V (2))E(ConvG(x − 1, y, ρ))

×E(ConvG(x + 1, y, ρ))−1mod N2,

if ConvG(x − 1, y, ρ) ≥ ConvG(x + 1, y, ρ)

E(V (3)) = E(V (3))E(ConvG(x, y − 1, ρ))

×E(ConvG(x, y + 1, ρ))−1mod N2,

if ConvG(x, y − 1, ρ) ≥ ConvG(x, y + 1, ρ).

It should be noted that the comparisons in the above equations
also need to be executed in the encrypted domain via the
proposed homomorphic comparison strategy.

D. PPSIFT Feature Descriptor Matching in the Encrypted
Domain

The descriptor matching stage aims to compare a query
descriptor with a reference descriptor for similarity evalua-
tion via a similarity metric. Let the similarity between two
descriptors, V i and V j , be denoted as Sim(V i , V j ). The inner
product between the two descriptors is commonly used as a
similarity metric, which is expressed in the plaintext domain
as:

Sim p
I P (V i , V j ) =

63∑
k=0

V i (k)V j (k). (18)

Actually, the calculation of Eq. (18) in the plaintext domain
should involve the normalization factors, i.e., the norms of
V i and V j . However, they are omitted here for simplifying
notations. Another reason is that the use of inner product in
the encrypted domain suffers a difficulty, as discussed below.
To meet the concern of privacy protection, the above similarity
measure must be computed in the ciphertext domain while
obtaining the same result as in the plaintext domain. Thus, Eq.
(18) can be rewritten in the homomorphic encryption domain
as:

Simc
I P (E(V i ), E(V j )) =

63∏
k=0

E(V i (k))V j (k) mod N2 (19)

to achieve the desired goal. It is not hard to derive from Eq.
(19) that the same similarity measure as in Eq. (18) can be
obtained by means of homomorphic addition (Eq. (3)) and
plaintext multiplication (Eq. (5)).

Unfortunately, it is not possible for the server to access the
plaintexts V j (k)’s used in Eq. (19) due to the user’s privacy
protection. To conquer this problem, we adopt the �1 distance
metric instead, since the calculation of �1 distance can be
conducted in a secure way. More specifically, the �1 distance
between two descriptors in the plaintext domain is defined as:

Sim p
�1

(V i , V j ) = |V i − V j |1 =
63∑

k=0

|V i (k) − V j (k)|. (20)

For �1 distance between two descriptors in the ciphertext
domain, we can derive via homomorphic encryption as:

Simc
�1

(E(V i ), E(V j )) = E(|V i − V j |1)
=

∏
k∈{t |V i (t)>V j (t); 0≤t≤63}

E(V i (k))E(V j (k))−1

×
∏

k∈{t |V i (t)≤V j (t); 0≤t≤63}
E(V i (k))−1 E(V j (k)) mod N2.

(21)

Eq. (21) is derived based on our proposed homomorphic
comparison strategy, described in Sec. IV-B.1, and the additive
homomorphism of the Paillier cryptosystem. Specifically, the
larger of the two ciphertexts, E(V i (k)) and E(V j (k)), is
selected as the minuend and the small one is subtrahend
via the proposed homomorphic comparison. Therefore, the
absolute value of the difference between two ciphertexts
can be directly calculated via homomorphic addition to be
positive.

V. SECURITY ANALYSIS

In this section, we will provide security analysis for the
proposed method. Since the Paillier cryptosystem, whose
security has been investigated in [18], is employed in this
paper, we will only discuss the possible security threat raised
by proposed method. On the other hand, since there may exist
several means to attack our method, an efficient way to analyze
the security of our method is to consider the attack models
instead of several single attacks. Here, we will mainly take the
models of ciphertext only attack (COA) and known plaintext
attack (KPA) into account.

In order to achieve the goal of data comparison in the Pail-
lier encrypted domain, the randomness of Paillier’s encryption
oracle has been reduced by means of limiting the random
factor “r” of encryption oracle as a pseudo-random factor Rρ

in our method. One may argue that our cryptosystem with
the pseudo random factor Rρ is not as secure as the original
Paillier cryptosystem. On the other hand, the thresholds for
encrypted data comparison we provide in Sec. IV-B may reveal
some information to adversary. We will address these two
issues in this subsection.

As mentioned earlier, we focus our security analysis on
two attack models, namely, ciphertext only attack (COA) and
known plaintext attack (KPA). In addition, two different KPA
models are proposed with respect to the disclosure of Ti ’s and
the removal of Rρ . In each attack model, we assume that the
adversary is an untrustworthy service provider or administrator
of a server, i.e., the adversary will follow the execution
requirement of the protocol but may use what they see during
the period of execution to infer additional information, such
as the threshold table for homomorphic comparison.

A. Ciphertext Only Attack

In the ciphertext only attack model, the adversary can access
to the ciphertext, which is the encrypted data available at
the server, or access the threshold table used for encrypted
data comparison. We first discuss the potential information
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leakage and then prove that the threshold table revealed to the
adversary is as hard as the discrete logarithm problem (DLP)
under the COA model.

The proposed encrypted data comparison strategy should be
able to prevent the adversary from learning: (1) the plaintext
versions of the database images; (2) the secret keys p and q
used for decryption; and (3) the threshold table we provide
for encrypted data comparison. For the first two concerns, the
Paillier cryptosystem has been proven to be secure in [18].
Hence, we merely focus on the third problem here.

As we have described in Sec. IV-B, the encrypted threshold
table is used for encrypted data comparison and the threshold
values Ti ’s are private to protect the encrypted data. If the
plaintext of the encrypted threshold table can be extracted,
the threshold table can be used to decrypt the encrypted data.
We will study if this is possible. To defeat our encrypted data
comparison strategy, the adversary will input an encrypted
DoG pixel DoG Imge(x, y, ρ) (Eq. (11)) to find the nearest
encrypted threshold of the input DoG pixel via encrypted data
comparison. Since the encrypted DoG pixel and its corre-
sponding encrypted threshold have the same pseudo random
factor Rρ , the adversary may try to remove this randomness
from the encrypted data via a procedure given as follows.

Given encrypted data DoG Imge(x, y, ρ), our encrypted
data comparison strategy can find the nearest encrypted thresh-
old T e

i,ρ (in this subsection, we need to keep in mind that an
encrypted threshold T e

i,ρ is related to DoG Imge(x, y, ρ) at
the position (x, y); different DoG Imge(x, y, ρ)’s, of course,
may correspond to the same or different T e

i,ρ ’s.). Then, the
adversary can calculate the inverse value, (T e

i,ρ )−1, of each
obtained encrypted threshold, T e

i,ρ , by means of multiplicative
modular inverse in the modular domain. Ideally, (T e

i,ρ )−1 can
be derived to be g−Ti R−N

ρ mod N2. Under this circumstance,
the randomness term RN

ρ of encrypted data can be removed
via:

DoG Imge(x, y, ρ)(T e
i,ρ)−1 mod N2

= gDoG I mg(x,y,ρ)RN
ρ g−Ti R−N

ρ mod N2

= gDoG I mg(x,y,ρ)−Ti mod N2. (22)

Subsequently, the adversary will try to obtain the value
DT (x, y, ρ) = DoG Img(x, y, ρ) − Ti from Eq. (22) by
solving a discrete logarithm problem (DLP).

If the DLP is solvable, DoG Img(x, y, ρ)−Ti can be finally
used to calculate the plaintext threshold Ti by means of solving
a set of simultaneous equations as:

DT (x, y, ρ) = DoG Img(x, y, ρ) − Ti (23)

where 1 ≤ x ≤ X , 1 ≤ y ≤ Y , 1 ≤ ρ ≤ Z − 1, X and
Y are, respectively, the horizontal and vertical sizes of an
image, and Z denotes the number of scales used in DoG.
No matter whether the set of equations in Eq. (23) forms an
underdeterministic problem or not, the first crux is whether the
discrete logarithm problem can be solved in a computationally
efficient manner. We will formulate the security of our method
as a discrete logarithm problem (DLP) according to [27] in the
following.

With the variables defined in Sec. III-B, let DoG Img(x, y,
ρ) − Ti and DoG Imge(x, y, ρ)(T e

i,ρ )−1 mod N2 in Eq. (22)
be, respectively, denoted by m and h. We have the following
formulation.

Definition 1: (Security of PPSIFT as DLP) Let g, h ∈ Z∗
N2 .

We write logg(h) = m if m ∈ Z N2 satisfies gm = h. The
problem of finding such an integer m for a given g, h ∈
Z∗

N2 (with g 
= 1) belongs to a Discrete Log Problem. No
polynomial time algorithm exists to solve the Discrete Log
Problem.

To sum up, the DLP is a critical problem in number theory
[28]–[30] and is similar in many ways to the integer factor-
ization problem. Under the COA model, where the adversary
is assumed to have the information of the ciphertext and
encrypted thresholds, the adversary will not be able to infer
more information about plaintext, thus, privacy is preserved
under such a COA model in our method.

B. Known Plaintext Attack

Different from the COA model, an adversary is assumed to
know a number of pairs of plaintext images and their corre-
sponding encrypted versions in a KPA model. The proposed
homomorphic comparison scheme should be able to prevent
the adversary from learning two kinds of major information,
Ti ’s and Rρ , under the KPA model. In view of this, we propose
two types of the KPA model, KPA2T and KPA2R, in this
subsection.

1) Disclosure of the Threshold Ti ’s Under the KPA Model
(KPA2T): One immediate consequence of the information
available to the adversary under the KPA2T model is that the
adversary may be able to derive the plaintexts of encrypted
thresholds from the relationship between E(I (x, y), r) and the
encrypted thresholds, as indicated in Eq. (22) and Eq. (23).
Different from the COA model, the adversary under the KPA
model can have more information available to easily solve
Eq. (23). Nevertheless, similar to the COA model, the crux
remains because all of the adversaries have to solve DLP first.
As a consequence, the breach of our homomorphic comparison
strategy under the KPA2T model is still as hard as breaking
the DLP.

2) Removal of the Pseudo Random Factor Rρ Under
the KPA Model (KPA2R): The pseudo random factor Rρ

used in our homomorphic comparison strategy may be esti-
mated and adopted to breach the security of our method.
Specifically, Rρ can be found by the adversary to con-
struct a fake encrypted threshold table, which can be used
to decrypt any encrypted data. In KPA2R, the security of
our encrypted data comparison scheme is as difficult as
extracting Rρ .

The procedures of KPA2R is described as follows.
First, the adversary can access some pairs of plain-
texts and corresponding ciphertexts, [DoG Img(x, y, ρ),
E(DoG Img(x, y, ρ), Rρ)], and also know the public key g
and N . Then, the adversary will try to recover the random
factor Rρ via Paillier encryption defined in Eq. (1). One may
try to figure out Rρ by multiplying the encrypted data with
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TABLE I

THEORETICAL AND PRACTICAL ERROR PROBABILITIES UNDER VARIOUS SCALING FACTORS. EACH

ENTRY REPRESENTS THE EXPONENT OF AN ERROR PROBABILITY UNDER THE BASE NUMBER 10

Scaling factor (s) s = 212 s = 215 s = 218 s = 221 s = 224 s = 227 s = 230

Theoretical result (31) −2.3664 −2.8793 −3.7810 −4.7351 −6.0931 −6.7305 −7.3806

mirflickr [33] −2.4195 −3.0250 −3.8935 −4.6567 −6.1438 −6.8428 −7.4147

ImageNet [32] −2.5012 −3.1613 −3.9231 −4.8707 −5.9921 −6.9123 −7.3912

TABLE II

ROBUSTNESS OF OUR SCHEME VERSUS STIRMARK 3.1. ATTACKS ARE DENOTED AS SPA: THE SIGNAL PROCESSING ATTACK, INCLUDING MEDIAN

FILTERING, GAUSSIAN FILTERING, SHARPENING, AND FREQUENCY MODE LAPLACIAN REMOVAL (FMLR); JPEG: COMPRESSION WITH QUALITY

FACTORS RANGING FROM 0.9 TO 0.1; GLGT: GENERAL LINEAR GEOMETRIC TRANSFORM; CAR: CHANGE OF THE ASPECT RATIO; LR:

LINE REMOVAL; RC: ROTATION+ CROPPING; SCALING: SCALED WITH FACTORS RANGING FROM 0.5 TO 2.0; RRS:

ROTATION+RESCALING; RB: RANDOM BENDING

Stirmark 3.1 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

SPA(6) 6 6 6 6 6 6 6 6 6 6

JPEG(12) 12 12 12 12 12 12 12 12 12 12

GLGT(3) 3 3 3 3 3 3 3 3 3 3

CAR(8) 8 8 8 8 8 8 8 8 8 8

LR(5) 5 5 5 5 5 5 5 5 5 5

Cropping(9) 8 8 8 8 8 9 8 8 8 8

RC(16) 16 16 16 16 16 16 16 16 16 16

Scaling(6) 6 6 6 6 6 6 6 6 6 6

RRS(16) 16 16 16 16 16 16 16 16 16 16

Shearing(6) 6 6 6 6 6 6 6 6 6 6

RB(1) 1 1 1 1 1 1 1 1 1 1

Flipping(1) 0 0 0 0 0 0 0 0 0 0

g−E(DoG I mg(x,y,ρ), that is:

E(DoG Img(x, y, ρ))g−DoG I mg(x,y,ρ) mod N2

= gDoG I mg(x,y,ρ)RN
ρ g−m mod N2

= RN
ρ mod N2 ≡ c. (24)

One may observe that solving Eq. (24) is equivalent to
solving the RSA problem [31]. Specifically, we have the
following formulation.

Definition 2: (Estimating Rρ as an RSA problem) Let p and
q be primes and N = pq , as previously described in the paper.
We have the formulation, c ≡ me mod N2, in RSA, where
e and N are the public keys. Comparing with our problem
defined in Eq. (24), we have m = Rρ and e = N . Thus, it can
be concluded that finding an integer m for given e, N ∈ Z∗

N
(with e 
= 1) is an RSA problem.

Based on Definition 2, the random factor Rρ cannot be
extracted to fake a threshold table. Thus, our homomorphic
comparison strategy is confirmed to resist KPA2R.

VI. EXPERIMENTAL RESULTS

In this section, we first verify the relationship between
the scaling factor s and the error probability, which is
defined in Eq. (31), to find an appropriate scaling factor
in Sec. VI-A. After the scaling factor was decided, three

kinds of experiments were conducted to evaluate the perfor-
mance of the proposed method. In Sec. VI-B, the robustness
of our method against benchmark attacks will be demon-
strated. The goal is to examine whether certain robustness
is lost due to secure computation of SIFT features. In
Sec. VI-C, we describe a case study on privacy-preserving
image recognition, which relies on feature extraction. In Sec.
VI-D, a case study on privacy-preserving face recognition is
examined. The aim of both case studies is to verify whether
comparable performance between original-SIFT and PPSIFT
can still be obtained when all of the operations of PPSIFT are
conducted in the encrypted domain.

In the experimental setup, 7 octaves [5] with 6 filters of
different Gaussian variances between two neighboring octaves
were used for implementing DoG. The two large prime num-
bers, p and q , could be selected to be 1000-bit as in [20] but
they could be larger for enhancing security. g ∈ Z∗

N2 can be
arbitrarily selected and was set to be 20 here. For feature point
detection via homomorphic comparison, ten thresholds Ti ’s (∈
Z N ) were arbitrarily selected for reducing the communication
cost on the user side but increasing the computation overhead
on the server side.

For the experiments conducted here, we do not take any
advanced feature representation and indexing/search strategy
into consideration since they are not the focus of this paper.
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TABLE III

ROBUSTNESS OF OUR SCHEME VERSUS STIRMARK 4.0. ATTACKS ARE DENOTED AS AFFINE: AFFINE TRANSFORMATION; CONVF: CONVOLUTION

FILTERING; CROPPING: CROPPED TO (3/4), (1/2), (1/4), AND (1/5) THE ORIGINAL SIZE; JPEG: COMPRESSION WITH QUALITY FACTORS RANGING

FROM 0.9 TO 0.1; MF: MEDIAN FILTERING; NOISE: NOISE ADDITION; SS: SELF-SIMILARITIES; SCALING: SCALED WITH FACTORS RANGING

FROM 0.5 TO 2.0; RML: REMOVING LINES; PSNR: ALL PIXEL VALUES INCREASED BY THE SAME QUANTITY; ROTATION: PURE ROTATION;

RRS: ROTATION+RESCALING; AND RC: ROTATION+CROPPING

Stirmark 4.0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

AffineT(8) 8 8 8 8 8 8 8 8 8 8

ConvF(2) 1 1 1 1 1 1 1 1 1 1

Cropping(9) 4 4 2 4 3 4 2 4 3 2

JPEG(12) 12 12 12 12 12 12 12 12 12 12

MF(4) 4 4 4 4 4 4 4 4 4 4

Noise(6) 1 1 1 1 2 1 1 1 1 2

SS(3) 3 3 3 3 3 3 3 3 3 3

Scaling(6) 6 6 6 6 6 6 6 6 6 6

RML(10) 10 10 10 10 10 10 10 10 10 10

PSNR(10) 10 10 10 10 10 10 10 10 10 10

Rotation(16) 16 16 16 16 16 16 16 16 16 16

RRS(10) 10 10 10 10 10 10 10 10 10 10

RC(10) 10 10 10 10 10 10 10 10 10 10

TABLE IV

RECOGNITION RESULTS FOR “ORIGINAL-SIFT” ON CALTECH101 AND CALTECH256 WITH 24 CATEGORIES.

THE CATEGORIES LABELED WITH ∗ COME FROM CALTECH101
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top-1 10 7 2 12 0 18 11 14 1 22 13 1 0 2 0 1 0 0 3 4 3 0 0 0

top-2 13 10 7 17 1 18 18 18 1 22 17 3 0 4 0 2 0 1 6 13 7 0 0 1

top-3 16 12 11 21 1 19 22 25 1 23 23 3 0 6 0 2 1 5 11 18 9 0 1 1

top-5 21 18 17 24 1 19 26 27 1 23 25 6 2 12 1 6 2 8 15 21 14 0 1 3

top-10 28 23 26 28 4 23 28 29 2 25 30 11 8 19 7 15 10 8 22 24 25 3 3 8

Instead, we aim to verify the performance of feature extraction
conducted in the ciphertext domain.

A. Scaling Factor and Feature Point Error Probability

We illustrate the relationship between the scaling factors
and the error probabilities defined in Eq. (31) of Appendix.
In addition to the theoretical result derived in Eq. (31), we
also adopted two known image databases for obtaining practi-
cal experimental results. In the experiments, two databases,
ImageNet [32] and mirflickr [33], were adopted for SIFT
feature extraction. Each one of the two image databases
contains 106 images. As described in Appendix, a feature
point error happens if a feature point is theoretically/practically
found but is practically/theoretically not found. Table I depicts
the theoretical error probabilities and the experimental error
probabilities for comparison. Note the each entry in Table I
represents the exponent of an error probability under the base
number that is 10. For example, when the scaling factor s
is 224, the theoretical error probability is 10−6.0931. We can

observe from Table I that both the theoretical and practical
results are very close. This means that our analysis of feature
point detection errors due to the introduction of the scaling
factor s in the proposed privacy-preserving SIFT scheme is
reasonable. In addition, according to Table I we can select a
proper scaling factor according to the desired error probability.
In the following experiments, s = 224 was adopted.

B. Robustness Evaluation

Ten commonly used color images with different contents
(I1: Lenna; I2: F-16; I3: Baboon; I4: Peppers; I5: Bridge; I6:
Goldhill; I7: Sailboat; I8: Clock; I9: Tank; I10: Splash) were
adopted to verify the robustness of our secure SIFT scheme
against miscellaneous attacks. The standard benchmarks, Stir-
mark 3.1 and 4.0, were quite suitable for simulating various
manipulations of the digital images. The reader may refer to
[34] for more detailed parameters of Stirmark. Basically, this
experiment is analogous to image copy detection.
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TABLE V

RECOGNITION RESULTS FOR “PPSIFT” ON CALTECH101 AND CALTECH256 WITH 24 CATEGORIES.
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top-1 13 3 2 8 0 13 10 12 1 21 9 4 0 5 0 1 2 1 3 3 5 0 2 1
top-2 19 6 8 8 2 17 12 15 1 25 12 4 1 5 0 3 2 1 7 10 6 0 2 1
top-3 22 8 9 13 2 20 16 21 1 25 15 5 1 6 0 6 5 1 10 21 9 0 2 2
top-5 25 18 18 20 5 24 21 22 2 25 24 10 3 7 0 10 11 5 16 22 16 1 3 3

top-10 30 26 22 30 13 26 26 27 6 26 27 15 8 16 5 18 21 10 24 25 27 3 6 7

In this test, the encrypted original image was used as a query
and sent to the server to find out how many modified versions
could be successfully detected by comparing the detected
SIFT feature vectors in the ciphertext domain. The results
for robustness verification are summarized in Table II and
Table III. In these two tables, each attack’s name is followed
by a digit, which indicates the number of times that the attack
was performed with different parameters. According to our
results, among 1940 modified images (there are in total 194
attacked images for each original image), 1814 of them could
be correctly identified, which indicates that the correct recog-
nition rate was 93.51%. Note that these results were obtained
by controlling the false positive rate to be zero. The cases
for miss recognition all occur in the attacks, including adding
severe noise, cropping with (extremely) small parts remaining,
and flipping, which are also the failed examples for SIFT in
the plaintext domain. Our results indicate that homomorphic
encryption-based secure SIFT can preserve robustness while
achieving privacy.

C. Case Study on Privacy-Preserving Image Retrieval

Content-based image retrieval has been recently considered
in a cloud computing environment [7], but the privacy issue is
ignored. To demonstrate the usefulness of the proposed homo-
morphic encryption-based secure SIFT approach in achieving
privacy-preserving image recognition, the Caltech101 [35] and
Caltech256 datasets [36], consisting of object categories with
high shape variability, were adopted. We randomly select 24
commonly used categories, each of which contains 60 images,
for the experiment. Among them, 30 images per category
were used as the query and the remainder were stored in
the database for search purposes. Basically, this experiment
is analogous to image near-duplicate detection.

It should be noted that we mainly compare the performance
of original-SIFT and PPSIFT without adopting advanced fea-
ture representation and classifiers. The focus is put on the
impact of homomorphic encryption on SIFT feature detection
and descriptor.

Each query image is homomorphically encrypted, followed
by DoG, feature point detection, and feature descriptor extrac-
tion. Then, each query is used to find the closet category
via secure descriptor comparisons among the images in the

database. A query image is classified into a certain category if
it matches the images belonging to that category according to
SIFT feature descriptor matching often. Of course, the cate-
gories a query image belongs to can also be ranked according
to the number of matches in each category. Therefore, results
regarding the top-k query are examined here. Table IV and
Table V, respectively, show the results when top-k query,
where k = 1, 2, 3, 5, 10, were adopted. The digit indicates
the number of correct recognition according to top-k query.
It can be observed from these tables that the recognition
performance between original-SIFT and PPSIFT seems to be
comparable.

In this experiment, we solely compare the SIFT descriptors,
generated from original-SIFT and PPSIFT, in image recog-
nition. It can be expected that the recognition rate can be
remarkably improved and comparable with the state-of-the-
art while still providing privacy-preserving simultaneously if
sophisticatedly designed advanced feature representation and
well-designed classifiers are further employed.

D. Case Study on Privacy-Preserving Face Recognition

Face recognition has been an important topic in biometrics
and surveillance, and what is more, privacy-preserving face
recognition has received considerable attention [9], [10], [12].
Here, a case study of privacy-preserving face recognition was
conducted to verify the broad usefulness of our proposed
privacy-preserving SIFT. The GT face cropped database6,
consisting of 750 color face images of size 140 × 210 from
50 subjects with 15 different face images per subject, was
employed. These images were considered by allowing for
strong variation in size, illumination, facial expression, and
rotation both in the image plane and perpendicular to the image
plane.

For creating the feature database stored on the server side,
5 images of each subject were selected and used for feature
extraction. The remaining 10 face images were used as the
queries to test the accuracy of PPSIFT-based face recognition.
Again, the original SIFT was used to compare with PPSIFT
regarding face recognition. The result is shown in Fig. 7,

6Georgia Tech. Face Database. Available at http://www.anefian.com/
research/GTdb_crop.zip.
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Fig. 7. Comparison of face recognition between PPSIFT and original SIFT.

where the x-axis denotes the top-n results and the y-axis
is the recognition rate. We can find that both results are
comparable, which implies that the detection of SIFT features
in the encrypted domain does not degrade the performance of
face recognition.

VII. CONCLUSION

We have proposed a homomorphic encryption-based
privacy-preserving SIFT (PPSIFT) approach to deal with the
privacy-preserving problem encountered in a cloud computing
environment, where the server can finish the tasks of SIFT-
based applications without learning anything to breach the
user’s privacy. In PPSIFT, the most challenging problem, i.e.,
homomorphic comparison, has been solved in this paper. We
show that the proposed Paillier cryptosystem-based PPSIFT
scheme achieves provable security based on DLP and RSA,
but the computational complexity needs to be further reduced,
even if the current method is designed to be executed on the
server side that owns powerful resources. We believe that the
presented work is an important step toward privacy-preserving
multimedia applications in an environment where privacy is a
major concern.

APPENDIX

ERROR PROBABILITY OF FEATURE EXTRACTION

DUE TO THE SCALING FACTOR s

Recall the integer DoG filter defined in Eq. (9). For the sake
of simplifying notations, let l denote the position of a two-
dimensional pixel at (u, v) and the scales σ ’s are ignored.
Therefore, let Fl denote the original DoG filter coefficient
G(l, σi ) − G(l, σ j ) at (u, v) in Eq. (9) and let Fl = �s Fl�
denote the integer DoG filter, based on introducing a large
integer s, where �·� denotes the rounding function. Actually,
we do not know what s should be and it will be derived to
relate with the error probability here.

Next, as indicated in Eq. (11), the term
G Di f f (x, y, ρ)I (x, y) can be represented as Xl = Fl · Il ,
1 ≤ l ≤ L, where Il denotes the original image pixel
value and L denotes the number of pixels involved in the
convolution with the DoG filter. Similarly, let Xl = Fl · Il .
Since we would like to know the impact of the introduced
factor s on SIFT feature point extraction and determine a
proper value of s, the error probability fE (s) of feature

point extraction due to the uses of the integer DoG filter and
floating DoG filter coefficients should be minimized.

Let Fd
l = Fl − Fl

s denote the difference between the
original floating DoG filter and the quantized integer DoG
filter coefficients (note that the resultant integer DoG filter is
enlarged and then quantized (or normalized) using the interval
size s so that |Fd

l | can range between 0 to 1
2s .). Therefore, we

have the difference between two DoG filtered images as:

Yl = Xl − Xl

s
= Fd

l · Il , 1 ≤ l ≤ L . (25)

Some information regarding Yl , later useful to derive the
error probability fE (s), is derived in the following. The
cumulative distribution function (CDF) of Yl is first derived
as:

P(Yl ≤ yl) = P(Fd
l · Il ≤ yl)

=
∫

f d
l

P( f d
l · Il ≤ yl, Fd

l = f d
l )d f d

l , (26)

where yl and f d
l are, respectively, the realization of Yl and

Fd
l . In addition, we have − 1

2s < f d
l < 1

2s due to |Fd
l | being

between 0 and 1
2s , as described above, and we have − 128

s <

yl < 128
s according to Eq. (25) and the maximum value of a

pixel is 255 (for simplifying notation, 256 is used instead).
Then, the probability density function of Yl can be calcu-

lated by differentiating the CDF in Eq. (26) as:

P(Yl = yl) = fYl (yl) = ∂

∂yl
P(Yl ≤ yl)

= ∂

∂yl

∫ 1
2s

− 1
2s

P( f d
l · Il ≤ yl, Fd

l = f d
l )d f d

l ,

due to − 1

2s
< f d

l <
1

2s

= ∂

∂yl

⎧⎨
⎩

∫ 0
−1
2s

P( f d
l · Il ≤ yl, Fd

l = f d
l )d f d

l ,∫ 1
2s

0 P( f d
l · Il ≤ yl, Fd

l = f d
l )d f d

l ,

= ∂

∂yl

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ yl
256
−1
2s

P( f d
l · Il ≤ yl)P(Fd

l = f d
l )d f d

l ,

due to − 128
s < yl < 0∫ 1

2s
yl

256
P( f d

l · Il ≤ yl)P(Fd
l = f d

l )d f d
l ,

due to 0 ≤ yl < 128
s

= ∂

∂yl

⎧⎪⎨
⎪⎩

∫ yl
256
−1
2s

P(Il ≤ yl

f d
l
)P(Fd

l = f d
l )d f d

l ,∫ 1
2s
yl

256
P(Il ≤ yl

f d
l
)P(Fd

l = f d
l )d f d

l ,

=

⎧⎪⎨
⎪⎩

∫ yl
256
−1
2s

−1
f d
l

P(Il = yl

f d
l
)P(Fd

l = f d
l )d f d

l ,∫ 1
2s
yl

256

1
f d
l

P(Il = yl

f d
l
)P(Fd
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1
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1
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f d
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=

⎧⎪⎨
⎪⎩

1
256s

∫ yl
−128

s

−256
f d
l

d
f d
l

256 ,

1
256s

∫ 128
s

yl

256
f d
l

d
f d
l

256 ,

=
{ 1

256s (ln |−128
s | − ln |yl |),

1
256s (ln | 128

s | − ln |yl |),
= 1

256s
(ln

(
128

s

)
− ln|yl |). (27)

From Eq. (27), we can find that the mean of Yl is exactly 0
since the probability distribution of Yl is symmetric and the
variance of Yl can be derived as:

σ 2
Yl

=
∫ 128

s

− 128
s

y2
l fYl (yl)dyl =

(cY

s

)2
, (28)

where cY is a constant and derived to be 42.66.
Based on the definition of the DoG pixel,

DoG Img(x, y, ρi j ), in Eq. (6) of Sec. IV-A, the DoG
pixel can be represented as Xt = ∑L

l=1 Xl , where t denotes
the position of a two-dimensional pixel at (x, y). On the other
hand, we also have X t = ∑L

l=1 Xl . Due to the central limit
theorem, the quantization error Yt = Xt − Xt is a normal
distribution with zero mean and variance σ 2

Yt
derived from

Eq. (28) as:

σYt =
√√√√ L∑

l=1

σ 2
Yl

=
√√√√ L∑

l=1

(
c

s
)2 = c

√
L

s
. (29)

To decide a DoG local extrema as a feature point candidate,
it must satisfy DoG Img(x, y, ρi j ) > τ , where τ is the
threshold used in SIFT to filter out the unstable local extrema.
Therefore, the error probability of feature point extraction due
to the uses of the integer DoG filter and floating DoG filter
coefficients can be defined as P(Xt > τ, X t ≤ τ ) + P(Xt ≤
τ, X t > τ), which can be further derived as:

P(Xt > τ, X t ≤ τ ) + P(Xt ≤ τ, X t > τ)

= P(X t + Yt > τ, X t ≤ τ ) + P(X t + Yt ≤ τ, X t > τ)

=
τ∑

xt =−∞
P(x t + Yt > τ, X t = xt )

+
∞∑

xt=τ+


P(xt + Yt ≤ τ, X t = xt )

=
τ∑

xt =−∞
P(Yt > τ − xt , X t = xt )

+
∞∑

xt=τ+


P(Yt ≤ τ − xt , X t = xt ), (30)

where 
 = 1
s . Since X t and Yt are independent, Eq. (30) can

be rewritten as:

P(Xt > τ, X t ≤ τ ) + P(Xt ≤ τ, X t > τ)

=
τ∑

xt=−∞
P(Yt > τ − xt )P(X t = xt )

+
∞∑

xt =τ+


P(Yt ≤ τ − xt )P(X t = xt )

=
τ∑

xt=−∞

∫ ∞

τ−xt

P(Yt = yt )P(X t = xt )dyt

+
∞∑

xt =τ+


∫ τ−xt

−∞
P(Yt = yt )P(X t = xt )dyt

=
τ∑

xt=−∞
[er f c(

τ − xt

σYt

)]P(X t = xt )

+
∞∑

xt =τ+


[1 − er f c(
τ − xt

σYt

)]P(X t = xt )

=
τ∑

xt=−∞
[er f c(

s(τ − xt )

c
√

L
)]P(X t = xt )

+
∞∑

xt =τ+


[1 − er f c(
s(τ − xt )

c
√

L
)]P(X t = xt )

= fE (s), (31)

where er f c(·) denotes the complementary error function with
er f c(z) = 2√

π

∫ ∞
z exp(−ξ2)dξ and fE (s) denotes the error

probability density function with the scaling factor s as the
argument.

As we have described in Sec. IV-A, s cannot be too large
since this will make the computational complexity of Eq.
(10) intractable, whereas if s is too small, G Di f f (x, y, ρ)
may be truncated to zero. As a result, a proper selection of
s plays an important role in achieving the tradeoff between
performance and computational complexity. In order to decide
a reasonable scaling factor for the proposed PPSIFT, the
theoretical error probabilities obtained using various scaling
factors are calculated by means of Eq. (31) and depicted in
Table I.
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